Attachment D

Loutre Creek – Section 2.306 Site Specific Water Quality Study October 3, 2006 Prepared for:

Lion Oil Company 1000 McHenry Ave. El Dorado, AR 71730

Prepared by:

GBM<sup>c</sup> & Associates 219 Brown Lane Bryant, AR 72022

October 3, 2006

# **CONTENTS**

| 1.0             | INT | RODUCTION                                             | 1  |
|-----------------|-----|-------------------------------------------------------|----|
|                 | 1.1 | Background                                            | 1  |
|                 |     | Report Focus and Objective                            |    |
| 20              | SIG | NIFICANT FINDINGS AND RECOMMENDATIONS                 | 5  |
| 2.0             |     | Significant Findings                                  |    |
|                 |     | Recommendations                                       |    |
|                 |     |                                                       |    |
| 3.0             |     |                                                       |    |
|                 |     | Introduction                                          |    |
|                 |     | Designated Uses                                       |    |
|                 |     | Domestic Water Supply Use                             |    |
|                 | 3.4 | Outfall Characteristics                               |    |
|                 |     | 3.4.1. Discharge characteristics                      | 12 |
|                 |     | 3.4.2 Effluent Dissolved Mineral Characteristics      |    |
|                 | 3.5 | Description of Pollution Prevention Practices         |    |
|                 |     | 3.5.1 Outfall 001                                     | -  |
|                 |     | 3.5.2 Outfall 002                                     |    |
|                 |     | 3.5.3 Outfall 003                                     |    |
|                 |     | 3.5.4 Outfall 004                                     |    |
|                 |     | 3.5.5 Outfall 005                                     |    |
|                 |     | 3.5.6 Outfall 006/007                                 |    |
|                 | 3.6 | Current NPDES Permit Status                           |    |
|                 |     | 3.6.1 NPDES Permit Compliance                         |    |
|                 |     | 3.6.1.1 Discharge and Monitoring Requirements         | 15 |
|                 |     | 3.6.1.2 Dissolved Minerals                            |    |
|                 |     | 3.6.2 Toxicity Testing                                |    |
|                 |     | 3.6.2.1 Outfall 001 Biomonitoring                     | 20 |
|                 |     | 3.6.2.1 Outfall 001 Microtox                          |    |
|                 |     | 3.6.2.2 Storm Water Outfalls                          | 23 |
| 40              |     | UATIC LIFE FIELD STUDY                                | 25 |
| <del>т.</del> 0 |     |                                                       |    |
|                 |     | Habitat Characterization                              |    |
|                 | 7.2 | 4.2.1 Introduction                                    |    |
|                 |     | 4.2.2 Methods                                         |    |
|                 |     | 4.2.2.1 Channel Morphology                            |    |
|                 |     | 4.2.2.2 Instream Structure                            |    |
|                 |     | 4.2.2.3 Riparian Characteristics                      |    |
|                 |     | 4.2.3 Scoring and Analysis of Habitat Assessment Data |    |
|                 |     | 4.2.4 Results and Discussion                          |    |
|                 |     | 4.2.4.1 Habitat Quality                               |    |
|                 |     | 4.2.4.1 Habitat Quality                               |    |
|                 |     | 4.2.4.2 Reach LC-1                                    |    |
|                 |     | 4.2.4.3 Reach LC-2                                    |    |
|                 |     | 4.2.4.4 Reach LC-3                                    |    |
|                 |     | 4.2.5 Habitat Potential                               |    |
|                 | 10  |                                                       |    |
|                 | 4.3 | Water Quality                                         | 42 |

# **CONTENTS (Cont.)**

|     |     |         | Chemical Characteristics                                                                                     |     |
|-----|-----|---------|--------------------------------------------------------------------------------------------------------------|-----|
|     |     |         | Methods                                                                                                      |     |
|     |     | 4.3.3   | Results and Discussion                                                                                       | 42  |
|     |     |         | Conclusions                                                                                                  |     |
|     | 4.4 |         | c Macroinvertebrate Community                                                                                |     |
|     |     | 4.4.1   | Introduction                                                                                                 | 43  |
|     |     | 4.4.2   | Methods                                                                                                      | 43  |
|     |     |         | Results and Discussion                                                                                       |     |
|     |     |         | 4.4.3.1 Overview                                                                                             |     |
|     |     |         | 4.4.3.2 Reach LC-1                                                                                           | 44  |
|     |     |         | 4.4.3.3 Reach LC-2                                                                                           | 45  |
|     |     |         | 4.4.3.4 Reach LC-3                                                                                           | 45  |
|     |     |         | 4.4.3.5 Biometric Score Comparisons                                                                          | 45  |
|     |     | 4.4.4   | Conclusions                                                                                                  | 48  |
|     | 4.5 | Fish Co | ommunity                                                                                                     | 49  |
|     |     | 4.5.1   | Introduction                                                                                                 | 49  |
|     |     | 4.5.2   | Methods                                                                                                      | 49  |
|     |     | 4.5.3   | Results and Discussion                                                                                       | 50  |
|     |     |         | 4.5.3.1 Reach Comparisons                                                                                    | 50  |
|     |     |         | 4.5.3.2 Biometric assessment                                                                                 | 50  |
|     |     | 4.5.4   | Conclusions                                                                                                  | 52  |
|     | 4.6 | Summa   | ary                                                                                                          | 53  |
| 50  |     |         | _OADINGS OF DISSOLVED MINERALS                                                                               | 52  |
| 5.0 |     |         | le, Sulfate, and TDS Water Quality Criteria                                                                  |     |
|     |     |         | Balance                                                                                                      |     |
|     | J.Z | 5.2.1   | Methods                                                                                                      |     |
|     |     | 5.2.1   | Computations for Loutre Creek                                                                                |     |
|     |     | 5.2.2   | Computations for Bayou de Loutre (from Loutre Creek to the discharge                                         |     |
|     |     | 5.2.5   |                                                                                                              | 56  |
|     |     | 5.2.4   | of the City of El Dorado South facility)<br>Computations for Bayou de Loutre (from the discharge of the City |     |
|     |     | 5.2.4   | of El Dorado South facility to the mouth of Gum Creek)                                                       | 57  |
|     |     | 5.2.5   | Computations for Bayou de Loutre (from Gum Creek to the mouth                                                |     |
|     |     | 5.2.5   |                                                                                                              | 50  |
|     |     | E 0 6   | of Boggy Creek)<br>Computations for Bayou de Loutre (from Boggy Creek to the mouth                           |     |
|     |     | 5.2.6   |                                                                                                              | 50  |
|     |     | E 0 7   | of Hibank Creek)                                                                                             |     |
|     |     | 5.2.7   | Computations for Bayou de Loutre (from Hibank Creek to the mouth                                             | 60  |
|     |     | F 0 0   | of Mill Creek)<br>Computations for Bayou de Loutre (from Mill Creek to the mouth                             | 60  |
|     |     | 5.2.8   |                                                                                                              | C1  |
|     |     | F 0 0   | of Buckaloo Branch)                                                                                          |     |
|     |     | 5.2.9   | Computations for Bayou de Loutre (from Buckaloo Branch to the                                                | ~~~ |
|     |     | E 0 40  | mouth of Bear Creek)                                                                                         | 62  |
|     |     | 5.2.10  | Computations for Bayou de Loutre (from Bear Creek to the top of                                              | 00  |
|     |     | E 0 44  | the final segment of Bayou de Loutre)                                                                        | 63  |
|     |     | 5.2.11  | Computations for the final segment of Bayou de Loutre to                                                     | 00  |
|     |     | F 0 40  | the Arkansas/Louisiana Stateline                                                                             |     |
|     |     |         | Computations for increased capacity.                                                                         |     |
|     |     | 5.2.13  | Comparison with the dissolved mineral standard for Louisiana                                                 | 66  |

# **CONTENTS (Cont.)**

| 6.0 ALTERNATIVE ANALYSES                             | 67 |
|------------------------------------------------------|----|
| 6.1 No Action                                        | 67 |
| 6.2 No Discharge                                     |    |
| 6.3 Hydrograph Controlled Release (HCR)              | 68 |
| 6.4 Treatment                                        | 68 |
| 6.5 Source Reduction/Pollution Prevention            | 68 |
| 6.6 WQS Modifications                                | 69 |
| 6.6.1 Designated Uses                                | 69 |
| 6.6.2 Existing Uses                                  |    |
| 6.6.3 Attainability of the Domestic Water Supply Use | 70 |
| 6.7 Selected Alternative                             | 71 |
|                                                      |    |
| 7.0 REFERENCES                                       | 74 |

# **TABLES**

| Table 2.1. | Summary of proposed modifications.                                         | 8  |
|------------|----------------------------------------------------------------------------|----|
| Table 3.1. | Summary of targeted mineral constituents in Outfall 001                    |    |
|            | discharge from Lion Oil facility                                           | 12 |
| Table 3.2. | Summary of targeted mineral constituents in storm water                    |    |
|            | discharges from Lion Oil facility                                          | 12 |
| Table 3.3. | Current Final Discharge Limitations for Lion Oil, Outfall 001.             | 15 |
| Table 3.4. | Current Final Discharge Limitations for Lion Oil, Outfalls 002,            |    |
|            | 003, & 004                                                                 |    |
| Table 3.5. | Current Final Discharge Limitations for Lion Oil, Outfall 005              | 16 |
| Table 3.6. | Current Final Discharge Limitations for Lion Oil, Outfalls 006 & 007       | 17 |
| Table 3.7. | Dissolved mineral data from Lion Oil storm water outfalls.                 |    |
|            | December 2005                                                              | 18 |
| Table 3.8. | Dissolved mineral data from Lion Oil Outfall 001. March 2004 –             |    |
|            | December 2005                                                              | 18 |
| Table 3.9. | Chloride data from Outfall 001                                             | 20 |
| Table 4.1. | Watershed size of Loutre Creek at each study reach.                        |    |
|            | Lion Oil Section 2.306 Study                                               | 25 |
| Table 4.2. | Habitat characteristics of study reaches during seasonal flow              |    |
|            | conditions                                                                 |    |
| Table 4.3. | Qualitative habitat potential summary of study reaches, April 2005.        | 41 |
| Table 4.4. | Water quality data measured/sampled in April 2005                          | 42 |
| Table 4.5. | Summary of Benthic Community metrics from Loutre Creek                     |    |
|            | as sampled May 2005.                                                       |    |
| Table 4.6. | Summary of Benthic Community taxa collected from Loutre Creek              |    |
|            | using the RBA techniques. May 2005                                         | 47 |
| Table 4.7. | Fish community structural analysis for Lion Oil, El Dorado, AR, April 2005 | 51 |
| Table 4.8. | Fish community for Lion Oil, El Dorado, AR, April 2005                     | 52 |
| Table 5.1. | Instream Waste Concentration (IWC) Calculation for Loutre Creek            | 56 |
| Table 5.2. | Instream Waste Concentration (IWC) Calculation for Bayou                   |    |
|            | de Loutre.                                                                 |    |

# TABLES (Cont.)

| Instream Waste Concentration (IWC) Calculation for Bayou de Loutre |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Summary of proposed modifications to designated uses for Loutre    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Creek and Bayou De Loutre                                          | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Summary of Proposed Criteria modifications for CI, SO4 and TDS WQS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Modifications                                                      | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Instream Waste Concentration (IWC) Calculations                    | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Instream Waste Concentration (IWC) Calculations                    | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Instream Waste Concentration (IWC) Calculations                    | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Instream Waste Concentration (IWC) Calculations                    | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Instream Waste Concentration (IWC) Calculations                    | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Instream Waste Concentration (IWC) Calculations                    | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Summary of Proposed WQS Modifications                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                    | Instream Waste Concentration (IWC) Calculations.<br>Summary of proposed modifications to designated uses for Loutre<br>Creek and Bayou De Loutre.<br>Summary of Proposed Criteria modifications for CI, SO4 and TDS WQS<br>Modifications<br>Instream Waste Concentration (IWC) Calculations<br>Instream Waste Concentration (IWC) Calculations<br>Summary of Proposed WQS Modifications |

# **FIGURES**

| Figure 1.1. Loutre Creek, Lion Oil and stream reach proposed for 3 <sup>rd</sup> party rule making | 2  |
|----------------------------------------------------------------------------------------------------|----|
| Figure 1.2. Status of Domestic Water Supply Use (DWSU) for Bayou de Loutre and                     |    |
| Loutre Creek                                                                                       | 4  |
| Figure 2.1. Study Reaches                                                                          | 7  |
| Figure 3.1. Lion Oil primary treated wastewater discharge (Outfall 001) and the storm water        |    |
| discharge locations. Lion Oil Section 2.306 documentation. September 2006                          | 9  |
| Figure 3.2. Relative frequency of discharge from storm water discharges from Lion Oil for          |    |
| period of 24 months.                                                                               | 11 |
| Figure 3.3. Summary of water flea (Ceriodaphnia dubia) biomonitoring performance.                  |    |
| Period of record January 2000-December 2005.                                                       | 21 |
| Figure 3.4. Summary of fathead minnow (Pimephales promelas) biomonitoring performance.             |    |
| Period of record January 2000-December 2005.                                                       | 22 |
| Figure 3.5. Summary of Microtox response to 15 minute exposure. Lion Oil POR                       |    |
| 12/05 to 6/06                                                                                      | 23 |
| Figure 3.6. Summary of Microtox response to 5 minute exposure. Lion Oil POR                        |    |
| 12/05 to 6/06                                                                                      | 24 |
| Figure 3.7. Summary of Microtox response to 30 minute exposure. Lion Oil POR                       |    |
| 12/05 to 6/06                                                                                      | 24 |
| Figure 4.1. Aquatic life field study reaches. May 2005                                             |    |
| Figure 4.2. Stream channel depicting bankfull stage.                                               |    |
|                                                                                                    |    |
| Figure 4.3. Approximate position of measurements across transect.                                  | 31 |
| Figure 4.4. Comparison of trophic structure of benthic community upstream and                      |    |
| downstream of outfalls. Collector dominated to Predator dominated                                  | 48 |

# FIGURES (Cont.)

| Figure 5.1  | Lion Oil and Loutre Creek reach proposed for 3rd party rule making      | 1 |
|-------------|-------------------------------------------------------------------------|---|
|             | Existing and Proposed dissolved mineral criteria for stream segments in |   |
|             | Bayou de Loutre                                                         | 7 |
| Figure 6.1. | Stream reaches proposed for use removal                                 | 1 |

# **APPENDICES**

- Appendix A Aquatic life field study Lion Oil
- Appendix B Agency documentation
- Appendix C Facility and DMR dissolved mineral data
- Appendix D Summary of Toxicity Testing data

Appendix E Field data sheets

- Appendix F LA Data
- Appendix F-1 USGS Flow data
- Appendix F-2 LDEQ Monitoring Data
- Appendix G Alternative Analysis
- Appendix G-1 Hydrograph Model
- Appendix G-2 Treatment Estimate
- Appendix H. Photo of study reaches

5

# **1.0 INTRODUCTION**

## 1.1 Background

This report presents the documentation developed in support of a proposed third-party rule making to address the existing final permit limits for dissolved minerals in the Lion Oil Company's (Lion Oil) NPDES permit (AR0000647). The documentation was developed in accordance with the project study plan developed for the aquatic life field study and as submitted to ADEQ for their review and comment (Appendix A). This documentation is required by Section 2.306 of the Arkansas Water Quality Standards (WQS) in support of the proposed modifications of designated but non-existing and unattainable domestic water supply use and associated water quality criteria for dissolved minerals (sulfates, SO<sub>4</sub>; chlorides, Cl<sup>-</sup> and total dissolved solids, TDS). This report also addresses the requirements of the 1994 Administrative Guidance Document of the ADEQ, which clarifies the Section 2.306 documentation process.

In addition, this report provides documentation regarding the attainability of the domestic water supply use from the perspective of the 40 CFR 131.10(g) rationale for use removal. The requirement for providing 40 CFR 131.10(g) documentation is to fulfill USEPA Region 6 requests for inclusion of use attainability information in the third party rule making process.

Lion Oil has operated an oil refinery, storage, and distribution center in, El Dorado, Arkansas, Union County since 1922 (Figure 1.1). Current refinery capacity is approximately 70,000 barrels per day (bpd). Recent increases in waste water effluent dissolved solids (especially  $SO_4$  and TDS) have resulted from environmental improvements directed at air emissions control as mandated by EPA and ADEQ. In 2003, Lion Oil entered in to a Consent Decree jointly signed by ADEQ and EPA. The Decree required Lion Oil to install a wet scrubber on the facility's Cat Cracker to reduce  $SO_2$  air emissions. That emissions control equipment was added and functional by March 2004. The scrubber uses sodium hydroxide and an oxidation system to ultimately convert the  $SO_2$  to sodium sulfate ( $Na_2SO_4$ ) in a water solution. The resulting  $Na_2SO_4$  (dissolved minerals) is captured in the process waste water. Since the waste water treatment is not designed to remove dissolved minerals (and there is no economical treatment technology available for the removal of dissolved minerals), the resulting impact is an increase of approximately 1500-2000 ppm TDS to the Outfall 001 discharge, primarily in the form of  $Na_2SO_4$ .

In addition, Lion Oil has recently installed a new diesel hydrotreater and a gasoline hydrotreater to meet the new and more stringent sulfur standards for Tier 2 fuels. These regulatory required modifications also contribute additional TDS to the process waste water.

## **1.2 Report Focus and Objective**

The focus of this report are the discharges from the treated process wastewater outfall (Outfall 001) and the storm water outfalls (002, 003, 004, 005, & 006/007) covered under their current NPDES permit. Each outfall discharges into Loutre Creek within a ½ mile stretch that dissects the manufacturing facility and the storage/distribution areas.

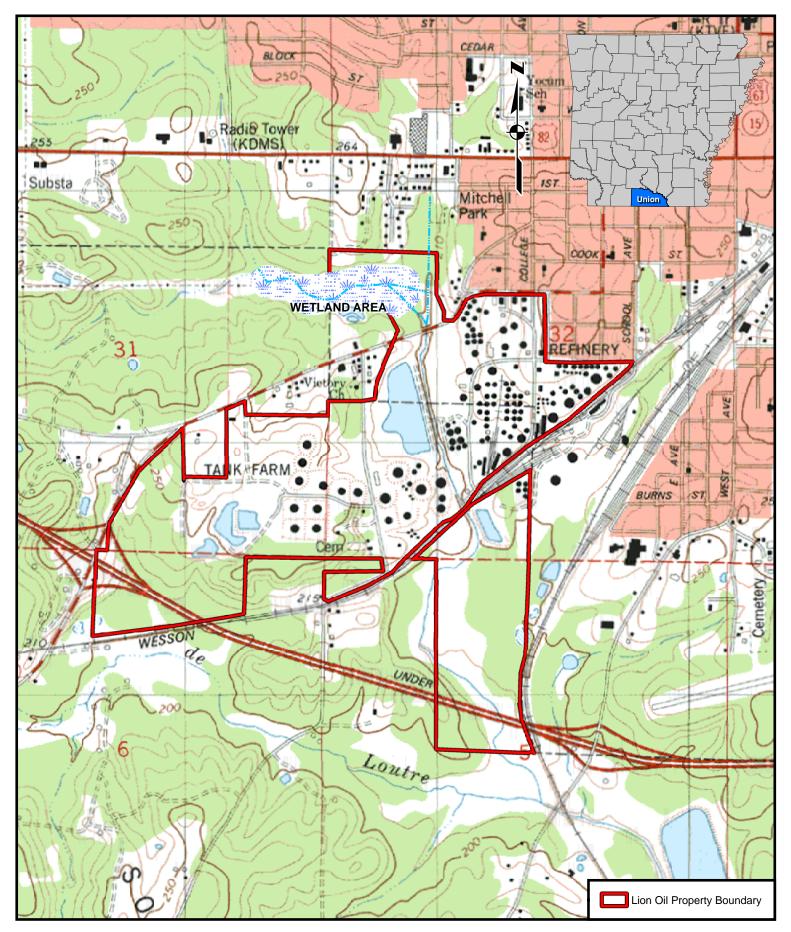



Figure 1.1. Location of Lion Oil, Loutre Creek and Bayou de Loutre. Lion Oil Section 2.306 documentation. September 2006.

Due to the close proximity of the outfalls with one another, all the outfalls are treated as one with regards to instream minerals concentrations and the proposed rule making changes for Loutre Creek and Bayou de Loutre. Each outfall discharge contains or potentially contains concentrations of chloride (CI), sulfate (SO<sub>4</sub>), and total dissolved solids (TDS) that are in excess of the existing ecoregion specific water quality criteria. These ecoregion criteria were developed based on characteristics of "least disturbed" Gulf Coastal streams that do not reflect the site specific conditions existing in the Bayou de Loutre watershed.

The primary report objectives are to:

- provide the required documentation to support a third-party rulemaking in accordance with Section 2.306 to remove the designated and unattainable domestic water supply use (DWSU) from Loutre Creek and Bayou de Loutre, from the mouth of Loutre Creek downstream to the mouth of Gum Creek. (Figure 1.2). As documented in the Arkansas water quality standards (ADEQ, 2001), the domestic water supply use for Bayou de Loutre has been removed from the mouth of Gum Creek downstream to the state line. In addition, the domestic water supply use for Bayou de Loutre above the mouth of Loutre Creek is being proposed for removal via pending 3<sup>rd</sup> party rule making for Great Lakes Chemical Company. (This 3<sup>rd</sup> party rule making was initiated during the September, 2006 ADEQ Commission meeting).
- propose site-specific water quality criteria for dissolved minerals (CI, SO<sub>4</sub>, and TDS) that:
  - reflect the current discharge concentrations which have increased as a result of recent improvements in air emissions control equipment. These increases overshadow reductions in mineral concentrations related to site improvements, and other pollution prevention activities.
  - are shown to support the designated seasonal fishery use in Loutre Creek downstream of the discharge and the supporting biotic communities to maintain that use.

This documentation summarizes significant findings and provides recommendations (Section 2.0), provides a summary of the site's background information (Section 3.0), documents the physical, chemical, and biological characteristics of tributaries that receive the permitted discharges from the targeted outfalls (Section 4.0), and presents the mass balance modeling results (Section 5.0). Section 6.0 provides a review of alternatives to meet the existing ecoregion criteria or stream criteria for dissolved minerals as well as the attainability of the domestic water supply use of Loutre Creek and Bayou de Loutre, respectively. Section 7.0 provides the citation for documents referenced in this report.

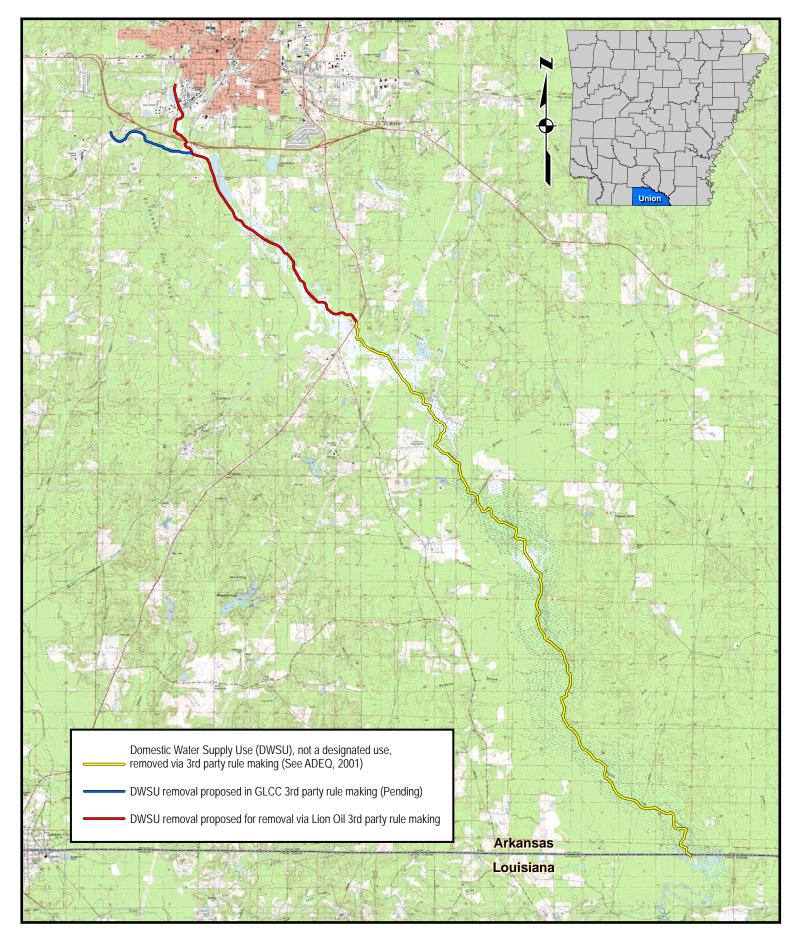



Figure 1.2. Status of the Domestic Water Supply Use designation in the Bayou de Loutre watershed. Lion Oil Section 2.306 documentation. September 2006.

# **2.0 SIGNIFICANT FINDINGS AND RECOMMENDATIONS**

## 2.1 Significant Findings

The following findings are based on the information developed as part of the documentation in support of the proposed rule making and as directed by the aquatic life field survey (Appendix A).

- 1. Recent process and air emission control equipment have been added to the facility in response to a Consent Decree jointly signed by ADEQ and EPA to control air emissions. These scrubbers (air emission control equipment) have been responsible for recent increase in sulfates and TDS in the treated waste water discharged through Outfall 001.
- 2. The facility manages water discharges under the NPDES permit AR0000647.
- 3. The NPDES permit allows treated waste water discharge and the existing discharges have final dissolved mineral limitations based on ecoregion reference water quality criteria.
- 4. The historical and existing discharges have, on occasion, exceeded the water quality based ecoregion mineral criterion.
- 5. The facility certifies that it maintains a Storm Water Pollution Prevention Plan and a Spill Prevention Control and Countermeasure Plan.
- 6. All outfalls (treated waste water and storm water) discharge directly to Loutre Creek.
- 7. The water shed size at the mouth of Loutre Creek is less than 5 sq. miles (Figure 2.1).
- 8. Loutre Creek was found to maintain an existing fishery, and a designated aquatic life use to the degree allowed by the watershed size and the existing habitat
- 9. According to state resource agencies (ADH&HS and ADNR) the domestic water supply is use is not an existing use, nor is it an attainable use on Loutre Creek, and
- 10. Modification to the mineral criteria will not preclude the attainment of the other designated and attainable uses.

## 2.2 Recommendations

Based on the documentation presented herein, it is recommended that the designated domestic water supply use be removed from the following locations:

- Loutre Creek from Hwy 15 South (upstream terminus) to its confluence with Bayou de Loutre (see Figure 6.1).
- Bayou de Loutre from the mouth of Loutre Creek to the mouth of Gum Creek (Figure 1.2). As presented in the background information, the domestic water supply use for Bayou de Loutre downstream of the mouth of Gum Creek has been removed by previous rule making (ADEQ, 2004).

In addition to the domestic water supply use being removed, an increase in the water quality criteria for CI, SO4, and TDS for the following locations are proposed to support the continued historical discharge from Lion Oil (see Section 6.6 for additional detail):

- Chloride, SO4, and TDS criteria for Loutre Creek from Hwy 15 South (upstream terminus) to its confluence of Bayou de Loutre for Chloride, SO4 and TDS in Bayou de Loutre from the mouth of Loutre Creek, downstream to the discharge from the City of El Dorado south waste water treatment facility.
- Sulfate and TDS in Bayou de Loutre from the City's discharge, then downstream to the mouth of Boggy Creek. and
- Sulfate in Bayou de Loutre from the mouth of Gum Creek down stream to the state line.

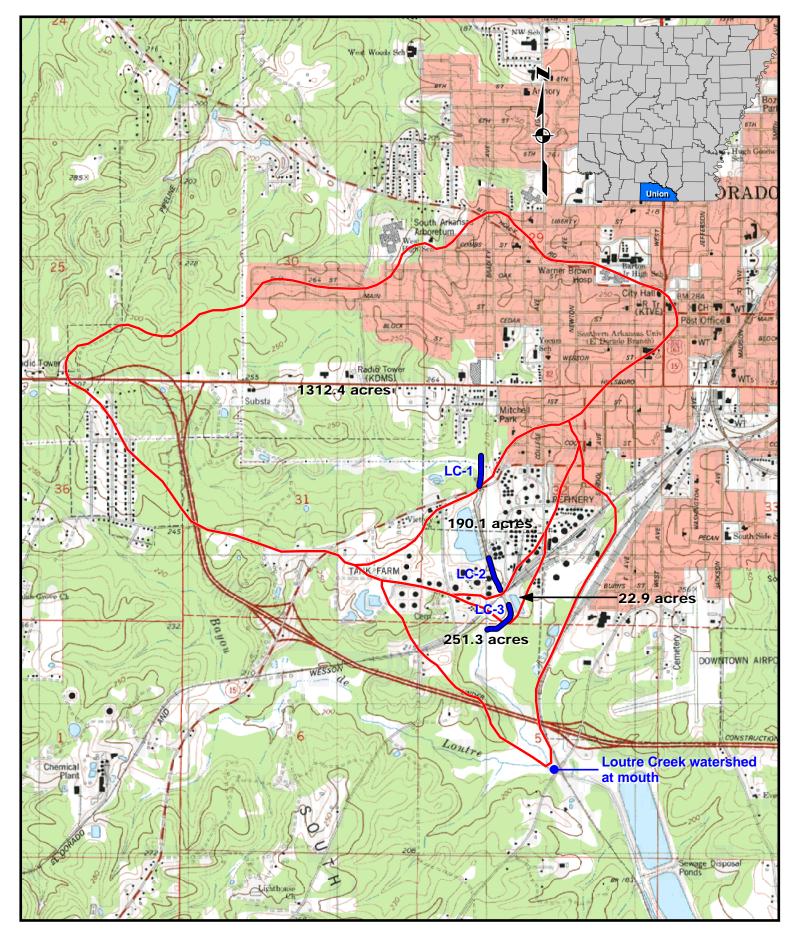



Figure 2.1. Study reaches, watershed boundaries and sizes of Loutre Creek sub-watersheds. Lion Oil Section 2.306 documentation. September 2006.

Table 2.1 summarizes the recommended changes to designated uses and the water quality criteria for CI,  $SO_4$  and TDS of individual streams segments evaluated.

| Table 2.1. Summary of Proposed WQS Modifications. Lion Oil 3" party rulemaking. October 2006. |                                                         |                                                       |  |  |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|--|--|
| Loutre Creek – from Hwy 15                                                                    | Bayou de Loutre – from Loutre                           | Bayou de Loutre – from the                            |  |  |
| South to the confluence of                                                                    | Creek to the discharge for the                          | discharge from the City of El                         |  |  |
| Bayou de Loutre                                                                               | City of El Dorado South facility Dorado-South downstrea |                                                       |  |  |
|                                                                                               |                                                         | the mouth of Gum Creek                                |  |  |
| Remove Designated Domestic                                                                    | Remove Designated Domestic                              | Remove Designated Domestic                            |  |  |
| Water Supply Use                                                                              | Water Supply Use                                        | Water Supply Use                                      |  |  |
|                                                                                               |                                                         |                                                       |  |  |
| Instream Criteria:                                                                            | Instream Criteria:                                      | Instream Criteria:                                    |  |  |
| Instream Criteria:<br>Amend ecoregion dissolved minerals                                      | Instream Criteria:<br>Amend stream dissolved minerals   | Instream Criteria:<br>Amend stream dissolved minerals |  |  |
|                                                                                               |                                                         |                                                       |  |  |
| Amend ecoregion dissolved minerals                                                            | Amend stream dissolved minerals                         | Amend stream dissolved minerals                       |  |  |
| Amend ecoregion dissolved minerals criteria:                                                  | Amend stream dissolved minerals criteria:               | Amend stream dissolved minerals criteria:             |  |  |

Table 2.1. Summary of Proposed WQS Modifications. Lion Oil 3<sup>rd</sup> party rulemaking. October 2006.

Table 2.1 (cont.) Summary of Proposed WQS Modifications. Lion Oil 3<sup>rd</sup> party rulemaking. October 2006.

| Bayou de Loutre – from the mouth<br>of Gum Creek downstream to the<br>mouth of Boggy Creek                                                   | Bayou de Loutre – from the<br>mouth of Boggy Creek<br>downstream to the mouth of<br>Hibank Creek                           | Bayou de Loutre – from the<br>mouth of Hibank Creek<br>downstream to the mouth of Mill<br>Creek                             |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| No change in uses                                                                                                                            | No change in uses                                                                                                          | No change in uses                                                                                                           |
| Instream Criteria:                                                                                                                           | Instream Criteria:                                                                                                         | Instream Criteria:                                                                                                          |
| Amend stream dissolved minerals<br>criteria:<br>Chloride: NO CHANGE<br>Sulfate from 90 mg/L to 345 mg/L<br>and TDS from 750 mg/L to 780 mg/L | Amend stream dissolved minerals<br>criteria:<br>Chloride: NO CHANGE<br>Sulfate from 90 mg/L to 296 mg/L&<br>TDS: NO CHANGE | Amend stream dissolved minerals<br>criteria:<br>Chloride: NO CHANGE<br>Sulfate from 90 mg/L to 263 mg/L &<br>TDS: NO CHANGE |

Table 2.1 (cont.) Summary of Proposed WQS Modifications. Lion Oil 3<sup>rd</sup> party rulemaking. October 2006

| Bayou de Loutre – from the mouth of Mill Creek<br>downstream to the mouth of Buckaloo Branch | Bayou de Loutre – from the mouth of Buckaloo<br>Branch downstream to the mouth of Bear Creek |  |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|
| No change in uses                                                                            | No change in uses                                                                            |  |
| Instream Criteria:                                                                           | Instream Criteria:                                                                           |  |
| Amend stream dissolved minerals criteria:                                                    | Amend stream dissolved minerals criteria:                                                    |  |
| Chloride : NO CHANGE                                                                         | Chloride : NO Change                                                                         |  |
| Sulfate from 90 mg/L to 237 mg/L &                                                           | Sulfate from 90 mg/L to 216 mg/L &                                                           |  |
| TDS : NO CHANGE                                                                              | TDS: NO CHAMGE                                                                               |  |

Table 2.1 (cont.) Summary of Proposed WQS Modifications. Lion Oil 3<sup>rd</sup> party rulemaking. October 2006

| Bayou de Loutre - from the mouth of Bear Creek to the final segment of Bayou de Loutre. | Bayou de Loutre (Final Segment) to the<br>Arkansas/Louisiana State Line |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| No change in uses                                                                       | No change in uses                                                       |
| Instream Criteria:                                                                      | Instream Criteria:                                                      |
| Amend stream dissolved minerals criteria:                                               | Amend stream dissolved minerals criteria:                               |
| Chloride : NO CHANGE                                                                    | Chloride: NO CHANGE                                                     |
| Sulfate from 90 mg/L to 198 mg/L &                                                      | Sulfate from 90 mg/L to 171 mg/L                                        |
| TDS: NO CHANGE                                                                          | TDS: NO CHANGE.                                                         |

# **3.0 BACKGROUND**

### 3.1 Introduction

Lion Oil operates an oil refinery, storage and distribution facility in Union county on the south side of El Dorado, Arkansas. The facility's one treated process wastewater outfall (Outfall 001) and six storm water outfalls (Outfalls 002, 003, 004, 005, 006/007) discharge to Loutre Creek (Figure 3.1). A detailed description of each outfall and the individual discharge characteristics are provided in Sections 3.2 and following. Three storm water only outfalls 002, 003, and 004 discharge on a regular basis during storm events. However, three outfalls (005, 006, & 007) contain storm water commingled with treated process wastewater. Two outfalls are emergency overflow outfalls (005 & 006) from holding ponds located in the facility and contain storm water commingled with process wastewater. Outfall 005 is an emergency overflow outfall on the Main Holding Pond (Main Pond). Outfall 007 is a controlled storm water discharge from the Main Pond, which has the potential to discharge storm water commingled with process wastewater.

The Arkansas Water Quality Standards - Regulation No. 2 (WQS) (ADEQ, 2004) allows modification of water quality standards under various conditions. Specifically, Section 2.306 of the WQS allows the removal of a designated use other than a fishable or swimmable use, and for establishment of less stringent water quality criteria without affecting fishable or swimmable uses. This project report documents the information required to amend Reg. 2 through third party rulemaking. The study areas and discharges described above are depicted in Figure 3.2.

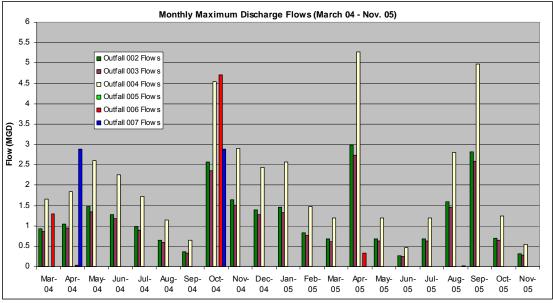



Figure 3.1 Relative frequency of discharge from storm water discharges from Lion Oil for period of 24 months.

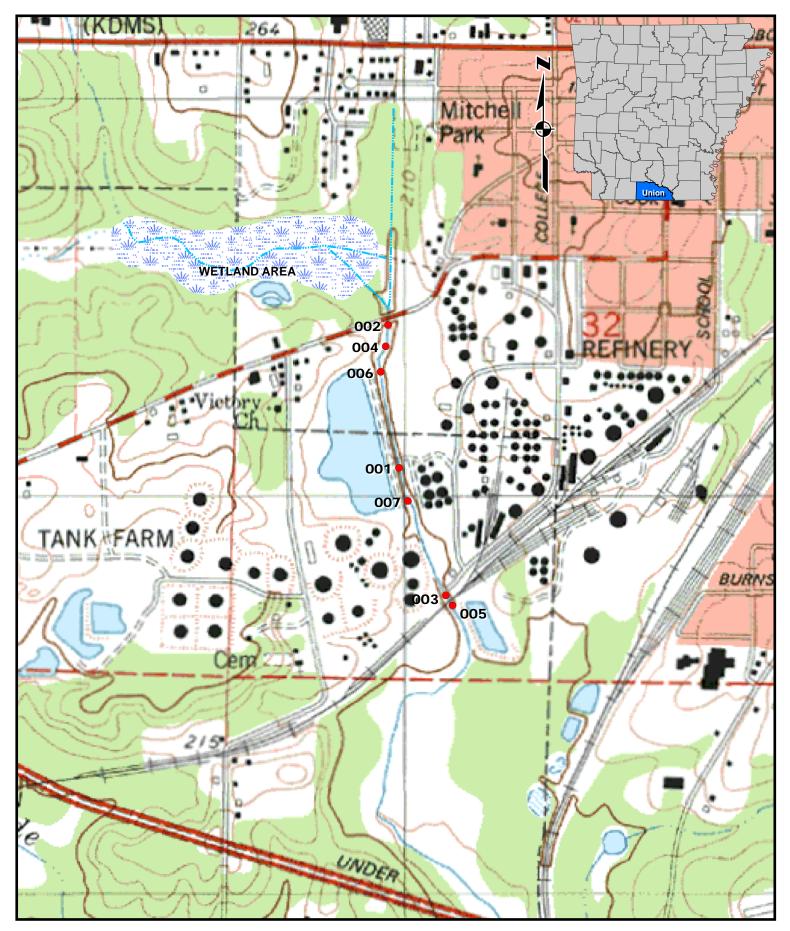



Figure 3.2. Lion Oil primary treated waste water discharge (Outfall 001) and the storm water discharges. Lion Oil Section 2.306 documentation. September 2006.

### 3.2 Designated Uses

The designated uses for Loutre Creek and Bayou de Loutre are those listed in the WQS for Gulf Coastal Plain streams with watersheds less than 10 mi<sup>2</sup>. The designated uses for Loutre Creek and Bayou de Loutre are listed below. They are as follows:

#### Loutre Creek

- Secondary Contact Recreation,
- Perennial Gulf Coastal Fishery
- Seasonal Gulf Coastal Fishery,
- Domestic Water Supply,
- Industrial Water Supply, and
- Agricultural Water Supply.

#### Bayou de Loutre (above Gum Creek)

- Primary Contact Recreation,
- Secondary Contact Recreation,
- Seasonal Gulf Coastal Fishery,
- Perennial Gulf Coastal Fishery,
- Domestic Water Supply,
- Industrial Water Supply, and
- Agricultural Water Supply.

#### Bayou de Loutre (below Gum Creek)

- Primary Contact Recreation,
- Secondary Contact Recreation,
- Seasonal Gulf Coastal Fishery,
- Perennial Gulf Coastal Fishery
- Industrial Water Supply, and
- Agricultural Water Supply.

## 3.3 Domestic Water Supply Use

Based upon documentation provided by the Arkansas Department of Health and Human Services (ADHHS), Loutre Creek and Bayou de Loutre (above Gum Creek) are neither an existing or planned public water supply source. In addition, the Arkansas Natural Resource Commission (ANRC) has documented that the removal of the designated domestic water supply use from these water sources does not conflict with the Arkansas Water Plan. The letters from the ADHHS and ANRC are provided in Appendix B. As documented in ADEQ's Regulation No. 2, the domestic water supply use does not exist for Bayou de Loutre below the mouth of Gum Creek.

## 3.4 Outfall Characteristics

### 3.4.1. Discharge characteristics

Figure 3.1 (and Appendix C) provides a summary of the discharge characteristics for the targeted outfalls over the recent 2 year period. During the last two year period, Outfall 001 has discharged continually, Outfalls 002, 003, 004 have discharges in response to storm frequency (discharged 21 of 24 months), and discharges from Outfalls 005, 006 and 007 have been limited and in response to large storm events (006 discharged during 4 or the 24 months, 007 discharged during 3 of 24 months, and 005 did not discharge during that period, or since.

However, when outfalls 006 and 007 discharge, the volume typically equals or exceeds the volume from other discharges (Figure 3.2).

### 3.4.2 Effluent Dissolved Mineral Characteristics

Table 3.1 and 3.2 present the effluent characteristics of treated wastewater and storm water discharged through Outfalls 001, 002, 003, 004, 005, 006/007. This data represents available recent data. The actual period of record is variable depending on the parameter (CL, SO<sub>4</sub> or TDS), however the period of record represents recent operational condition ranging from March 2004-May 2006.). Documentation for the 95<sup>th</sup> percentile value is presented in Section 5.0. The percentile concentration values were statistically calculated based on methodologies outlined in *Statistical Methods for Environmental Pollution Monitoring* (Gilbert, 1987) which will be discussed in detail in Section 5.2.2.

| Statistic*                  | Chloride (mg/L) | Sulfate (mg/L) | TDS (mg/L) |
|-----------------------------|-----------------|----------------|------------|
| (Data Characterization)     | N=33            | N=26           | N=26       |
| Maximum                     | 420             | 1775           | 2871       |
| Minimum                     | 204             | 372            | 760        |
| Average                     | 283             | 1027           | 2143       |
| 95 <sup>th</sup> percentile | 414             | 1639           | 2850       |
| Median                      | 250             | 984            | 2130       |

Table 3.1. Summary of targeted mineral constituents in Outfall 001 discharge from Lion Oil facility.

| Table 3.2. Summary | of targeted mineral constituents in storm water discharges from Lion Oil facility. |  |
|--------------------|------------------------------------------------------------------------------------|--|
| Tuble C.E. Cultinu | of targeted minoral conclusion of eterm water alconargee norm Elem on lacing.      |  |

| Statistic                   | Chloride (mg/L) | Sulfate (mg/L) | TDS (mg/L) |
|-----------------------------|-----------------|----------------|------------|
| (Data Characterization)     | N=7             | N=7            | N=7        |
| Maximum                     | 242             | 857            | 1864       |
| Minimum                     | 8.16            | 13.0           | 86.0       |
| Average                     | 58              | 192            | 478        |
| 95 <sup>th</sup> percentile | 242             | 857            | 1864       |
| Median                      | 31.2            | 99.0           | 358        |

## 3.5 Description of Pollution Prevention Practices

Areas where storm water and/or spills may leave the facility and enter the receiving stream are identified in the facility's Spill Prevention Control and Countermeasures (SPCC) and Storm Water Pollution Prevention Plan (SWPPP) plans. Best Management Practices (BMP's) as well as other secondary containment and treatments have been implemented to reduce contamination of storm water and prevent spill release. The SPCC and SWPPP provide the policies and procedures to limit storm water exposure to process waters and provides for the routine management of storm waters. Lion Oil has installed pollution prevention practices at the facility designed to reduce the potential of storm water contamination and to prevent spills from entering waters of the state. The following section describes on an outfall by outfall basis current BMP's and/or other treatments.

Lion Oil currently discharges treated process wastewater through Outfall 001 into Loutre Creek in the same reach that receives the storm water discharges. Within the last four year period, Lion Oil has implemented numerous production modifications in response to energy conservation goals, process optimization and environmental control projects in an effort to produce cleaner fuels with reduced sulfur in on-road diesel and ultra low sulfur gasoline. Lion Oil is currently evaluating alternatives to the continued discharge of the treated process wastewater into Loutre Creek.

### 3.5.1 Outfall 001

Outfall 001 discharges process wastewater after treatment through aggressive tertiary biological treatment. In addition, BMPs for wastewater treatment discharge includes strict controls on treatment chemicals, policies for storage, spill control, waste minimization, and clean up of wastewater treatment chemicals.

### 3.5.2 Outfall 002

Diked areas and tank water drains within the Outfall 002 drainage area are routed to the API separator. All other areas within the drainage area are non-process. The storm waters from non-process waters that fall within the Outfall 002 defined basin are discharged during the storm event and are not retained.

### 3.5.3 Outfall 003

Tank water drains are routed to the Intercept Station from which they are pumped to the API separator for treatment. Storage tanks are provided with firewalls for secondary containment of spills. Tank firewall valves are routinely closed and sealed per the SPCC and SWPPP. During a rainfall event, water within each tank firewall will be visually inspected prior to release through Outfall 003. The storm waters from non-process areas that fall within the Outfall 003 sub-basin are discharged during the storm event and are not retained.

### 3.5.4 Outfall 004

Tank water draws are routed to the API separator for treatment. Storage tanks are provided with firewalls for secondary containment of spills. Tank firewall valves are typically closed and sealed as specified in the SPCC and SWPPP. During a rainfall event, water within each tank firewall may be released through Outfall 004 after visual inspection. The storm waters from non-process areas that fall within the Outfall 004 sub-basin are discharged during the storm event and are not retained.

### 3.5.5 Outfall 005

Dry weather process flow and first flush storm water are pumped from the Intercept Station to the API separator for treatment. Storm water flows in excess of the Intercept Station pumping capacity flows to the SPCC Pond from which it is pumped to the Main Holding Pond. Any storm water flow in excess of the Intercept Station pumping capacity and the SPCC Pond storage capacity is released through Outfall 005 as an emergency discharge. As indicated in Section 3.4.1, this outfall has not discharged during the last 8 years. The combined pumping capacity has not been exceeded during the last 8 years and therefore there has not been a discharge from Outfall 005 during that period.

### 3.5.6 Outfall 006/007

Dry weather process flow and first flush storm water flows are collected and pumped to Equalization Tanks, and thence to the WWTP. Storm water flow in excess of the API separator lift pumps' capacity will flow to the Main Holding Pond. From the Main Holding Pond the storm water can be pumped to the Equalization Tanks on a controlled basis and processed through the WWTP as capacity becomes available. If WWTP capacity is fully utilized for process water treatment, the Main Holding Pond storm water can be tested for compliance with permit parameters and released through Outfall 007 as necessary.

Outfall 006 serves as an emergency discharge outfall for Outfall 007 (the Main Holding Pond) and is designed to protect the integrity of the dike system. Although the discharge frequency is reduced when compared to Outfalls 002, 003 and 004, discharges from 007 and 006 have occurred in conjunction with discharge from other outfalls and on those occasions the volume from 006 /007 have equaled or exceeded the discharge from the other outfalls.

# 3.6 Current NPDES Permit Status

### 3.6.1 NPDES Permit Compliance

Lion Oil's current NPDES permit (Permit No. AR00000647) became effective on March 1, 2004. The permit remains in effect until midnight, February 28, 2009.

#### 3.6.1.1 Discharge and Monitoring Requirements

Lion Oil is currently under interim effluent limitations at Outfall 001. Sulfate  $(SO_4)$  and Total Dissolved Solids (TDS) fall under monitor and report limitations until the final permit limitations take effect March 1<sup>st</sup>, 2007. Currently, no dissolved minerals discharge limitations

have been placed on Lion Oil's storm water outfalls. However, the potential for mineral concentrations to exceed ecoregion instream WQS in Loutre Creek and the stream WQS in Bayou de Loutre is possible during normal discharge operations (Outfall 001) and/or storm water runoff events. The instream dissolved minerals WQS in Loutre Creek and Bayou de Loutre are based on the maintenance of the designated, but non-existing and unattainable domestic water supply use for Loutre Creek and Bayou de Loutre (upstream of Gum Creek). However, Bayou de Loutre (downstream of Gum Creek) has an instream WQS based on standards provided in ADEQ's Regulation No. 2. The final discharge limitations and monitoring requirements for Lion Oil storm water outfall's are summarized in Tables 3.3 through 3.6.

| Effluent Characteristic                                                                                    | Monthly<br>Average         | Daily<br>Maximum           | Monthly<br>Average   | Daily<br>Maximum    | Frequency of<br>Analysis |  |
|------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|----------------------|---------------------|--------------------------|--|
| Flow (MGD)                                                                                                 | N/A                        | NA                         | Report               | Report              | Daily*                   |  |
| Carbonaceous<br>Biochemical Oxygen<br>Demand (CBOD <sub>5</sub> )<br>June – Sept.<br>Oct May               | 223 lbs/day<br>534 lbs/day | 400 lbs/day<br>958 lbs/day | 10 mg/L<br>24 mg/L   | 18 mg/L<br>43 mg/L  | once/week<br>once/week   |  |
| Chemical Oxygen<br>Demand (COD)                                                                            | 3891 lbs/day               | 7598 lbs/day               | 175 mg/L             | 341 mg/L            | once/week                |  |
| Total Suspended Solids (TSS)                                                                               | 453 lbs/day                | 709 lbs/day                | 20 mg/L              | 32 mg/L             | once/week                |  |
| Ammonia Nitrogen (NH₃-N)<br>June – Sept.<br>Oct May                                                        | 45 lbs/day<br>200 lbs/day  | 89 lbs/day<br>401 lbs/day  | 2.0 mg/L<br>9.0 mg/L | 4.0 mg/L<br>18 mg/L | once/week                |  |
| Dissolved Oxygen                                                                                           | N/A                        | N/A                        | 7.0 ins              | st. Min             | once/week                |  |
| Phenolic Compounds                                                                                         | 4.0 lbs day                | 8.0 lbs/day                | 0.18 mg/L            | 0.36 mg/L           | once/week                |  |
| Sulfide                                                                                                    | 2.0 lbs/day                | 4.0 lbs/day                | 0.09 mg/L            | 0.18 mg/L           | once/week                |  |
| Sulfates (SO <sub>4</sub> )                                                                                | 1514 lbs/day               | 2271 lbs/day               | 68 mg/L              | 102 mg/L            | once/week                |  |
| Total Dissolved Solids (TDS)                                                                               | 1915 lbs/day               | 2872 lbs/day               | 207 mg/L             | 310 mg/L            | once/week                |  |
| Temperature                                                                                                | N/A                        | N/A                        | 86°F in              | st. Max             | once/week                |  |
| Total Chromium                                                                                             | 6.0 lbs/day                | 14 lbs/day                 | 0.27 mg/L            | 0.63 mg/L           | once/month               |  |
| Hexavalent Chromium                                                                                        | 0.27 lbs/day               | 0.53 lbs/day               | 0.012 mg/L           | 0.024 mg/L          | once/month               |  |
| Selenium, Total<br>Recoverable                                                                             | 0.13 lbs/day               | 0.26 lbs/day               | 5.8 µg/L             | 11.65 µg/L          | once/month               |  |
| Zinc, Total Recoverable                                                                                    | 2.63 lbs/day               | 5.28 lbs/day               | 118 µg/L             | 237 µg/L            | once/month               |  |
| Oil and Grease (O&G)                                                                                       | 166 lbs/day                | 316 lbs/day                | 7.0 mg/L             | 14.0 mg/L           | once/week                |  |
| pH (SU)                                                                                                    | N/A                        | NA                         | *                    | *                   | continuous               |  |
| Whole Effluent Lethality         Daily Avg. Min not < 96%         7-day Min not < 96%         once quarter |                            |                            |                      |                     |                          |  |
| ** pH shall not be less than                                                                               | 6.0 standard u             | nits nor greater           | that 9.0 stand       | lard units          |                          |  |

Table 3.3. Current Final Discharge Limitations for Lion Oil, Outfall 001.

| Table 3.4 | Current Final | Discharge I | imitations f | or Lion Oi | I Outfalls 002  | 003 & 004  |
|-----------|---------------|-------------|--------------|------------|-----------------|------------|
|           |               | Jischarge L |              |            | i, Outialis 002 | ,003, 004. |

| <b>Effluent Characteristic</b> | Monthly Average | Daily Maximum | Frequency of Analysis |
|--------------------------------|-----------------|---------------|-----------------------|
| Flow (MGD)                     | N/A             | NA            | Daily*                |
| Total Organic Carbon<br>(TOC)  | N/A             | 110 mg/L      | Daily*                |
| Oil and Grease                 | 10 mg/L         | 15 mg/L       | Daily*                |
| pH (SU)                        | *               | *             | Daily*                |
| * When Discharging             |                 |               |                       |

\*\* pH shall not be less than 6.0 standard units nor greater that 9.0 standard units

Table 3.5. Current Final Discharge Limitations for Lion Oil. Outfall 005.

| Effluent Characteristic                                                                                   | Monthly<br>Average | Daily<br>Maximum | Monthly<br>Average | Daily<br>Maximum | Frequency of<br>Analysis |
|-----------------------------------------------------------------------------------------------------------|--------------------|------------------|--------------------|------------------|--------------------------|
| Flow (MGD)                                                                                                | N/A                | NA               | Report             | Report           | Daily*                   |
| Biochemical Oxygen<br>Demand (BOD₅)                                                                       | 1555 lbs/day       | 2827 lbs/day     | Report             | Report           | Daily*                   |
| Chemical Oxygen<br>Demand (COD)                                                                           | 10602<br>lbs/day   | 21205<br>Ibs/day | Report             | Report           | Daily*                   |
| Total Suspended Solids (TSS)                                                                              | 1272 lbs/day       | 1979 lbs/day     | Report             | Report           | Daily*                   |
| Phenolic Compounds                                                                                        | 9.9 lbs day        | 20.5 lbs/day     | Report             | Report           | Daily*                   |
| Total Chromium                                                                                            | 12.7 lbs/day       | 35.5 lbs/day     | Report             | Report           | Daily*                   |
| Hexavalent Chromium                                                                                       | 1.6 lbs/day        | 3.7 lbs/day      | Report             | Report           | Daily*                   |
| Oil and Grease                                                                                            | 474 lbs/day        | 919 lbs/day      | 10 mg/L            | 15 mg/L          | Daily*                   |
| pH (SU)                                                                                                   | N/A                | NA               | **                 | **               | Daily*                   |
| * When Discharging<br>** pH shall not be less than 6.0 standard units nor greater that 9.0 standard units |                    |                  |                    |                  |                          |

| Effluent Characteristic                            | Monthly<br>Average | Daily<br>Maximum | Monthly<br>Average | Daily<br>Maximum | Frequency of<br>Analysis |  |
|----------------------------------------------------|--------------------|------------------|--------------------|------------------|--------------------------|--|
| Flow (MGD)                                         | N/A                | NA               | Report             | Report           | Daily*                   |  |
| Biochemical Oxygen<br>Demand (BOD₅)                | 1555 lbs/day       | 2827 lbs/day     | Report             | Report           | Daily*                   |  |
| Chemical Oxygen<br>Demand (COD)                    | 10602<br>Ibs/day   | 21205<br>Ibs/day | Report             | Report           | Daily*                   |  |
| Total Suspended Solids (TSS)                       | 1272 lbs/day       | 1979 lbs/day     | Report             | Report           | Daily*                   |  |
| Phenolic Compounds                                 | 9.9 lbs day        | 20.5 lbs/day     | Report             | Report           | Daily*                   |  |
| Total Chromium                                     | 12.7 lbs/day       | 35.5 lbs/day     | Report             | Report           | Daily*                   |  |
| Hexavalent Chromium                                | 1.6 lbs/day        | 3.7 lbs/day      | Report             | Report           | Daily*                   |  |
| Lead, Total Recoverable                            | 0.14 lbs/day       | 0.28 lbs/day     | 3.9 µg/L           | 7.8 µg/L         | Daily*                   |  |
| Zinc, Total Recoverable                            | 4.2 lbs/day        | 8.4 lbs/day      | 117 µg/L           | 235 µg/L         | Daily*                   |  |
| Oil and Grease                                     | 474 lbs/day        | 919 lbs/day      | 10 mg/L            | 15 mg/L          | Daily*                   |  |
| pH (SU)                                            | N/A                | NA               | **                 | **               | Daily*                   |  |
| * When Discharging<br>** pH shall not be less that |                    |                  |                    |                  |                          |  |

Table 3.6. Current Final Discharge Limitations for Lion Oil, Outfalls 006 & 007.

#### 3.6.1.2 Dissolved Minerals

Dissolved minerals data from Outfall 001 (SO<sub>4</sub> and TDS) has been collected and monitored weekly since March, 2004, as required by the current NPDES interim permit. Prior to that time, there were no requirements to monitor and report dissolved minerals. The mineral data from the non-retained storm water outfalls (002, 003 and 004) and/or the Main Pond (Outfall 006 and 007) and SPCC Pond (Outfall 005) were collected in December 2005. Table 3.7 summarizes the dissolved mineral concentration typical of the storm water discharge from Lion Oil. Due to the close proximity of the storm water outfalls on Lion Oil property, (approximately ½ mile), the dissolved mineral data is treated as coming from a single discharge for mass balance modeling. Table 3.8 summarizes the dissolved mineral concentration typical of Lion Oil outfall 001. Both the storm water dissolved minerals and Outfall 001 dissolved mineral concentrations were used in the mass balance modeling to determine the proposed instream criteria. Additional chloride, sulfate and TDS information is provided in Section 5.0.

| Location / Date                      | Chloride (mg/L) | Sulfate (mg/L) | TDS (mg/L) |
|--------------------------------------|-----------------|----------------|------------|
| Outfall 002/12/24/05                 | 9.1             | 13.0           | 86.0       |
| Outfall 003/12/24/05                 | 9.61            | 15.8           | 104        |
| Outfall 004/12/24/05                 | 8.16            | 15.5           | 88.0       |
| Outfall 007/12/25/05                 | 47.3            | 146.6          | 384        |
| Outfall 007/12/26/05                 | 58.1            | 194.8          | 462        |
| Main Pond 006/12/15/05 <sup>A</sup>  | 242             | 857            | 1864       |
| South Pond 005/12/15/05 <sup>A</sup> | 31.2            | 98.6           | 358        |
|                                      | Summary Sta     | atistics       |            |
| Maximum                              | 242             | 857            | 1864       |
| Minimum                              | 8.16            | 13.0           | 86.0       |
| Average                              | 58              | 192            | 478        |
| 95 <sup>th</sup> percentile*         | 242             | 857            | 1864       |
| Median                               | 31.2            | 99.0           | 358        |

Table 3.7. Dissolved mineral data from Lion Oil storm water outfalls. December 2005.

\* See section 5.0

A: Collected from retained storm waters to represent waters that maybe discharged through the respective outfalls

| Table 3.8. | Dissolved mineral | data from Lion | Oil Outfall 001. I | March 2004 - | December 2005 |
|------------|-------------------|----------------|--------------------|--------------|---------------|
| 10010-0.0. |                   |                |                    |              |               |

| Date      | Chloride (mg/L) | Sulfate Monthly | TDS Monthly Average |
|-----------|-----------------|-----------------|---------------------|
|           |                 | Average (mg/L)  | (mg/L)              |
| 3/12/1986 | 296             |                 |                     |
| 5/12/1986 | 420             |                 |                     |
| 6/16/1986 | 312             | -               |                     |
| 7/28/1986 | 250             |                 |                     |
| 8/15/1986 | 234             | -               |                     |
| Mar-04    |                 | 372             | 760                 |
| Apr-04    |                 | 941             | 1885                |
| May-04    |                 | 968             | 1989                |
| Jun-04    |                 | 807             | 1565                |
| Jul-04    |                 | 1121            | 2141                |
| Aug-04    |                 | 1270            | 2683                |
| Sep-04    |                 | 1386            | 2667                |
| Oct-04    |                 | 1068            | 2593                |
| Nov-04    |                 | 789             | 1513                |
| Dec-04    |                 | 999             | 1776                |
| Jan-05    |                 | 820             | 1667                |
| Feb-05    |                 | 827             | 1959                |
| Mar-05    |                 | 883             | 2120                |
| Apr-05    |                 | 812             | 1832                |
| May-05    |                 | 862             | 2246                |
| Jun-05    |                 | 758             | 2052                |
| Jul-05    |                 | 1107            | 2303                |
| Aug-05    |                 | 924             | 1913                |
| Sep-05    |                 | 1033            | 1530                |
| Oct-05    |                 | 955             | 2281                |
| Nov-05    |                 | 1149            | 2393                |
| Dec-05    |                 | 1162            | 2871                |
| Jan-06    |                 | 1775            | 2800                |
| Feb-06    |                 | 1322            | 2811                |
| Mar-06    |                 | 1383            | 2653                |

| Date                         | Chloride (mg/L) | Sulfate Monthly<br>Average (mg/L) | TDS Monthly Average<br>(mg/L) |  |  |  |  |
|------------------------------|-----------------|-----------------------------------|-------------------------------|--|--|--|--|
| Apr-06                       |                 | 1213                              | 2727                          |  |  |  |  |
| 4/29/2006                    | 411.3           |                                   |                               |  |  |  |  |
| 4/30/2006                    | 329.6           |                                   |                               |  |  |  |  |
| 5/01/2006                    | 223.7           |                                   |                               |  |  |  |  |
| 5/02/2006                    | 249.6           |                                   |                               |  |  |  |  |
| 5/03/2006                    | 391.4           |                                   |                               |  |  |  |  |
| 5/04/2006                    | 341.3           |                                   |                               |  |  |  |  |
| 5/06/2006                    | 315.6           |                                   |                               |  |  |  |  |
| 5/07/2006                    | 282.4           |                                   |                               |  |  |  |  |
| 5/08/2006                    | 248.6           |                                   |                               |  |  |  |  |
| 5/09/2006                    | 217.3           |                                   |                               |  |  |  |  |
| 5/10/2006                    | 220.1           |                                   |                               |  |  |  |  |
| 5/11/2006                    | 235.9           |                                   |                               |  |  |  |  |
| 5/12/2006                    | 207.5           |                                   |                               |  |  |  |  |
| 5/13/2006                    | 213.6           |                                   |                               |  |  |  |  |
| 5/14/2006                    | 211.0           |                                   |                               |  |  |  |  |
| 5/15/2006                    | 213.2           |                                   |                               |  |  |  |  |
| 5/16/2006                    | 231.8           |                                   |                               |  |  |  |  |
| 5/17/2006                    | 234.3           |                                   |                               |  |  |  |  |
| 5/18/2006                    | 222.7           |                                   |                               |  |  |  |  |
| 5/19/2006                    | 222.7           |                                   |                               |  |  |  |  |
| 5/20/2006                    | 203.8           |                                   |                               |  |  |  |  |
| 5/21/2006                    | 270.0           |                                   |                               |  |  |  |  |
| 5/22/2006                    | 387.7           |                                   |                               |  |  |  |  |
| 5/23/2006                    | 398.8           |                                   |                               |  |  |  |  |
| 5/24/2006                    | 406.2           |                                   |                               |  |  |  |  |
| 5/25/2006                    | 377             |                                   |                               |  |  |  |  |
| 5/26/2006                    | 326             |                                   |                               |  |  |  |  |
| Summary Statistics           |                 |                                   |                               |  |  |  |  |
| Maximum                      | 420             | 1775                              | 2871                          |  |  |  |  |
| Minimum                      | 204             | 372                               | 760                           |  |  |  |  |
| Average                      | 283             | 1027                              | 2143                          |  |  |  |  |
| 95 <sup>th</sup> percentile* | 414             | 1639                              | 2850                          |  |  |  |  |
| Median                       | 250             | 984                               | 2130                          |  |  |  |  |

\* See section 5.0

As indicated in Table 3.3 (summary of Outfall 001 permit monitoring requirements), there is no permit requirement to monitor and report chloride concentration in the final Outfall 001 discharge. Since the is no long term history for chloride in the discharge, the chloride concentration was characterized using daily data from April 29 through May 24, 2006 (Appendix C).

| DATE      | CHLORIDES  | DATE      | CHLORIDES  |
|-----------|------------|-----------|------------|
| 4/29/2006 | 411.3 mg/L | 5/12/2006 | 207.5 mg/L |
| 4/30/2006 | 329.6 mg/L | 5/13/2006 | 213.6 mg/L |
| 5/1/2006  | 223.7 mg/L | 5/14/2006 | 211.0 mg/L |
| 5/2/2006  | 249.6 mg/L | 5/15/2006 | 213.2 mg/L |
| 5/3/2006  | 391.4 mg/L | 5/16/2006 | 231.8 mg/L |
| 5/4/2006  | 341.3 mg/L | 5/17/2006 | 234.3 mg/L |
| 5/5/2006  | 315.6 mg/L | 5/18/2006 | 222.7 mg/L |
| 5/6/2006  | 282.4 mg/L | 5/19/2006 | 222.7 mg/L |
| 5/7/2006  | 248.6 mg/L | 5/20/2006 | 203.8 mg/L |
| 5/8/2006  | 217.3 mg/L | 5/21/2006 | 270.0 mg/L |
| 5/9/2006  | 220.1 mg/L | 5/22/2006 | 387.7 mg/L |
| 5/10/2006 | 235.9 mg/L | 5/23/2006 | 398.8 mg/L |
| 5/11/2006 | 218.9 mg/L | 5/24/2006 | 406.2 mg/L |

Table 3.9 Chloride data from Outfall 001. POR 4/29-5/24, 2006 Lion Oil Company. El Dorado, AR.

### 3.6.2 Toxicity Testing

#### 3.6.2.1 Outfall 001 Biomonitoring

Toxicity testing has been completed on Lion Oil's primary discharge (Outfall 1001) for over 10 years. A summary of the last five year period of record for the biomonitoring is provided in Appendix D-1. The summary demonstrates that Outfall 001 consistently passed the lethality endpoints at the applicable critical dilution (72% or 96% effluent depending on the test period). The Outfall 001 effluent has passed 98% of the biomonitoring tests lethality endpoint over the last 5 years. No water flea chronic test failed the lethality endpoint and only one fathead minnow test (December 2001) failed the chronic lethality endpoint, over the last 5 year period of record. The water flea passed 74% and the fathead minnow passed almost 90 % of the sub-lethal test endpoints over the last 5 year period of record.

The upgrades to waster water treatment and improvements other pollution control activities are reflected in the historical biomonitoring activities. Figure 3.3 and 3.4 demonstrate the benefits of improved treatment and process modifications by the reduced variability in the chronic biomonitoring results. These test have consistently passed the lethality NOEC at or above the critical dilution during the last two year period of record.

This biomonitoring history demonstrates that the treated effluent is not toxic even under the critical dilutions reflective of critical Q 7-10 flow concentrations. The only endpoint that has demonstrated sporadic statistical difference during the most recent 2 year period of record is sub-lethal response of the water flea (*Ceriodaphnia dubia*). Although there were sporadic incidences of statistical differences between the control and the water flea sub-lethal end-point (e.g. reproduction) of the water flea, there does not appear to be a specific relationship to the estimated TDS concentration.

As presented in the summary of results in Appendix D-1, the test conductivity and the calculated TDS do not present a direct relationship with increased conductivity/TDS and sublethal response in the chronic biomonitoring tests. On occasion when the conductivity/calculated TDS values are elevated, there is no significant difference between the control and the exposure. Conversely, on occasions when there is a significant difference, the conductivity/TDS is less than other tests where there were no statistical significance. The biomonitoring results seen to indicate that there may be some constituent that impacts the reproduction response in the routine biomonitoring. There are many issues related to the reproductive response that may impact test significance, including organism health, culture techniques and even the application of the statistical approach to determining relative significance. However there is not sufficient information to implicate dissolve minerals as the cause of the test failure related to reproductive endpoint.

In summary, the Outfall 001 effluent has consistently passed the lethality endpoints at the applicable critical dilution (72 % or 96% effluent depending on the test period). The Outfall 001 effluent has passed 98% of the biomonitoring tests lethality endpoint over the last 5 years. No water flea chronic test failed the lethality endpoint and only one fathead minnow test (December 2001) failed the chronic lethality endpoint, over the last 5 year period of record.

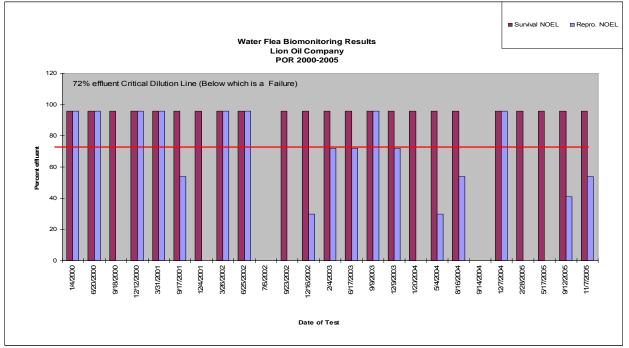



Figure 3.3 Summary of water flea (Ceriodaphnia dubia) biomonitoring performance. Period of record January 2000-December 2005.

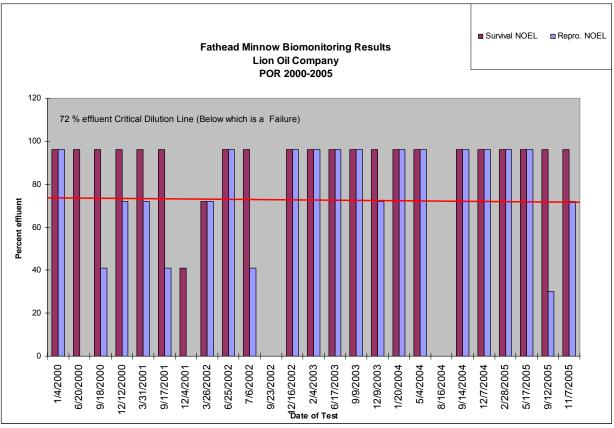



Figure 3.4. Summary of fathead minnow (Pimephales promelas) biomonitoring performance. Period of record January 2000-December 2005.

#### 3.6.2.1 Outfall 001 Microtox

In addition to the permit required biomonitoring, Lion Oil utilizes a Microtox toxicity system to routinely monitor internal waste streams. The internal monitoring is completed as an early warning system to notify facility personnel to potentially atypical conditions that could result in permit non-compliance. Microtox tests are typically conducted daily on internal process waste water effluent stream. However on occasion, this frequency may be increased or decreased depending on operations and internal results. Should the Microtox indicate atypical results, additional testing maybe used to identify the cause and/or source of the upset condition prior to it becoming an issue with the waste water treatment facility or in the final effluent.

The Microtox typically demonstrates a range of response for 3 separate timed exposures (e.g. 1, 10, and 15 minutes). This response is reported as percent of light transmitted above and below established baseline for each timed test exposure period. Lion Oil has established a site specific reaction threshold as 20% effect. Any response that indicated greater than 20% response generated by bacteria exposed to 100% effluent is considered as an significant response and may generate additional monitoring and/or other internal actions to evaluate the potential cause of the change in response. Any response less than 20% is considered as acceptable. This 20% response criteria is loosely based on the 80% rule used in the routine biomonitoring where controls must maintain 80% level of performance. Details of the actual data and the previous 5 year period is provided in Appendix D-2 (Microtox history).

Figures 3.5, 3.6 and 3.7 plots the most recent Microtox results at 15, 5 and 30 minute response intervals, respectively. There is a slightly greater response indicated by the 5 minute test response where approximately 25 daily test exceeded the 20 % response. The 15 and 30 minute tests indicated less than 10 and 15 tests, respectively. However, the trend line for each test interval is decreasing indicating the effluent is having less effect over the last year.

#### 3.6.2.2 Storm Water Outfalls

Toxicity testing on Lion Oil's storm water outfalls has not been required during the past 5 plus years. According to facility records, previous biomonitoring history (48 hour acute tests) on storm water did not indicate a potential for toxicity in the storm water discharges.

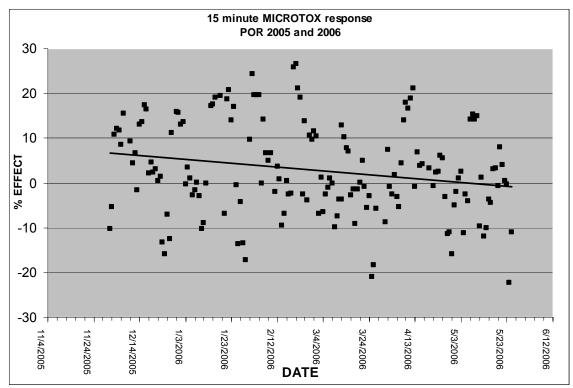



Figure 3.5 Summary of Microtox response to 15 minute exposure. Lion Oil POR 12/05 to 6/06. Note, decreasing trend line indication reduction in overall negative response.

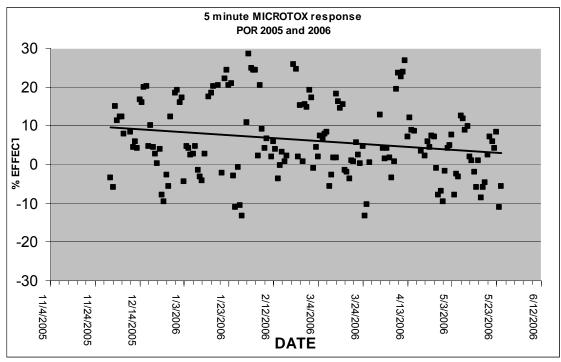



Figure 3.6. Summary of Microtox response to 5 minute exposure. Lion Oil POR 12/05 to 6/06. Note, decreasing trend line indication reduction in overall negative response.

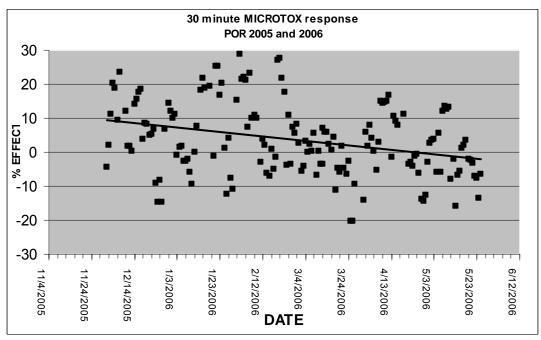



Figure 3.7. Summary of Microtox response to 30 minute exposure. Lion Oil POR 12/05 to 6/06. Note, decreasing trend line indication reduction in overall negative response.

# 4.0 AQUATIC LIFE FIELD STUDY

## 4.1 Introduction

The objective of the aquatic life field study was to document whether the designated aquatic life use was being maintained in Loutre Creek and if the permitted discharges from Lion Oil are beneficial or detrimental to the maintenance of those uses. The aquatic life field study was designed and proposed in accordance with the ADEQ Mineral Implementation Policy as provided in the Water Divisions CPP. In accordance with that Policy, the aquatic life field study focused on Loutre Creek above and below the discharge location(s). The following stream segments on Loutre Creek were assessed during this study: LC-1, Loutre Creek upstream of any Lion Oil influence (reference site), LC-2, Loutre Creek below outfalls 002, 004, 006/007, as well as Outfall 001, and LC-3, Loutre Creek at each outfall is provided in Table 4.1. Loutre Creek is designated as supporting a seasonal Gulf Coastal Fishery in the Arkansas Water Quality standards (Section 3.2).

| Table 4.1. Watershed size of Edute Creek at each study reach. Eion On Section 2.500 stu |                |  |  |
|-----------------------------------------------------------------------------------------|----------------|--|--|
| Study Reach                                                                             | Watershed Size |  |  |
| LC-1                                                                                    | 2.0 sq. miles  |  |  |
| LC-2                                                                                    | 2.6 sq. miles  |  |  |
| LC-3                                                                                    | 2.8 sq. miles  |  |  |

Table 4.1. Watershed size of Loutre Creek at each study reach. Lion Oil Section 2.306 study.

To accomplish the study objective, the aquatic life field study included evaluations of the habitat conditions, water quality, aquatic macroinvertebrate community, and fish community assemblages. Studies reaches for the aquatic life field study are as follows:

- Reach LC-1,
- Reach LC-2, and
- Reach LC3.

The evaluations were conducted during May, 2005. A summary of the aquatic life field study is presented in the following sections. Appendix E provides the field data sheets, analytical results, biological lab sheets and biometric scoring sheets.

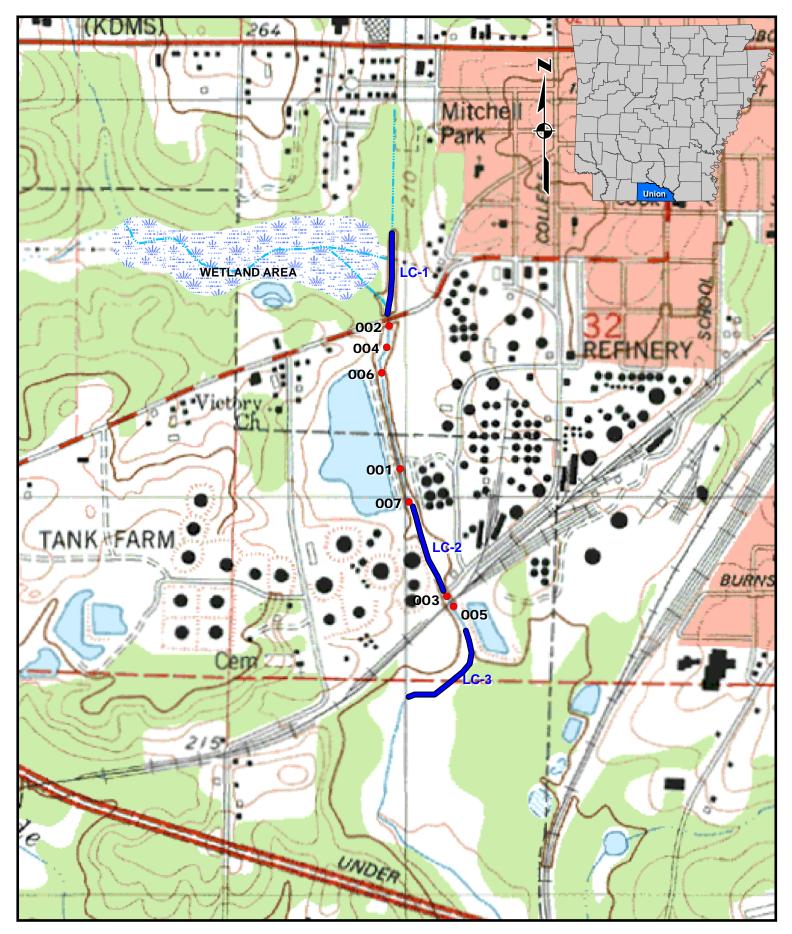



Figure 4.1. Aquatic life field study reaches. May 2005.

## 4.2 Habitat Characterization

### 4.2.1 Introduction

Physical habitat in streams includes all those physical attributes that influence or provide sustenance to biological attributes, both botanical and zoological, within the stream. Stream physical habitat varies naturally, as do biological characteristics; thus, habitat conditions differ even in the absence of point and anthropogenic non-point disturbance. Within a given ecoregion, stream drainage area, stream gradient and the geology are likely to be strong natural determinants of many aspects of stream habitat, because of their influence on discharge, flood stage, and stream energy (both static and kinetic). Kaufmann (1993) identified seven general physical habitat attributes important in influencing stream ecology and the maintenance of biological integrity:

- 1) channel dimensions,
- 2) channel gradient,
- 3) channel substrate size and type,
- 4) habitat complexity and cover,
- 5) riparian vegetation cover and structure,
- 6) anthropogenic alterations, and
- 7) channel-riparian interaction.

Land use activities can directly or indirectly alter any and/or all of these attributes. Nevertheless, the trends for each attribute will naturally vary with stream size (drainage area) and overall gradient. The relationships of specific physical habitat measurements described in this section to these seven attributes are discussed by Kaufmann (1993). Although they are actually biological measures, aquatic macrophytes, riparian vegetation, instream habitat and canopy cover are included in this and other physical habitat assessments because of their role in habitat structure and light inputs

The objectives of a habitat characterization are to:

- 1) assess the availability and quality of habitat for the development and maintenance of benthic invertebrate and fish communities, and
- 2) evaluate the role of habitat quality in relation to the attainment of designated uses and biological integrity.

There are three main headings for the components of the physical habitat characterization each with several categories. Measurements for each of the components (14 categories total) are recorded on copies of a two-page field form entitled Stream Habitat Assessment (Semi-Quantitative), and include:

- 1) Channel Morphology
  - a) Reach Length Determination,
  - b) Riffle-Pool Sequence, and
  - c) Depth and Width Regime

- 2) Instream Structure
  - a) Epifaunal substrate,
  - b) Instream Habitat,
  - c) Substrate Characterization,
  - d) Sediment Deposition, and
  - e) Aquatic Macrophytes and Periphyton
- 3) Riparian Characteristics
  - a) Canopy Cover,
  - b) Bank Stability and Slope,
  - c) Vegetative Protection, and
  - d) Riparian Vegetative Zone Width.

Field physical habitat measurements from a field habitat characterization are used in conjunction with water chemistry, temperature, macroinvertebrate and vertebrate (typically fish) community analyses, and other data sources to determine the status of the target streams attainment of designated uses and the water quality required to maintain those uses.

These procedures are intended for evaluating physical habitat in wadeable streams, but may be adapted for use in larger streams as necessary. The field procedures applied to this characterization are most efficiently applied during low flow conditions and during times when terrestrial vegetation is active, but can also be applied during spring seasonal conditions with higher base flows. This collection of procedures is designed for monitoring applications where robust, quantitative or semi-quantitative descriptions of habitat are desired. This semi-quantitative habitat procedure is usually used in conjunction with the *General Physical Habitat Characterization* and the *Qualitative Habitat Assessment* to provide a detailed view of the streams habitat condition.

The habitat characterization protocol provided herein differs from other rapid habitat assessment approaches (e.g., Plafkin et al., 1989, Rankin, 1995) by employing a, systematic spatial sampling that minimizes bias in the placement and positioning of measurements. Measures are taken over defined channel areas and these sampling areas are placed systematically at spacing that is proportional to the length of the entire study reach. This systematic sampling design provides resolution appropriate to the length of the study reach. The habitat assessment protocol summarized in this SOP is based on those of USEPA in their EMAP and RBP procedures (Lazorchak, 1998 and Barbour, 1999), USGS NAWQA program (Fitzpatrick, 1998) and Missouri Department of Natural Resources ESP (Sarver, 2000).

The procedures are employed on a sampling reach of length equal to 20 times the bankfull width. The semi-quantitative habitat sampling reach length should coincide as much as possible with that of the fish and macroinvertebrate collection reaches. Measurements are taken in each of 10 sub-reaches, which are systematically placed at intervals equal to approximately one tenth (1/10) the length of the represented study reach. Measurements and observations for each habitat characteristic are made in each of the sub-reaches as the assessment team moves along the stream channel. An average or total of the scores for each of the 10 sub-reaches is then calculated resulting in a mean value for each characteristic for the entire reach.

### 4.2.2 Methods

The habitat assessment was conducted within (or to the extent possible) the stream reach from which the benthic and fish communities are to be characterized. The physical habitat was characterized from measurements and observations of stream attributes made within 10 sub-reaches. The team assessing habitat moved along the stream channel (near the thalwag) observing habitat characteristics within each sub-reach. A description of and the rational for measuring each of the attributes are provided below. The details of how these attributes are recorded/evaluated are also described below in the following sections.

#### 4.2.2.1 Channel Morphology

Channel morphology (or geomorphology) is a characterization of the shape of the stream channel including measurements and/or visual estimates of channel dimensions and riffle-pool sequences (i.e. a measure of the amount of riffles, runs and pools that occur in a given reach).

The channel observed includes that portion of the stream between the base flow wetted area and the top of the normal high water channel often referred to as the bankfull stage (Figure 1). The "bankfull" or "active" channel is defined as the channel that is filled by moderate-sized flood events that typically occur every one or two years. Such flow levels are on the verge of entering the flood plain and are believed to control channel dimensions in most streams.

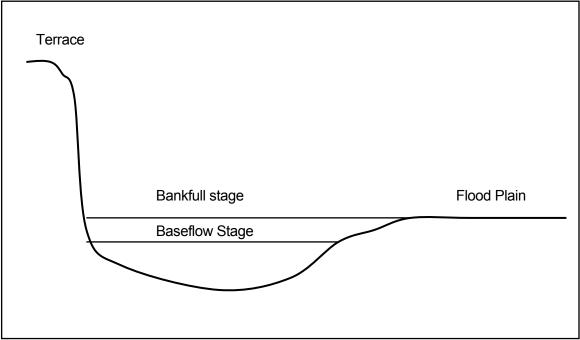



Figure 4.2. Stream channel depicting bankfull stage.

1) Reach Length Determination

First, bankfull depth (depth from stream bottom in thalwag to bankfull stage on the bank) was identified in at least two separate riffles (or alternatively runs in streams not

exhibiting riffle morphology) in each study reach. Then bankfull depth and width was determined from 5 stream transects and recorded on the record sheet. Transect locations was selected to include each prominent morphology type represented in the stream. Bankfull depths were measured to the nearest 1/10 foot and bankfull widths were measured to the nearest foot using a wading rod and tape measure, respectively. An average of the 5 bankfull widths was then calculated and multiplied times 20 to arrive at the total reach length for assessment. This total length was then divided by ten to determine the length of each of the ten sub-reaches. Analysis of the first sub-reach began at the head of a given stream morphology (i.e. riffle, run or pool).

2) Riffle-Pool Sequence

Stream morphology refers to the abundance and placement (sequencing) of riffles, runs, and pools in a stream system. This sequencing is an indicator of a streams hydrological regime and stability as well as a determinant of its potential to sustain diverse aquatic communities. Beginning at the head of a morphological type (riffle, run or pool) the length of each morphological type in the stream reach was measured using a tape measure and recorded on the record sheet. The sequence of each morphological type was depicted on the record sheet using the provided notations so as to create a map to the location of each riffle, run or pool. The resulting measurements provided a quantitative measure of the percent of the study reach representing each stream morphological type (i.e. 40% riffle, 30% run, 30% pool, etc).

3) Depth and Width Regime

The average stream depth and width were estimated in riffles and pools in each subreach. Depths were measured along a transect, similar to that depicted in Figure 2, in a representative section of each riffle and pool in the sub-reach. Depths were generally taken in the thalwag (deepest area in stream channel) and approximately half way between the thalwag and the left and right banks. An estimated average depth for riffles and pools occurring in a sub-reach was derived from the cross-sectional depth measurements and recorded on the record sheet to the nearest 1/10 foot. Once completed for all 10 sub-reaches this provided an accurate semi-quantitative measurements of riffle and pool average depth and depth variability across the entire stream reach.

Stream wetted widths were measured along a transect, in a representative section of each riffle and pool in the sub-reach. An estimated average width for each morphological type in a sub-reach was recorded on the record sheet to the nearest foot. Once completed for all 10 sub-reaches this provided accurate semi-quantitative measurements of riffle and pool widths across the entire stream reach.

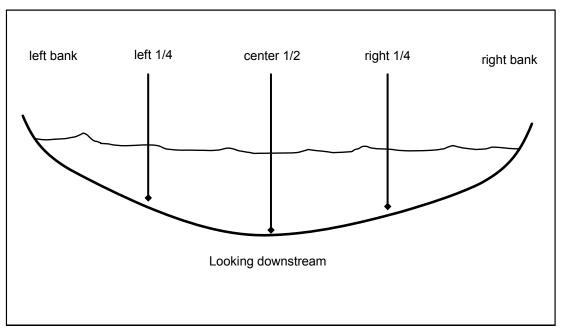



Figure 4.3. Approximate position of measurements across transect.

#### 4.2.2.2 Instream Structure

Instream structure describes the characteristics of the stream within the wetted perimeter that makes up the habitat suitable for colonization of aquatic biota. This includes information about natural substrates (gravel, boulders, etc), aquatic plants and algae and debris that has been washed into or fallen into the stream, such as logs, leaves, etc. A stream capable of sustaining diverse aquatic communities will contain a variety of instream structure including some that is permanent and some that is mobile during high flow events.

4) Epifaunal Substrate (Macroinvertebrates)

Epifaunal substrate refers to the area on the bottom of the stream (entire wetted perimeter) where macroinvertebrates inhabit. This attribute is scored as a percentage of the stream bottom in a sub-reach which contains substrates suitable for macroinvertebrate colonization. Scoring for this attribute should rely heavily on the stability of the substrate, the size of the interstitial spaces, and the cleanliness (not covered in thick algae or sediment deposits) of the substrate. Cobbles and coarse gravel will score higher percentages as they contain larger interstitial spaces for colonization, while sand and silt would score lower since they provide little spaces. In addition, root wads along the bank would score higher as they are more stable features than would depositional areas or small woody debris.

5) Instream Habitat (Fish)

Instream habitat refers to the habitat features within the wetted perimeter of the stream sub-reach which are available for fish colonization. This attribute is scored as the percentage of the stream bottom (wetted perimeter) in a sub-reach which is covered with fish habitat. As with the epifaunal substrate attribute substrates composed of cobbles, coarse gravels and boulders score higher for fish cover as they provide better spaces for

colonization. Other habitats that score high are large woody debris (individual logs with diameter >4 inches or complex woody structures composed of rootwads, logs, or limbs with diameter of 1.5 ft. or greater) and undercut banks. While habitats that score lower are those such as depositional areas, leaf packs, and fine sediments or sand.

6) Substrate Characterization

The dominant stream substrate size classification for riffles and pools within each subreach will be recorded on the record sheet. Only substrates within the wetted perimeter are evaluated. This information will be used to characterize the similarities and or differences in substrate structure and complexity in the riffles and pools of the study reach as it relates to the development and maintenance of the systems biological integrity.

Particle are classified into one of the size classes listed on the Semi-Quantitative Habitat Assessment Field Form based on the size of the intermediate axis (median dimension) of its length, width, and depth. This "median" dimension is the sieve size through which the particle can pass.

| Bedrock       | smooth or rough  |
|---------------|------------------|
| Boulder       | >25 cm           |
| Cobble        | 6-25 cm          |
| Coarse Gravel | 1.6 – 6 cm       |
| Fine Gravel   | 0.2 – 1.6 cm     |
| Sand          | <0.2 cm          |
| Silt/Mud/Clay | fine, not gritty |

Notations are made for unusual substrates such as concrete or asphalt and denote these artificial substrates as "other" and describe them in the comments section of the field data form. Code and describe other artificial (such as large appliances, tires, car bodies, etc.) substrates in the same manner.

7) Sediment Deposition

The sediment deposition attribute refers to the amount of stream bottom (in the wetted perimeter) that is covered by fine sediments and/or particulate organic matter. This attribute is scored as a percentage of the bottom in each sub-reach which is covered by such loose materials.

8) Aquatic Macrophytes and Periphyton Coverage

An estimate of the percentage of area covered by macrophytes and periphyton in a subreach is made and recorded both for riffles and pools. Macrophytes refers to aquatic plants that grow in the stream (both emergent and submerged), and periphyton refers to algae that grows on fixed surfaces. This attribute helps biologists determine stream productivity from a nutrient enrichment perspective and also for the availability of food sources for aquatic biota.

#### 4.2.2.3 Riparian Characteristics

The riparian area includes the area from the stream bank in a direction away from the stream into the upland areas. It is these streamside riparian zones that ultimately help shape the stream and provide organic material as nutrients to the aquatic system. A well developed riparian area protects stream banks from erosion, provides shading, inputs nutrients, provides materials as habitat (instream structure) and filters runoff entering the stream. In the absence of well developed riparian zones the stream is more impacted by encroaching land-uses.

#### 10) Canopy Cover

Canopy cover (percent stream shading) over the stream was determined for each of the sub-reaches. Estimates of cover are made by looking into the canopy over the stream channel. Estimates were made from mid-channel and each quarter channel to determine the average percent canopy cover for the width of the stream in the sub-reach. Percent canopy at each measurement point was estimated visually.

#### 11) Bank Stability and Slope

Bank stability is an important attribute that is an indication of a stream reaches overall hydrologic equilibrium. A bank's stability also determines its ability to provide stable habitat for biota and its propensity to release large sediment yields to the stream, which ultimately cause high turbidity and deposition in downstream reaches. The right and left banks are classified according to the following categories:

Score 9-10 = Stable, little evidence of erosion, < 5% bank eroding Score 6-8 = Moderately stable, some evidence of new erosion, 5-29% bank eroding Score 3-5 = Moderately unstable, obvious new erosion, 30-59% bank eroding Score 1-2 = Unstable, most of bank actively eroding, 60-100% bank eroding

Banks composed of sands and gravels are much less stable than banks composed of silt/mud/clay or cobbles. The density of well rooted (more permanent) vegetation and root structure also help to improve a banks stability.

Average bank slope (in degrees) in a sub-reach, was recorded for each bank (left and right). Bank slope affects the stability of a bank and is an indicator of past erosion. A gentle slope may average 30° while a steep or undercut bank may average 90° or 100°, respectively.

#### 12) Vegetative Protection

Bank vegetative protection was measured as a percent of the bank surface area which is covered by stable riparian vegetation and their associated roots in a sub-reach. Each bank (right and left) was assessed separately and the value recorded on the record sheet. Banks was assessed from the edge of the water to the top of the first terrace or normal top of bank. 13) Riparian Vegetative Zone Width

Riparian zone encompasses the area from the top of the normal stream bank outwards into the upland area. The broader the riparian vegetative zone width the more protected the stream banks are from alteration, the fewer pollutants will enter the stream from runoff, and the more available food sources there are to be deposited into the stream from the surrounding forest. Riparian zone width is scored for each bank in a sub-reach according to the following scale:

Score 9-10 = Riparian Zone Width > 18 meters Score 6-8 = Riparian Zone Width 18 - 12 meters Score 3-5 = Riparian Zone Width 11 - 6 meters Score 1-2 = Riparian Zone Width < 6 meters

### 4.2.3 Scoring and Analysis of Habitat Assessment Data

Scores from the Semi-Quantitative Habitat Assessment was utilized in two different ways. First, data collected for each attribute (assessment category) was used independently to describe the study reach collectively. This method results in information such as: average riffle depth, average pool width, % riffle in entire reach, average bank stability, average (median) substrate size class in pools and riffles, mean % canopy cover, etc. Second, the data collected during the assessment was used in conjunction with the Qualitative Habitat Assessment procedure to score each of the ten "qualitative" indices with near quantitative accuracy (semi-quantitative). A combination of the two methodologies was incorporated into this intensive aquatic biota field study. The following sections outline the scoring of the qualitative habitat indices using the semi-quantitative data.

1) Epifaunal Substrate/Available Fish Cover

Average values from semi-quantitative categories 4 (Epifaunal Substrate) and 5 (Instream habitat) are combined into an overall average percent coverage are used to score this metric.

| Rank       | Optimal | Sub-Optimal | Marginal | Poor  |
|------------|---------|-------------|----------|-------|
| % Coverage | >70%    | 40%-70%     | 20%-39%  | <20%  |
| Score      | 20 -16  | 15 -11      | 10 - 6   | 5 - 1 |

The following table presents the scoring criteria:

2) Pool Substrate Characterization

Using the Substrate Characterization data from the semi-quantitative assessment (category 6) and the aquatic vegetation assessment (category 9) the following table may be used to score this metric.

| Rank                   | Op      | otimal    | Sub-Optimal    | Marginal       | Poor                    |
|------------------------|---------|-----------|----------------|----------------|-------------------------|
| Substrate              | Cobble  | or Gravel | Sand/Silt/Clay | Sand/Silt/Clay | Bedrock or<br>Clay Only |
| Macrophytes<br>Present | Yes     | No        | Yes            | No             | No                      |
| Score                  | 20 - 18 | 17 - 16   | 15 - 11        | 10 - 6         | 5 - 1                   |

3) Pool Variability

Semi-Quantitative categories 2 (Riffle-Pool Sequence) and 3 (Depth and Width regime) are used to help score this metric. Use the following table to determine pool variability.

| Pool<br>Characteristic | Large-Deep        | Large-Shallow  | Small-Deep     | Small-Shallow  |
|------------------------|-------------------|----------------|----------------|----------------|
| Size                   | Length ≥<br>Width | Length ≥ Width | Length < Width | Length < Width |
| Depth                  | ≥3.2 feet         | < 3.2 feet     | ≥3.2 feet      | < 3.2 feet     |

An equal balance of all four pool types achieves higher scores. A prevalence of shallow pools scores lower.

4) Channel Alteration

Scored from visual assessment of entire reach. Not aided by semi-quantitative attributes.

5) Sediment Deposition

Reach average percent bottom affected by deposition (from category 8) is used directly to score this metric.

| Rank                 | Optimal | Sub-Optimal | Marginal | Poor  |
|----------------------|---------|-------------|----------|-------|
| % Bottom<br>Affected | <5%     | 5%-30%      | 31%-50%  | >50%  |
| Score                | 20 -16  | 15 -11      | 10 - 6   | 5 - 1 |

Utilize the lower end of each scale to represent reaches where recent sediment bar formation is evident.

6) Channel Sinuosity (replacement for Frequency of Riffles)

This metric is assessed separately from the semi-quantitative data. It can be estimated in the field, measured during a longitudinal survey or calculated from current aerial photographs.

7) Channel Flow Status

Scored from visual assessment of entire reach. Not aided by semi-quantitative attributes.

8) Bank Stability

The average bank stability score for each represented bank from the semi-quantitative assessment (category 11) is directly applied to the qualitative assessment scoring for this metric (i.e. an average reach score of 8 for the right bank and 7 for the left bank gets transferred directly to the qualitative score sheet as such.)

9) Vegetative Protection

Reach average percent bank protected (from category 12 of the semi-quantitative record sheet) is used directly to score this metric for the right and left bank.

| Rank        | Optimal | Sub-Optimal | Marginal  | Poor  |
|-------------|---------|-------------|-----------|-------|
| % Protected | >90%    | 70% - 90%   | 50% - 69% | <50%  |
| Score       | 20 -16  | 15 -11      | 10 - 6    | 5 - 1 |

10) Riparian Vegetative Zone Width

The average riparian zone width score for each represented bank from the semiquantitative assessment (category 13) is directly applied to the qualitative assessment scoring for this metric (i.e. an average reach score of 8 for the right bank and 7 for the left bank gets transferred directly to the qualitative score sheet as such).

#### 4.2.4 Results and Discussion

#### 4.2.4.1 Habitat Quality

The field study was completed on April 28, 2005 during seasonal stream conditions. A summary of the physical attributes of all stations where physical data was collected is presented in Table 4.2. Each study reach was generally characteristic of Gulf Coastal Plain streams and/or seasonal wet-weather tributaries with small watersheds. Field sheets and the raw habitat data are provided in Appendix E.

#### 4.2.4.2 Reach LC-1

As identified in Section 4.1, Reach LC-1 was used to represent an upstream reference condition. This reach is located upstream of any discharge from Lion Oil. The upstream

terminus of the reach LC-1 was a large wetland area that was developed and maintained as a result of beaver activity. The source of the flow in reach LC-1 was seepage from the beaver dam. The reference reach differed from the other two study reaches in four primary characteristics.

Table 4.2. Habitat characteristics of study reaches during seasonal flow conditions.

|                                           | Study Locations |               |                 |  |  |
|-------------------------------------------|-----------------|---------------|-----------------|--|--|
| Observation                               | LC-1            | LC-2          | LC-3            |  |  |
| Date                                      | 4/28/2005       | 4/28/2005     | 4/28/2005       |  |  |
| General Stream Characteristics:           |                 |               |                 |  |  |
| Upstream Watershed Size, mi <sup>2</sup>  | 2.0             | 2.6           | 2.8             |  |  |
| Total Habitat Reach Length, ft            | 254             | 424           | 338             |  |  |
| Average Bankfull Width, ft                | 12.7            | 21.2          | 16.9            |  |  |
| Average Bankfull Depth, ft <sup>1</sup>   | 1.4             | 2.2           | 1.95            |  |  |
| Average Velocity, fps                     | 0.25            | 0.78          | 0.86            |  |  |
| Flow, cfs                                 | 0.48            | 4.19          | 4.45            |  |  |
| Morphology Regime                         |                 |               |                 |  |  |
| % Pool                                    | 74.7            | 100           | 65              |  |  |
| % Riffle                                  | 25.3            |               | 8.8             |  |  |
| % Run                                     |                 |               | 27              |  |  |
| Depth and Width Regime                    |                 |               |                 |  |  |
| Average Riffle Depth, ft.                 | 0.3             |               | 0.6             |  |  |
| Average Riffle Wetted Width, ft           | 5               |               | 9               |  |  |
| Average Pool Depth, ft.                   | 1.7             | 1.0           | 1.5             |  |  |
| Average Pool Wetted Width, ft             | 8.8             | 19.9          | 15.7            |  |  |
| Instream Habitat (Percent Stable Habitat) |                 |               |                 |  |  |
|                                           |                 |               |                 |  |  |
| Epifaunal Substrate, Macroinvertebrates   | 45              | 15            | 24              |  |  |
| Instream Cover, Fish                      | 48              | 14            | 29              |  |  |
| Substrate Characterization (Dominate Subs | ,               |               | · · · ·         |  |  |
| Pool                                      | sand            | sand          | clay/silt, sand |  |  |
| Riffle                                    | sand            |               | sand            |  |  |
| Run                                       |                 |               | clay/silt, sand |  |  |
| Sediment Deposition                       | 1               | - 1           |                 |  |  |
| Average Percent of Bottom Affected        | 38              | 55            | 27              |  |  |
| Aquatic Macrophytes and Periphyton (Perc  | ent Coverage)   |               |                 |  |  |
| Pool Macrophytes                          | 2.9             | 4.5           | 4.4             |  |  |
| Pool Periphyton                           | 0               | 1             | 7.2             |  |  |
| Riffle Macrophytes                        | 0               |               | 2.5             |  |  |
| Riffle Periphyton                         | 0               |               | 22.5            |  |  |
| Run Macrophytes                           |                 |               | 5               |  |  |
| Run Periphyton                            |                 |               | 5               |  |  |
| Canopy Cover (Percent Stream Shading)     |                 |               |                 |  |  |
| Stream Shading                            | 85              | 0             | 13              |  |  |
| Bank Stability and Slope                  |                 |               |                 |  |  |
| Average Left Bank Stability               | mod. stable     | mod. unstable | unstable        |  |  |
| Average Left Bank Slope (degrees)         | 79              | 76            | 87              |  |  |
| Average Right Bank Stability              | mod. unstable   | mod. unstable | mod. unstable   |  |  |
| Average Right Bank Slope (degrees)        | 70              | 67            | 77              |  |  |
| Bank Vegetative Protection                |                 |               |                 |  |  |
| Average Left Bank Protection (percent)    | 54              | 54.5          | 40              |  |  |
|                                           |                 |               |                 |  |  |
| Average Right Bank Protection (percent)   | 45              | 61            | 57              |  |  |
| Riparian Vegetative Zone Width            | 40.40           |               | 40.40           |  |  |
| Left Bank Riparian Width, meters          | 12 - 18         | 0             | 12 – 18         |  |  |
| Right Bank Riparian Width, meters         | 12 - >18        | 0             | 6 - 11          |  |  |

<sup>1</sup>Average bankfull depth is calculated on riffles only

- Flow: the flow in LC-1 was approximately one-tenth (0,1) of the flow at the other two reaches.
- **Canopy Cover:** Cover in LC-1 was 80-100% compared to less than 20% for the other two reaches,
- In stream Habitat: The habitat of LC-1 was almost double that at the other study reaches. This was in the form of woody debris, which originated from the canopy and/or stream bank habitat.
- **Riffle/Pool Complex:** LC-1 also demonstrated a distinct pool/riffle complex that was absent in the downstream reaches.

These characteristics (Appendix F, Figures F.1-3) provided a greater diversity of habitats for the development of the benthic and fish community, however the limited flow overshadowed the diversity and resulted in a reduced benthic diversity and limited fish community development (See Sections 4.4 and 4.5).

The LC-1 reach was approximately 254 feet in length with a bankfull width (the point at which the stream enters its active floodplain) of 12.7 feet, and was composed of approximately 75% shallow pools and 25% riffles (Appendix F, Figures F.1-3). The stream reach had an average wetted riffle depth and width of 0.3 ft and 5.0 ft, respectively. The average wetted pool depth and width was 1.7 ft and 8.8 ft, respectively. Average velocity was 0.25 fps, while the flow recorded at this station was 0.48 cfs (See Appendix E).

Instream habitat (fish cover) was composed of logs and woody debris, and covered approximately 48% of the reach. The epifaunal substrate (macroinvertebrate habitat) was available in approximately 45% of the reach. The stream substrate composed mostly of sand in riffles and in pools. Sediment found in this reach was at about 38% of the bottom affected. Very few aquatic macrophytes were found along this stream segment (2.9%) and were restricted to pool margins. Stream shading along the reach was high at 85% canopy. Bank stability was scored on a left and right bank basis, the left bank scored in the moderately stable category, while the right bank scored moderately unstable. Bank vegetative protection covered approximately 45 -54% of the reach, while riparian vegetative zone averaged 12 to >18 meters.

#### 4.2.4.3 Reach LC-2

This reach is located wholly within the managed area of the Lion Oil facility (Figures C-4 - 5). The stream course is channalized with containment dikes on both sides of the entire reach. The reach was classified as a single long pool with no riffles or runs (e.g. areas with increased velocities) and little variability in substrate (100% sand). The physical constraints would indicate that the biotic communities should have been limited when compared to both the upstream reference and downstream reaches (See Section 4.4 and 4.5).

Reach LC-2 (424 feet) was composed of 100% shallow pools. Table 4.2 (See Appendix C – Field data sheets). The average bankfull width was 21.2 ft. The average stream wetted depth and width was 1.0 ft and 19.9 ft, respectively. Note, the average wetted width was only 9% of the bankfull width in this reach, compared to 54% in Reach LC-1. This reduced ratio also reflective of the managed stream corridor as Loutre Creek dissects the facility. Average velocity at LC-2 was 0.78 fps, while the flow recorded at this station was 4.19 cfs (Appendix C).

Fish cover and macroinvertebrate habitat both covered approximately 15% of the area surveyed and were limited due to historical stream modification. The reach's substrate was dominated by sand. Heavy amounts of sediments were found in LC-2 at approximately 55% of the bottom affected. Stream shading along this reach was 0% reflecting the historical riparian disruption. Few aquatic macrophytes were found along this stream segment and covered less than 5% of the available stream-bank interface. This macrophytes community was restricted to watercress along the stream margins with grasses and forbs at the aquatic interface. Both left

and right bank stability scored in the moderately unstable category, while the bank slopes were approximately 76° and 67° for left and right bank, respectively. Bank vegetative protection was adequate and covered approximately 55% and 61% for left and right bank, respectively. However, the bank vegetation was predominately grasses, which has very little protective characteristics. The riparian zone was also very minimal and was only protected by grasses, the actual score for the riparian zone width was zero.

#### 4.2.4.4 Reach LC-3

Reach LC-3 is located downstream of all storm water discharges (Figure 4.1). The watershed was slightly larger than LC-2, however the stream width and depth was less than LC-2, again reflecting the managed habitat of LC-2. Reach LC-3 demonstrated a greater degree of stream morphology development and a wider variety and density of instream vegetation than any other reach (Appendix F, Figure F 6-9).

Reach LC-3 (338 feet) was composed of approximately 65% shallow pools, 27% runs, and approximately 9% riffles (Appendix C). The average bankfull width was measured at 16.9 ft, while the bankfull depth was measured at approximately 2.0 ft. The average wetted riffle depth and width was 0.6 ft and 9.0 ft, respectively. The average wetted pool depth and width was 1.5 ft and 15.7 ft, respectively. Average velocity at LC-3 was 0.86 fps, while the flow recorded at this station was 4.45 cfs (Table 4.2 and Appendix C).

Within the study reach, the fish cover and macroinvertebrate habitat covered approximately 25% and 30%, respectively. Stream shading within the reach was sparse with 13% canopy. The aquatic macrophytes within the reach were found in each morphology regime between 2.5% and 5.0%. Periphyton covered approximately 22.5% of available riffle substrate. Average bank stability along LC-3 was unstable (left bank) and moderately unstable (right bank). Bank slope was very steep at 87% and 77% for left bank and right bank, respectively. Bank vegetative protection was moderate and averaged between 40% and 57%. The riparian vegetative zone average was 12 - 18 meters for the left bank, while the right bank's average was 6 - 11 meters.

#### 4.2.5 Habitat Potential

A qualitative assessment of habitat potential was completed at study reaches LC-1, LC-2, and LC-3. The assessment placed reaches LC-1 and LC-3 in the sub-optimal category with mean scores of 14.2 and 11.4, respectively and reach LC-2 in the marginal category with a mean score of 7.8 (Table 4.3). Differences in the scores between reaches were demonstrated most significantly by differences in epifaunal substrate, channel alteration, channel sinuosity, and riparian vegetative zone width.

The results of the qualitative habitat assessment indicate the presence of favorable habitat for fish and macroinvertebrates at study reaches LC-1 and LC-3. While study reach LC-2 scored less favorably for fish and macroinvertebrate habitat due to disturbances both instream and along side the stream, as well as alterations to the channel. The individual scoring forms are provided in Appendix E.

|             |                          | Reach |      |      |
|-------------|--------------------------|-------|------|------|
|             | Parameters               | LC-1  | LC-2 | LC-3 |
| 1. Epifau   | nal Substrate            | 14    | 4    | 10   |
| 2. Pool S   | ubstrate                 | 10    | 11   | 13   |
| 3. Pool V   | ariability               | 13    | 10   | 15   |
| 4. Chann    | el Alteration            | 18    | 2    | 10   |
| 5. Sedim    | ent Deposition           | 14    | 8    | 13   |
| 6. Chann    | el Sinuosity             | 13    | 2    | 9    |
| 7. Chann    | el Flow Status           | 17    | 16   | 16   |
| 8. Bank S   | Stability                |       |      |      |
|             | Left Bank                | 8     | 5    | 3    |
|             | Right Bank               | 7     | 5    | 5    |
| 9. Vegeta   | ative Protection         |       |      |      |
|             | Left Bank                | 7     | 6    | 5    |
|             | Right Bank               | 5     | 7    | 6    |
| 10. Riparia | an Vegetative Zone Width |       |      |      |
|             | Left Bank                | 8     | 1    | 6    |
|             | Right Bank               | 8     | 1    | 3    |
|             | Score (Total)            | 142   | 78   | 114  |
|             | Score Average            | 14.2  | 7.8  | 11.4 |
|             | Ranking                  | S     | М    | S    |

Table 4.3. Qualitative habitat potential summary of study reaches, April 2005.

| Ranking Range   |       |
|-----------------|-------|
| Optimal (O)     | 16-20 |
| Sub-optimal (S) | 11-15 |
| Marginal (M)    | 6-10  |
| Poor (P)        | 0-5   |

### 4.2.6 Habitat Conclusions

The habitat evaluation indicated that:

- 1. The habitat of Loutre Creek provides some minimum level of form and function to support a limited biotic community.
- 2. Loutre Creek does not demonstrate the habitat potential for the development of a characteristic Gulf Coastal Seasonal biotic community. The limiting factors vary from study reach to study reach.
- 3. The flow (minimum even during the spring seasonal period) and stream morphology (no deep pools) of the reference reach (LC-1) limits the biotic community development.
- 4. The flows provided by the current discharge condition from Lion Oil provides a constant source of flow to allow increased community development when compared to upstream reference conditions.

### 4.3 Water Quality

### 4.3.1 Chemical Characteristics

This section presents the methods and results of the water quality characterization for *in-situ* and minerals analysis in Loutre Creek upstream (LC-1) and downstream (LC-2 & LC-3) of Lion Oil storm water outfall discharge influences. The analytical methods used followed procedures outlined in Standard Methods for the Examination of Water and Wastewater and appropriate EPA published methods.

#### 4.3.2 Methods

The water quality analysis was conducted during April 2005 to characterize instream conditions during spring seasonal period. Water quality analyses were taken within each study reach during the time of biological assessment. Water quality analyses consisted of *in-situ* measurements and grab samples for laboratory analysis of chloride, sulfate, and TDS. *In-situ* measurements for water temperature, dissolved oxygen (DO), and specific conductance were measured using a YSI Model 85 digital meter. The pH was measured using an Orion model 230A pH meter that was calibrated using the standard two point method. Turbidity was measured using a Hach 2100P turbidimeter. Grab samples were collected and preserved on ice for laboratory analysis of chloride, sulfate, and TDS. All field meters were calibrated the morning prior to use in the field. Calibration records, analytical results and chain of custodies are provided in E- Field Data Sheets.

#### 4.3.3 Results and Discussion

The *in-situ* water quality data is presented in Table 4.4. DO ranged from 3.7 mg/L to 5.2 mg/L in the sampling reaches. The pH ranged between 6.7 and 7.9 s.u. along the three reaches evaluated. Specific conductivity was a magnitude higher at LC-2 (2,876  $\mu$ mhos) and LC-3 (2,788  $\mu$ mhos) verses LC-1 (295  $\mu$ mhos). These increases reflect a result of residual effects from storm water outfalls, as well as current effects of Outfall 001 discharge. The chloride, sulfate, and TDS concentrations were also higher at LC-2 and LC-3 than at LC-1, likely for the same reason.

| Parameter                   | LC-1      | LC-2      | LC-3      |
|-----------------------------|-----------|-----------|-----------|
| Date                        | 4/28/2005 | 4/28/2005 | 4/28/2005 |
| Time                        | 1410      | 1045      | 0800      |
| Temperature, C <sup>o</sup> | 21.1      | 26.8      | 23.6      |
| Dissolved Oxygen, mg/L      | 3.7       | 5.2       | 4.4       |
| Specific Conductance, uS    | 295       | 2876      | 2788      |
| pH, su                      | 6.7       | 7.9       | 7.5       |
| Turbidity, ntu              | 13.3      | 24.0      | 22.0      |
| Total Dissolved solids mg/L | 190       | 1800      | 1800      |
| Chloride mg/L               | 70        | 220       | 220       |
| Sulfate mg/L                | 4.4       | 960       | 950       |

Table 4.4. Water quality data measured/sampled in April 2005.

### 4.3.4 Conclusions

1) The *in-situ* parameters measured during the study indicate that water quality supports the attainment of the designated aquatic life use and the development and maintenance of the biological integrity in stream bodies.

- 2) Upstream dissolved oxygen did not maintain the water quality standard for primary season Gulf Coast minimums.
- 3) The water quality of Loutre Creek is dominated by the discharge from the facility.

### 4.4 Benthic Macroinvertebrate Community

#### 4.4.1 Introduction

The benthic macroinvertebrate community reflects the effects of habitat availability, and the long term exposure to physical and chemical properties of the water in which it develops and lives. The presence and diversity of the benthic macroinvertebrate community reflects a water body's biological integrity.

#### 4.4.2 Methods

An assessment of the benthic macroinvertebrate community was performed using rapid bioassessment (RBA) techniques as detailed in ADEQ, 1988. The methods were modified to sample in pool habitats. As indicated in Section 1.2, three sampling stations associated with the discharges were evaluated. LC-1 was on Loutre Creek upstream of any contribution from the Lion Oil facility, either treated process or storm water. Reach LC-2 was sampled to represent conditions downstream of Outfall 001 (treated process discharge) and Reach LC-3 was sampled to characterize Loutre Creek downstream of all discharge for the facility (Figure 4.1).

Macroinvertebrates were sampled using a Turtox Indestructible<sup>®</sup> dip net. Each station was sampled for three minutes according to the RBA protocol. The three minute sample period included time spent actively sampling the selected microhabitat and did not include time moving from microhabitat to microhabitat and/or sorting large debris particles from the sample to be processed.

Each sample was placed in a bucket and condensed using multiple washings into a standard #30 sieve. The samples were preserved in the field and transported to the lab for further processing, sub-sampling, identification and enumeration. In the lab, each of the field preserved samples were sub-sampled at random, placed on a grid, white sorting tray from which the macroinvertebrates sub-sample was collected. The white tray, with a 10 X 10 grid, was used to randomly select a 100 organism sub-sample from the qualifiedly collected benthic sample. Numbered grids were selected at random, from which all insects were collected and ultimately identified. Collections from individual grids continued until 100 organisms were collected. The 100 organism sub-samples were preserved in Kaylee's solution or 70% ethanol as a voucher for verification. The remainder of the original sample was concentrated, large particles removed, preserved in Kaylee's 'solution and retained as a voucher for the sample picking techniques used. These voucher samples will be held at GBM<sup>c</sup> for a period of 24 months or until the project is completed. After project completion the samples may be contributed to a university zoological collection.

The macroinvertebrate assemblages from each station were analyzed according to several benthic community biometrics. These include richness (number of different taxa), EPT richness (number of different taxa represented in the orders Ephemeroptera, Plecoptera, and Trichoptera), and species diversity as determined by the Shannon-Wiener diversity Index. The analysis also included the seven biometrics used by the State of Arkansas (ADPCE, 1988) in their RBA scoring system. This scoring system places a value (1 to 4, 1=excessive differences,

4=no differences) on each of the seven biometrics to achieve a final mean score. The field data sheets and biometric score forms are provided in Appendix E.

#### 4.4.3 Results and Discussion

#### 4.4.3.1 Overview

The species diversity was greatest (3.73) at the downstream most station (LC-3), and lowest (3.10) in the reference reach above the Lion Oil facility, indicating that the benthic community was improved, and more diverse, both taxonomically and functionally, downstream of the storm water discharges of the Lion Oil facility than they were upstream of those contributions. This measure of invertebrate community development reflects the impact of the urban disturbances and the limited watershed size upstream of the facility. In addition, the continuous flow augmented by the treated discharge from Outfall 001 (in the middle of Reach 2) maintains a constant wetted habitat. A summary of the benthic macroinvertebrate community assemblages of Loutre Creek collected during the spring seasonal aquatic field study is presented in Table 4.4. A total of 18 taxa (i.e., community richness) were identified from all reaches sampled from Loutre Creek (Table 4.5).

The representative communities of each sample reach shared 3 of 5 dominant ordinal groups (Diptera, Annelida, Pelecypoda). However, Reach LC-3 demonstrated the most even distribution on an ordinal level with 7 orders comprising approximately 10 percent of the benthic sub-sample, and included mayflies with 9.6 percent of the assemblage. The LC-3 diversity was further demonstrated in that the five dominant taxa comprised only 58 percent of the sample compared to 89 and 82 percent at LC-1 and LC-2, respectively.

The functional assemblage changed from LC-1 to LC-3. The LC-1 functional assemblage was dominated by collectors over predators, by a 2:1 ratio. This ratio moderated at LC-2 to about 1:1 and was reversed at LC-3 to almost 1:2, collectors to predators. Typically, the collectors functional group would dominate gulf coastal streams with watersheds of 10 square mile or less, as demonstrated by LC-1, the reference condition. However the elevated flows and the persistent velocity resulting from the discharges, and the changes these two physical conditions bring about on the stream channel (clay hardpan, deeply incised stream bad, etc.), and the absence of a canopy at LC-3 functionally reflect conditions characteristic of much larger watersheds. The shift in the functional assemblage from collector to predator dominated communities is in response to these physical changes.

#### 4.4.3.2 Reach LC-1

The upstream community (LC-1) was dominated by representatives from the order Diptera (true flies) and Annelida (aquatic worms), which comprised 77.3 percent of the assemblage. Only the introduced Asiatic clam (Corbicula), was collected from LC-1 and not collected from either LC-2 or LC-3.

#### 4.4.3.3 Reach LC-2

The invertebrate community of Reach LC-2 was also dominated by order Diptera (true flies) and Annelida (aquatic worms), but comprised only 60 percent of the assemblage. Other dominates included damselflies which comprised 12 percent of the assemblage. The trophic structure of LC-2 was more closely divided between collectors and predators. There was no

individual taxa collected from LC-2 that was not also collected from either LC-1 or LC-3 community was composed mostly of collectors.

#### 4.4.3.4 Reach LC-3

The invertebrate community of Reach LC-3 community was also dominated by diptera, which comprised 41% of the assemblage. There was no clear sub-dominant with six orders approximating 10% of the community. The trophic structure of community was dominated by predators. Mayflies and additional crustaceans were collected from LC-3 that were not present in the other study reaches.

#### 4.4.3.5 Biometric Score Comparisons

Although there were some specific taxonomic differences in the species collected, the biometric scores calculated for the comparison of the assemblages collected at LC-1, LC-2 and LC-3 were 2.9, 3.4, and 3.6, indicating only minimal differences between the benthic community assemblages. The most notable difference between the representative communities upstream and downstream of the storm water outfalls is in their trophic structure (Figure 4.4).

This structure demonstrates a shift from a collection dominated community to a predator dominated assemblage. Several factors could account for this including, habital differences, hydraulic modification due to storm flows, or the changes in water quality. Typically, collectors would dominate benthic assemblages of small gulf coastal streams. However, the hydraulics created by the storm water and treated process discharge result are characteristic of much larger watersheds.

| Parameter                          | Reach Designation |      |      |
|------------------------------------|-------------------|------|------|
| COMMUNITY MEASURES                 | LC-1              | LC-2 | LC-3 |
| Total number of Taxa (Richness)    | 18                | 18   | 18   |
| EPT Richness                       | 0                 | 0    | 1    |
| EPT % Abundance                    | 0                 | 0    | 9.6  |
| Diversity Indices (Shannon-Wiener) | 3.0               | 3.4  | 3.9  |
| Total % of 5 Dominant Taxa         | 89                | 72   | 58   |
| Dominant Orders                    |                   |      |      |
| Ephemeroptera                      | 0                 | 0    | 9.6  |
| Annelida                           | 27.3              | 12.7 | 10.6 |
| Odonata                            | 5                 | 11.8 | 9.6  |
| Pelecypoda                         | 12                | 0    | 0    |
| Crustacea                          | 3.6               | 6.9  | 10.6 |
| Hemiptera                          | 0                 | 4.9  | 10.6 |
| Diptera                            | 48.               | 56   | 41.3 |
| Functional Assemblage              |                   |      |      |
| Shredders                          | 9                 | 11   | 10   |
| Scrapers                           | 0                 | 1    | 0    |
| Collectors, Filtering              | 26.4              | 29.4 | 14   |
| Collectors, Gathering              | 28.2              | 14.7 | 23   |
| Collectors, total                  | 54.6              | 44.1 | 37.5 |
| Predators                          | 35.5              | 44   | 52   |
| Biometric Score:                   | 3.4               |      | 3.6  |

 Table 4.5
 Summary of Benthic Community metrics from Loutre Creek as sampled

 May 2005.

| techniques. May 2005           |         |      |            |      |
|--------------------------------|---------|------|------------|------|
| Taxa/Station I.D.              | Trophic | S    | TUDY REACH | ES   |
|                                | Group   | LC-1 | LC-2       | LC-3 |
| COLLEMBOLA                     |         |      |            |      |
| Podura                         | PR      |      |            | 2    |
| ANNELIDA                       |         |      |            |      |
| Oligochaeta                    | GC      | 29   | 13         | 11   |
| Helobdella                     | PA      | 1    |            |      |
| PELECYPODA                     |         |      |            |      |
| Corbicula                      | FC      | 13   |            |      |
| CRUSTACEA                      |         |      |            |      |
| Cambarinae                     | SH      | 3    | 7          | 8    |
| Amphipoda                      | GC      | 1    |            |      |
| Isopoda                        | GC      |      |            | 3    |
| Palaemonetes                   | FC      |      |            | 2    |
| EPHEMEROPTERA                  |         |      |            |      |
| Caenis                         | GC      |      |            | 10   |
| ODONATA                        |         |      |            |      |
| Argia                          | PR      | 1    | 3          | 4    |
| Enallagma                      | PR      |      | 8          | 6    |
| Libellula                      | PR      | 3    |            |      |
| Perithemis                     | PR      | 1    | 1          |      |
| HEMIPTERA                      |         |      |            |      |
| Belostoma                      | PR      | 1    | 1          |      |
| Corixidae                      | PR      |      | 4          | 11   |
| MEGALOPTERA                    |         |      |            |      |
| Sialis                         | PR      |      |            | 3    |
| COLEOPTERA                     |         |      |            |      |
| Curculionidae                  | PR      |      |            | 2    |
| Dineutus (larvae)              | PR      | 1    |            |      |
| Dytiscus                       | SC      |      | 1          |      |
| Hydrocanthus                   | SH      |      | 1          |      |
| Hydrochus                      | SH      |      | 1          |      |
| Peltodytes                     | SH      | 1    |            |      |
| Uvarus                         | PR      |      | 3          | 3    |
| DIPTERA                        |         |      |            |      |
| Anopheles                      | FC      | 1    | 2          |      |
| Bittacomorpha                  | SH      | 1    |            |      |
| Probezzia                      | GC      | 1    | 2          |      |
| Chironominae                   | FC      | 15   | 28         | 15   |
| Tanypodinae                    | PR      | 25   | 14         | 11   |
| Tanytarsini                    | PR      | 7    | 9          | 4    |
| Hexatoma                       | PR      |      | 2          | 2    |
| Psychoda                       | PR      |      |            | 8    |
| Tipula                         | SH      | 5    | 2          | 3    |
| Sum of Percentages             |         | 100  | 100        | 100  |
| Total Abundance:               |         | 110  | 102        | 108  |
| Species Richness:              |         | 18   | 18         | 18   |
| Shannon-Wiener Diversity Index |         | 3.1  | 3.4        | 3.86 |

 Table 4.6 Summary of Benthic Community taxa collected from Loutre Creek using the RBA techniques. May 2005.

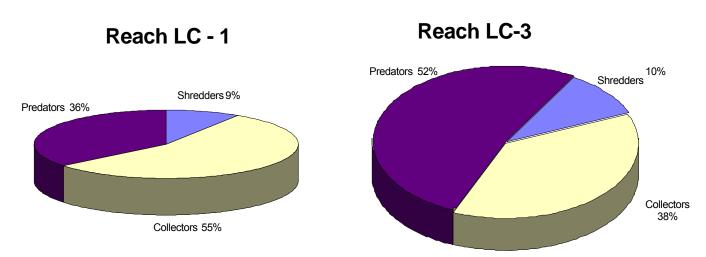



Figure 4.4. Comparison of trophic structure of benthic community upstream and downstream of outfalls. Collector dominated to Predator dominated.

#### 4.4.4 Conclusions

Based on the analysis of the macroinvertebrate collection from Loutre Creek, the following conclusions are provided:

- 1) The macroinvertebrate communities observed at all study reaches are similar in the development of taxonomic diversity.
- 2) Biometric comparisons indicate that there are minimal differences in the benthic communities.
- The community structure (form and function) demonstrated minimal differences which could be attributed to differences in physical conditions of the stream reach evaluated.
- 4) The macroinvertebrate communities observed at the Loutre Creek reaches are similar in structure and composition to Gulf Coastal Plain ecoregion conditions for small watersheds. However, the complexity of the community was limited when compared to least disturbed streams, even in the reference site on Loutre Creek.
- 5) The minimal differences actually reflect an improved benthic community at LC-3 downstream when compared to LC-1. The improvement is likely a response to increased flow and the improved habitat diversity indicated in the qualitative habitat assessment.
- 6) The macroinvertebrate community is being fully maintained downstream of the effluent discharge, as is the designated aquatic life use.
- 7) The biological integrity of Loutre Creek is being supported by the existing discharge conditions, which include elevated dissolved mineral concentrations resulting for the application of the air emission control equipment.

## 4.5 Fish Community

#### 4.5.1 Introduction

The fish community supported in a stream is in direct response to available habitat, food sources, and water quality of that particular stream. The presence of a certain level of species richness and diversity along with a community structure similar to that expected in typical streams of a ecoregion are indicators of aquatic ecosystem health.

The objective of the fish community characterization is to collect and identify a representative sample of all except very rare species in the assemblage reflective of the relative abundance within the community. Backpack electrofishing equipment is used as the principal sampling gear supplemented by block netting and seining in habitats where flow, substrate and structure affect the capture of fish species. Other methods of fish sampling may be implemented when conditions are not adequate for backpack eletrofishing or seining; these may include, using boat electrofishing equipment and/or hook and line sampling equipment. Usually 2 - 4 team members will make up the sampling team involved in collecting the aquatic vertebrates.

Major factors that influence collecting include flows, water depth, instream obstructions, water turbidity, temperature and conductivity. The primary tool utilized in the fish collections was a Smith-Root backpack electroshocker. However, seines and block nets were utilized as necessary to adequately characterize a sampling reach. The shocker is equipped with an automated timing mechanism which records the amount of time that electricity is actually being applied, or "pedal down time" (PDT).

Sampling fish species to determine their proportionate abundance will be conducted after all water quality parameters and/or samples are collected but prior to the collection of the macroinvertebrate sample and habitat data.

Shocked fish were captured with hand held dip nets and held in buckets while the sampling continued. The entire stream width within the sampling reach will be sampled. PDT time will continue for not less than 30 minutes unless the wetted habitat of any reach limits the PDT. In addition to the PDT, the total collection time will be recorded.

Unless specified in a project specific sampling analysis plan (SAP), there will not be a maximum time limit for the collection period, however the collections may be terminated when in the opinion of the principal investigator determines that a representative collection has been obtained. Sampling information is recorded on the Fish Community Collection Form, general comments (perceived fishing efficiency, missed fish, and gear operation suggestions) will be recorded on the lines provided on this form.

An effort to search for and collect fish will be completed at all reaches, even if the stream is extremely small, and it appears that sampling may not collect any specimens. If no specimens are collected, the "NONE COLLECTED" field on the Fish Collection Form will be completed and will provide an explanation in the comments section of the form.

#### 4.5.2 Methods

An assessment of the fish community in Loutre Creek (LC-1, LC-2, and LC-3) was performed. During the spring of 2005, each reach was sampled using a Smith-Root backpack electroshocker. The shocker includes an automated timing mechanism which records the amount of time that electricity is actually being applied, or "pedal down time" (PDT).

Shocked fish were captured with hand held dip nets and held in buckets while the sampling continued. At the end of each sampling effort fish from both reaches were preserved

in formalin for later identification in the lab. Fish identifications were made according to the Fishes of Arkansas (Robison, 1988) and The Fishes of Missouri (Pflieger, 1975) to species level where possible.

The fish collections at each reach were compared according to several biometrics including: species richness (number of taxa); sunfish richness; species diversity; abundance; dominant family groups; percent of tolerant species; trophic structure; percent of hybrids; percent of diseased fish; and key and indicator species as listed in Reg. No. 2. In addition, the fish community was assessed using a Biocriteria method developed by ADEQ. This Biocriteria uses a scoring system by which the assemblage collected is compared to a reference stream in the same ecoregion using eight different metrics. The metric scores are totaled and the resulting sum is used to assess if a stream reach is in support of its assigned designated uses.

#### 4.5.3 Results and Discussion

#### 4.5.3.1 Reach Comparisons

Species richness and diversity demonstrated little differences between the three study reaches. Species richness and diversity were 12 and 1.53 for LC-1, 12 and 1.64 for LC-2, and 12 and 1.43 for LC-3. Each study reach was dominated by sunfish which comprised 58% (LC-1) and 74% (LC-2 & LC-3) of the community (Table 4.7). The fish assemblages from each reach shared the two dominant species represented in the samples. The differences were in the sub-dominant group found at each study reach, which comprised the majority of each reaches' collection (Table 4.8). Trophically, the communities were dominated by insectivores, which accounted for 97.9% to 99.3% of each community. The remaining community trophic structure comprised of 1.6%, and 0.7% omnivores at LC-1 and LC-2, respectively and 1.4% and 0.7% piscivores at LC-2 and LC-3, respectively.

A summary of the fish collected from the three reaches is provided in Table 4.8. The fish assemblages collected from study reaches LC-1, LC-2, and LC-3 included a PDT of 28.2 minutes, 38.4 minutes, and 37.8 minutes, respectively. This equates to abundance of the fish observed during the collection and is expressed as fish caught per minute of shocking time or pedal down time (PDT). The number of fish caught per minute of PDT is 4.43 at LC-1, 3.67 at LC-2, and 3.68 at LC-3. The field data sheets and bio-criteria determination sheets are provided in Appendix E.

#### 4.5.3.2 Biometric assessment

The primary factor in evaluating the biocriteria scoring for this application demonstrates that the downstream reach fish community was equal to that of the upstream reference reach (LC-1) fish community. This demonstrates that the storm water discharges are not causing an adverse effect on the fish community's development.

The biometric scoring evaluates a fish community as it is compared to a least disturbed Gulf Coastal stream. Important considerations in the application of the biometric assessment and the comparison of fish communities relates to the watershed size and the condition of the watershed. Both of these attributes, the watershed size and watershed condition, of the upstream reference site on Loutre Creek (LC-1) is a lower value when compared to those used In the biocriteria development.

The biometric assessment resulted in a total of 8 points at LC-1, a total of 8 points at LC-2, and 6 points at LC-3 out of 32 possible points. The low scores when compared to a least disturbed reference, are a result of sensitive, catfishes, darters, and key species rarity, as well

as an over abundance of sunfish representatives and low species diversity through out the study reaches.

However, all 3 reaches, including the upstream reference reach scored the same, indicating that the storm water discharges are not preventing the attainable use as indicated by the upstream reference condition. Scores from each reach on Loutre Creek place them in the "not supporting" use support category, when compared to the least disturbed condition. However, the biocriteria scoring matrix was developed for streams with watersheds of around 10 mi<sup>2</sup> and does not account for seasonal streams with very small (<3 mi<sup>2</sup>) watersheds.

| Parameter                                       | LC-1  | LC-2  | LC-3  |
|-------------------------------------------------|-------|-------|-------|
| COMMUNITY MEASURES                              |       |       |       |
| Richness (Total Number of Taxa)                 | 12    | 12    | 12    |
| Darter Richness (Number of Taxa)                |       |       |       |
| Sunfish Richness (Number of Taxa)               | 5     | 5     | 5     |
| % Pollution Tolerant Species                    | 2.4   | 4.96  | 5.04  |
| % Pollution Intermediate Species                | 96.8  | 95.04 | 94.96 |
| % Pollution Intolerant Species                  | 0.80  |       |       |
| % Diseased                                      |       | 4.3   | 2.2   |
| Number of Key & Indicator Species (Taxa)        | 2.0   | 2.0   | 3.0   |
| Number of Key & Indicator Species (Individuals) | 4.0   | 10.0  | 6.0   |
| % Key & Indicator Species numbers of total fish | 3.2   | 7.1   | 4.3   |
| Diversity Indices (Shannon-Wiever)              | 1.53  | 1.64  | 1.43  |
| Abundance, fish collected/minute                | 4.43  | 3.67  | 3.68  |
| TROPHIC STRUCTURE                               |       |       |       |
| % Herbivores                                    |       |       |       |
| % Omnivores                                     | 1.60  | 0.71  |       |
| % Insectivores                                  | 98.4  | 97.9  | 99.3  |
| % Piscivores                                    |       | 1.42  | 0.72  |
| PERCENT OF 5 DOMINANT FAMILY GROUPS             |       |       |       |
| Cyprinidae                                      | 2.4   | 0.7   |       |
| Poeciliidae                                     | 36.8  | 24.8  | 25.2  |
| Cyprinodontidae                                 | 2.4   |       |       |
| Esocidae                                        |       |       | 0.7   |
| Aphredoderidae                                  | 0.8   |       |       |
| Ictaluridae                                     |       | 0.7   |       |
| Centrarchidae                                   | 57.6  | 73.8  | 74.1  |
| Total % of 5 Dominant Groups                    | 100.0 | 100.0 | 100.0 |

Table 4.7. Fish community structural analysis for Lion Oil, El Dorado, AR, April 2005.

\* Total of 12 key and indicator species possible.

| Scientific Name                                         | Common Name                                                   | LC-1      | LC-2      | LC-3      |  |
|---------------------------------------------------------|---------------------------------------------------------------|-----------|-----------|-----------|--|
|                                                         |                                                               | 4/28/2005 | 4/28/2005 | 4/28/2005 |  |
| CYPRINIDAE                                              |                                                               |           |           |           |  |
| Notemigonus crysoleucas                                 | golden shiner                                                 | 2         | 1         | 0         |  |
| Opsopoeodus emiliae                                     | pugnose minnow                                                | 1         | 0         | 0         |  |
| POECILIIDAE                                             |                                                               |           |           |           |  |
| Gambusia affinis                                        | mosquitofish                                                  | 46        | 35        | 35        |  |
| CYPRINODONTIDAE                                         |                                                               |           |           |           |  |
| Fundulus chrysotus                                      | golden topminnow                                              | 3         | 0         | 0         |  |
| ESOCIDAE                                                |                                                               |           |           |           |  |
| Esox americanus <sup>1</sup>                            | grass pickerel                                                | 0         | 0         | 1         |  |
| APHREDODERIDAE                                          |                                                               |           |           |           |  |
| Aphredoderus sayanus <sup>2</sup>                       | pirate perch                                                  | 1         | 0         | 0         |  |
| ICTALURIDAE                                             |                                                               |           |           |           |  |
| Ameiurus melas                                          | black bullhead                                                | 0         | 1         | 0         |  |
| CENTRARCHIDAE                                           |                                                               |           |           |           |  |
| Lepomis cyanellus                                       | green sunfish                                                 | 1         | 6         | 7         |  |
| Lepomis gulosus <sup>1</sup>                            | warmouth                                                      | 0         | 2         | 1         |  |
| Lepomis punctatus <sup>2</sup>                          | spotted sunfish                                               | 3         | 8         | 6         |  |
| Lepomis megalotis                                       | longear sunfish                                               | 68        | 86        | 89        |  |
| Micropterus salmoides                                   | largemouth bass                                               | 0         | 2         | 0         |  |
| Total No. Taxa Collected                                |                                                               | 12        | 12        | 12        |  |
| Total Fish Collected                                    |                                                               | 125       | 141       | 139       |  |
| Level of Effort (Minutes) PDT <sup>3</sup>              |                                                               | 28.2      | 38.4      | 37.8      |  |
| Catch per Minute, PDT                                   |                                                               | 4.43      | 3.67      | 3.68      |  |
| Shannon-Wiever Diversity Index                          |                                                               | 1.53      | 1.64      | 1.43      |  |
| <sup>1</sup> Typical Gulf Coastal Ecoregion Key Species |                                                               |           |           |           |  |
|                                                         | <sup>2</sup> Typical Gulf Coastal Ecoregion Indicator Species |           |           |           |  |
| <sup>3</sup> Pedal Down Time                            |                                                               |           |           |           |  |

Table 4.8. Fish community for Lion Oil, El Dorado, AR, April 2005.

#### 4.5.4 Conclusions

Based on the results of the fish collections, the following conclusions are provided:

- 1) The fish assemblages collected at all study reaches, upstream and downstream of the storm water discharges, are similar in structure and function indicating that the biological integrity required to maintain the attainable seasonal fishery is being supported.
- 2) The communities at all reaches (LC-1, LC-2, and LC-3) during the seasonal study period were found to be dominated by sunfish.
- 3) The communities were similar to those expected in a Gulf Coastal Plain stream of similar watershed size. Therefore, the seasonal fishery downstream from the discharges is being maintained, as is the designated aquatic life use.
- 4) The numbers of fish and diversity collected downstream during the seasonal study exceeds and/or equals those collected upstream. The downstream reach was found to contain three of the key and indicator species as well. (ADEQ, 2004)

- 5) Comparisons to least disturbed gulf coastal streams indicated non-attainment of the perennial fishery use.
- 6) The fish communities characterized as part of the aquatic life field study indicates that Loutre Creek, downstream of the existing Lion Oil discharges is maintaining the designated aquatic life use and while not as diverse as a typical least disturbed fishery, is more typical of a Gulf Coastal Plain stream than is the reference reach above the discharges.

### 4.6 Summary

Based on the aquatic life field study, the designated aquatic life use (seasonal fishery) and the biological integrity of Loutre Creek is maintained downstream of the existing discharges from the Lion Oil facility. In fact, the augmentation of flow from the discharges serve to enhance the potential for community development as illustrated by the comparisons between the upstream reference condition and the downstream study reaches.

# **5.0 EXISTING LOADINGS OF DISSOLVED MINERALS**

### 5.1 Chloride, Sulfate, and TDS Water Quality Criteria

Currently Loutre Creek's minerals water quality criteria is ecoregion numbers, while Bayou de Loutre has stream based water quality criteria for minerals. The current ecoregion based chloride, sulfate and TDS water quality criteria for Loutre Creek (Figure 5.1) is 14 mg/L, 31 mg/L, and 123 mg/L respectively. The existing stream based chloride, sulfate and TDS for Bayou de Loutre upstream of Gum Creek is 200 mg/L, 90 mg/L, and 500 mg/L respectively and 200 mg/L, 90 mg/L, and 750 mg/L downstream of Gum Creek. Utilizing the applicable flows, background concentrations provided in the WQS and the applying the methods stipulated in the Continuous Planning Process (CPP), Outfall 001's discharge from the Lion Oil facility will not maintain the existing ecoregion dissolved minerals criteria in Loutre Creek or sections of Bayou de Loutre.

In addition to ecoregion water quality criteria, the domestic water supply use designation for Loutre Creek and Bayou de Loutre (upstream of Gum Creek) results in numeric criteria of 250 mg/L, 250 mg/L and 500 mg/L for chloride, sulfate and TDS, respectively. As discussed in Sections 3.2 and 3.3, the domestic water supply use is a designated, but not an existing use for Loutre Creek or Bayou de Loutre. Additionally, there are no plans to utilize either stream as a domestic water supply use.

In order to determine appropriate chloride, sulfate, and TDS criteria for Loutre Creek and Bayou de Loutre, mass balances were developed as described in the following sections.

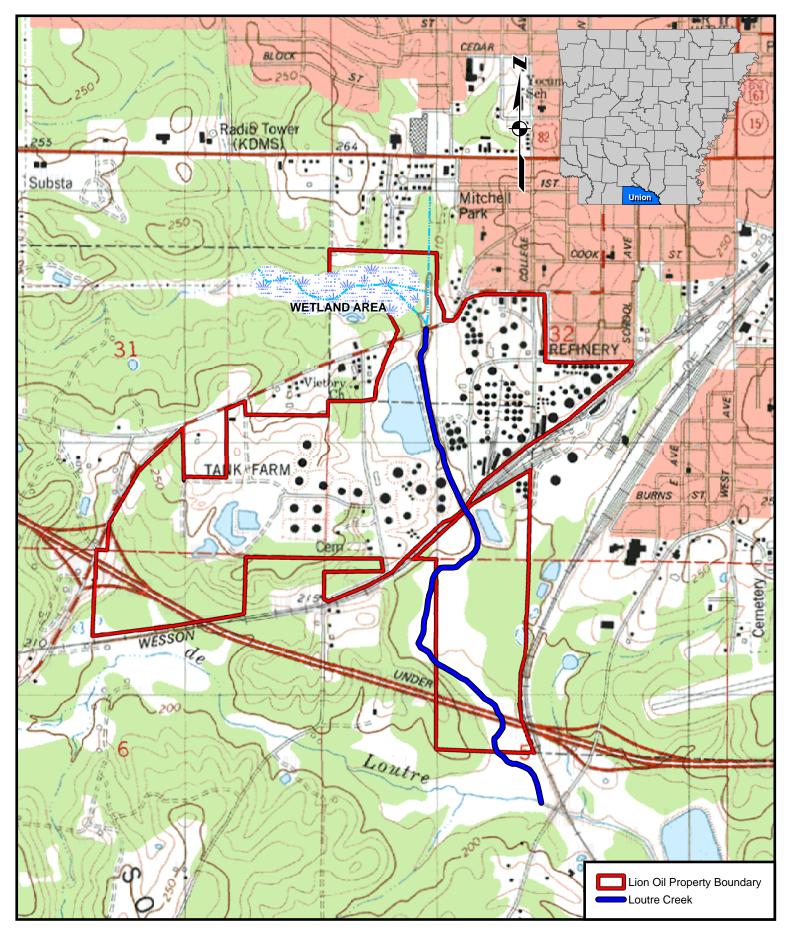



Figure 5.1. Lion Oil and Loutre Creek reach proposed for 3rd party rule making.

### 5.2 Mass Balance

The following mass balance equation was used to calculate instream waste concentrations (IWC) for chloride, sulfate, and TDS:

$$IWC = [(Qb \times Cb) + (Qe \times Ce)] / (Qb + Qe)$$

Where:

- Qb = The background flow of the receiving stream
- Cb = The background concentration of chloride, sulfate, or TDS in the receiving stream
- Qe = The discharge flow of the effluent
- Ce = The effluent concentration of chloride, sulfate, or TDS

#### 5.2.1 Methods

The procedure for evaluating instream concentrations and developing permit limits for dissolved minerals can be found in *ADEQ Discharge Permit, Toxic Control Implementation Procedure* in Arkansas' 1995 Continuing Planning Process (CPP). The value used for the background concentration in Loutre Creek and Bayou de Loutre of chloride (5 mg/L), sulfate (13 mg/L), and TDS (67 mg/L) was the mean concentration for the Gulf Coastal Plain Ecoregion. The background values are listed in the CPP in Attachment XII, *Mineral Permitting Strategy*, for streams in the Gulf Coastal Plain with a 7Q-10 of less than 100 cfs. A background flow of 4 cfs was used in each stream, as allowed for determining instream mineral concentrations in the WQS. Outfall 001 effluent concentrations for chloride were derived from historical data and data collected during April and May 2006, while storm water data was collected in December 2005 from each storm water outfall and/or each of the two holding ponds that discharge through outfall 005, 006, and 007. Effluent concentrations for sulfate and TDS were derived from data collected from March, 2004 through April, 2006 from Outfall 001. Instream concentrations were calculated for Loutre Creek and Bayou de Loutre.

#### **5.2.2 Computations for Loutre Creek**

The Gulf Coastal Plain ecoregion background concentrations for chloride, sulfate, and TDS are 5 mg/L, 13 mg/L, and 67 mg/L, respectively. Lion Oil's reported highest monthly average flow for Outfall 001 from January 2004 through December 2005 is 2.62 mgd (4.06 cfs). The flow value used in the computations as the effluent flow at Outfall 001 selected as directed by Section D of *ADEQ Discharge Permit, Toxic Control Implementation Procedure* in the CPP. A concentration of 503 mg/L chloride, 1967 mg/L sulfate, and 3420 mg/L TDS were used as the effluent concentrations. Each of these values is the 95<sup>th</sup> percentile plus 20% of its respective data set. Due to the limited number of data points, a clear normal distribution verses non-normal distribution determination was unable to be made. Therefore, the chloride, sulfate, and TDS 95<sup>th</sup> percentiles were calculated according to a non-parametric (the data set was analyzed using a non-normal distribution) The non-parametric statistical technique as outlined in *Statistical Methods for Environmental Pollution Monitoring* (Gilbert, 1987) was used for each data set. Additionally, frequency histograms were prepared for each data set so a visual check of its normality distribution could be made. The chloride, sulfate, and TDS data visually appeared to have a non-normal distribution. Therefore, the 95<sup>th</sup> percentile for the chloride, sulfate

sulfate, and TDS data was calculated using a nonparametric technique (Gilbert, 1987) presented below:

k = p(n=1)

where: k = the ranked order number from the chloride data set (values of k that are not integers are interpolated for using the two values that k falls between).

- p = desired percentile
- n = number of data points

This method returns a k value of 32.3 for chloride and 25.65 for sulfate and TDS. The chloride data set has an n = 33, while the sulfate and TDS data sets has an n = 26. Therefore, the values ranked in the data set as "32.3" for chloride and "25.65" for sulfate and TDS was (414 mg/L, 1639 mg/L, and 2850 mg/L, respectively). These "ranked" values are equal to the 95<sup>th</sup> percentile. Utilizing all the aforementioned data the IWC for chloride, sulfate, and TDS are calculated below. The summary of the mass balance data inputs are provided in Table 5.1 for Loutre Creek.

$$\begin{split} & [WC_{chloride} = \\ & [(4.0 \text{ cfs x } 5.0 \text{ mg/L}) + (4.06 \text{ cfs x } 503 \text{ mg/L})] / (4.0 \text{ cfs } + 4.06 \text{ cfs}) = 256 \text{ mg/L} \\ & [WC_{sulfate} = \\ & [(4.0 \text{ cfs x } 13 \text{ mg/L}) + (4.06 \text{ cfs x } 1967 \text{ mg/L})] / (4.0 \text{ cfs } + 4.06 \text{ cfs}) = 997 \text{ mg/L} \end{split}$$

IWC<sub>TDS</sub> = [(4.0 cfs x 67 mg/L) + (4.06 cfs x 3420 mg/L)] / (4.0 cfs + 4.06 cfs) = 1756 mg/L

| Parameters                                        | Chloride | Sulfate | TDS  |
|---------------------------------------------------|----------|---------|------|
| Ce, mg/L (projected 95 <sup>th</sup> %tile + 20%) | 503      | 1967    | 3420 |
| Cb, mg/L                                          | 5.0      | 13.0    | 67.0 |
| Qe, cfs                                           | 4.06     | 4.06    | 4.06 |
| Qb, cfs                                           | 4.0      | 4.0     | 4.0  |
| Projected IWC (mg/L)                              | 256      | 997     | 1756 |

Table 5.1. Instream Waste Concentration (IWC) Calculation for Loutre Creek.

Appendix C. provides a schematic of the 95<sup>th</sup> percentiles, flows, and IWC computations for the individual dissolved minerals and TDS.

# 5.2.3 Computations for Bayou de Loutre (from Loutre Creek to the discharge of the City of El Dorado South facility)

The IWC computations for chloride, sulfate, and TDS for this reach of Bayou de Loutre (from the mouth of Loutre Creek to the discharge of the City of El Dorado South facility) were preformed utilizing the previously calculated IWCs and flows from Loutre Creek (Section 5.2.2 above) for each respective mineral.

The following inputs were used to determine the IWC for each relevant mineral in this reach of Bayou de Loutre. The "effluent concentration" was derived from a mass balance calculation utilizing the flow weighted mixed concentrations from Chemtura 002, Chemtura 004, and Lion 001.

While the "effluent flow" was the total of each outfall's (Chemtura 002, Chemtura 004, and Lion 001) reported highest monthly average flows. The resulting "effluent flow" was 4.94 cfs. The background watershed flow used for this reach came from background flow from Loutre Creek (4 cfs) and Bayou de Loutre (4 cfs) for a total of 8.0 cfs. The projected IWC were 264 mg/L, 635 mg/L, and 1236 mg/L for chloride, sulfate, and TDS, respectively. The IWC schematics detailing the model inputs and IWC projections are provided in Appendix C. The calculated IWC for chloride, sulfate, and TDS indicated higher concentrations than the current stream based water quality criteria for Bayou de Loutre. Utilizing all the aforementioned data, the IWC is calculated below are summarized in Table 5.2.

 $IWC_{chloride} = [(8.0 \text{ cfs x } 5.0 \text{ mg/L}) + (4.94 \text{ cfs x } 684 \text{ mg/L})] / (8.0 \text{ cfs } + 4.94 \text{ cfs}) = 264 \text{ mg/L}$  $IWC_{sulfate} = [(8.0 \text{ cfs x } 13.0 \text{ mg/L}) + (4.94 \text{ cfs x } 1643 \text{ mg/L})] / (8.0 \text{ cfs } + 4.94 \text{ cfs}) = 635 \text{ mg/L}$ 

IWC<sub>TDS</sub> =

[(8.0 cfs x 67 mg/L) + (4.94 cfs x 3128 mg/L)] / (8.0 cfs + 4.94 cfs) = 1236 mg/L

| Parameters           | Chloride | Sulfate | TDS  |
|----------------------|----------|---------|------|
| Ce, mg/L             | 684      | 1643    | 3128 |
| Cb, mg/L             | 5.0      | 13      | 67   |
| Qe, cfs              | 4.94     | 4.94    | 4.94 |
| Qb, cfs              | 8.0      | 8.0     | 8.0  |
| Projected IWC (mg/L) | 264      | 635     | 1236 |

Table 5.2. Instream Waste Concentration (IWC) Calculation

# 5.2.4 Computations for Bayou de Loutre (from the discharge of the City of El Dorado South facility to the mouth of Gum Creek)

IWC computations for chloride, sulfate, and TDS in Bayou de Loutre (from the discharge of the City of El Dorado South facility to the mouth of Gum Creek) were determined utilizing the previously calculated IWCs and flows from Bayou de Loutre (Section 5.2.3 above) for each respective mineral. The calculated IWC for sulfate and TDS indicated higher concentrations than the current stream based water quality criteria for Bayou de Loutre. The calculated IWC for chloride projects lower than the current stream based water quality criteria and shows no toxic reasonable potential at this time. Therefore, change in the water quality criteria for chloride in Bayou de Loutre (from the discharge of the City of El Dorado South facility to the mouth of Gum Creek) is not being requested at this time.

The following inputs were used to determine the IWC for each relevant mineral in this reach of Bayou de Loutre. The "effluent concentration" was derived from a mass balance calculation utilizing the flow weighted mixed concentrations from GLCC-Central 002, GLCC-Central 004, Lion 001, and City of El Dorado South facility 001. While the "effluent flow" was the total of each outfall's (GLCC-Central 002, GLCC-Central 004, Lion 001, and City of El Dorado South 001) reported highest monthly average flows. The resulting "effluent flow" was 12.37 cfs. The background watershed flow used for this reach came from background flow from Loutre Creek (4 cfs) and Bayou de Loutre (4 cfs) for a total of 8.0 cfs. The projected IWC were 220 mg/L, 431 mg/L, and

966 mg/L for chloride (no change needed), sulfate, and TDS, respectively. The IWC schematics detailing the model inputs and IWC projections are provided in Appendix C. Utilizing all the aforementioned data, the IWC is calculated below are summarized in Table 5.3.

 $IWC_{sulfate} = [(8.0 \text{ cfs x } 13.0 \text{ mg/L}) + (12.37 \text{ cfs x } 702 \text{ mg/L})] / (8.0 \text{ cfs } + 12.37 \text{ cfs}) = 431 \text{ mg/L}$  $IWC_{TDS} =$ 

[(8.0 cfs x 67 mg/L) + (12.37 cfs x 1548 mg/L)] / (8.0 cfs + 12.37 cfs) = 966 mg/L

| Table 5.5. Instream waste concentration (IWC) Calculation for Dayou de Louire. |         |       |  |  |
|--------------------------------------------------------------------------------|---------|-------|--|--|
| Parameters                                                                     | Sulfate | TDS   |  |  |
| Ce, mg/L                                                                       | 702     | 1548  |  |  |
| Cb, mg/L                                                                       | 13      | 67    |  |  |
| Qe, cfs                                                                        | 12.37   | 12.37 |  |  |
| Qb, cfs                                                                        | 8.0     | 8.0   |  |  |

Table 5.3. Instream Waste Concentration (IWC) Calculation for Bayou de Loutre.

Projected IWC (mg/L)

# 5.2.5 Computations for Bayou de Loutre (from Gum Creek to the mouth of Boggy Creek)

431

966

IWC computations for chloride, sulfate, and TDS in Bayou de Loutre (from Gum Creek to the mouth of Boggy Creek) were determined utilizing the previously calculated IWCs and flows from section 5.2.4 above with the addition of two more facility sources (via Gum Creek) that are included in this section for each respective mineral. The calculated IWC for sulfate and TDS indicated higher concentrations than the current stream based water quality criteria for Bayou de Loutre. The calculated IWC for chloride projects lower than the current stream based water quality criteria and shows no toxic reasonable potential at this time. Therefore, change in the water quality criteria for chloride in this reach of Bayou de Loutre (from Gum Creek to the mouth of Boggy Creek) is not being requested at this time.

The following calculations were used to determine the IWC for each relevant mineral in this reach of Bayou de Loutre. The resulting "effluent concentration" following the addition of GLCC South – 001 and Georgia Pacific – 004 (chloride - 335 mg/L, sulfate – 636 mg/L, & TDS – 1406 mg/L) was derived from a mass balance calculation utilizing the flow weighted mixed concentrations from Lion Oil 001, GLCC – South 001, GLCC – Central 002, GLCC – Central 004, City of El Dorado South facility 001, and Georgia Pacific El Dorado Mill – 004. The resulting "effluent flow" (combined total of all contributing sources) was 13.68 cfs. Table 5.4 provides a complete list of point source discharges and applicable flow and minerals data utilized for computations. Any facility minerals data not available through DMR reporting was replaced in the calculations with ecoregion background number for that respective mineral. The background watershed flow used for this reach came from the watersheds of Loutre Creek (4 cfs), Bayou de Loutre (4 cfs), and Gum Creek (4 cfs) for a total of 12.0 cfs. The projected IWC were 181 mg/L, 345 mg/L, and 780 mg/L for chloride (no change needed), sulfate, and TDS, respectively. Utilizing all the aforementioned data, the IWC is calculated below are summarized in Table 5.5.

Table 5.4. Summary of sources contributors to Bayou de Loutre watershed.

| Facility Name  | Outfall # | Flow (cfs) | Cl <sup>-</sup> (mg/L) | SO <sub>4</sub> -2<br>(mg/L) | TDS<br>(mg/L) |
|----------------|-----------|------------|------------------------|------------------------------|---------------|
| Cooper Tire    | 002       | N/A        | N/A                    | N/A                          | N/A           |
| Lion Oil       | 001       | 4.06       | 504                    | 1967                         | 3420          |
| GLCC - South   | 001       | 0.75       | 181                    | 13                           | 67            |
| GLCC - Central | 002       | 0.24       | 1029                   | 380                          | 1376          |
| GLCC - Central | 004       | 0.64       | 1702                   | 63.7                         | 1932          |
| City - South   | 001       | 7.43       | 142                    | 76                           | 497           |
| GP -EI Dorado  | 004       | 0.56       | 5                      | 13                           | 67            |

IWC<sub>sulfate</sub> =

[(12.0 cfs x 13.0 mg/L) + (13.68 cfs x 636 mg/L)] / (12.0 cfs + 13.68 cfs) = 345 mg/L

IWC<sub>TDS</sub> =

[(12.0 cfs x 67 mg/L) + (13.68 cfs x 1406 mg/L)] / (12.0 cfs + 13.68 cfs) = 780 mg/L

| Parameters           | Sulfate | TDS   |
|----------------------|---------|-------|
| Ce, mg/L             | 636     | 1406  |
| Cb, mg/L             | 13      | 67    |
| Qe, cfs              | 13.68   | 13.68 |
| Qb, cfs              | 12.0    | 12.0  |
| Projected IWC (mg/L) | 345     | 780   |

Table 5.5. Instream Waste Concentration (IWC) Calculations.

# 5.2.6 Computations for Bayou de Loutre (from Boggy Creek to the mouth of Hibank Creek)

IWC computations for chloride, sulfate, and TDS in Bayou de Loutre (from Boggy Creek to the mouth of Hibank Creek) were determined utilizing the previously calculated IWCs and flows from section 5.2.5 above with the addition of one more facility source (via Boggy Creek) that is included in this section for each respective mineral. The calculated IWC for sulfate indicated a higher concentration than the current stream based water quality criteria for Bayou de Loutre. The calculated IWC for chloride and TDS projects lower than current stream based water quality criteria and shows no toxic reasonable potential at this time. Therefore, change in the water quality criteria for chloride and TDS in this reach of Bayou de Loutre (from Boggy Creek to the mouth of Hibank Creek) is not being requested at this time.

The following calculations were used to determine the IWC for the relevant mineral in this reach of Bayou de Loutre. The resulting "effluent concentration" following the addition of Teris - 009 004 (chloride - 332 mg/L, sulfate – 619 mg/L, & TDS – 1381 mg/L) was derived from a mass balance calculation utilizing the flow weighted mixed concentrations from Lion Oil 001, GLCC – South 001, GLCC – Central 002, GLCC – Central 004, City of El Dorado South facility 001, Georgia Pacific El Dorado Mill – 004, and Teris -009. The resulting "effluent flow" (combined total of all contributing sources) was 14.07 cfs. Table 5.6 provides the final list of point source discharges and applicable flow and minerals data utilized for computations. Any facility minerals data not available through DMR reporting was replaced in the calculations with ecoregion background number for that respective mineral. The background watershed flow used for this reach came from the watersheds of Loutre Creek (4 cfs), Bayou de Loutre (4 cfs), Gum Creek (4 cfs), and Boggy

Creek (4 cfs) for a total of 16.0 cfs. The projected IWC were 158 mg/L, 296 mg/L, and 682 mg/L for chloride (no change needed), sulfate, and TDS (no change needed), respectively. The IWC schematics detailing the model inputs and IWC projections are provided in Appendix C. Utilizing all the aforementioned data, the IWC is calculated below are summarized in Table 5.7.

|                |           |            |                        | SO4 <sup>-2</sup> | TDS    |
|----------------|-----------|------------|------------------------|-------------------|--------|
| Facility Name  | Outfall # | Flow (cfs) | Cl <sup>-</sup> (mg/L) | (mg/L)            | (mg/L) |
| Cooper Tire    | 002       | N/A        | N/A                    | N/A               | N/A    |
| Lion Oil       | 001       | 4.06       | 504                    | 1967              | 3420   |
| GLCC - South   | 001       | 0.75       | 181                    | 13                | 67     |
| GLCC - Central | 002       | 0.24       | 1029                   | 380               | 1376   |
| GLCC - Central | 004       | 0.64       | 1702                   | 63.7              | 1932   |
| City - South   | 001       | 7.43       | 142                    | 76                | 497    |
| GP –El Dorado  | 004       | 0.56       | 5                      | 13                | 67     |
| Teris          | 009       | 0.39       | 228                    | 13                | 526    |

Table 5.6. Summary of final sources contributors to Bayou de Loutre watershed.

IWC<sub>sulfate</sub> =

[(16.0 cfs x 13.0 mg/L) + (14.07 cfs x 619 mg/L)] / (16.0 cfs + 14.07 cfs) = 296 mg/L

Table 5.7. Instream Waste Concentration (IWC) Calculations.

| Parameters           | Sulfate |
|----------------------|---------|
| Ce, mg/L             | 619     |
| Cb, mg/L             | 13      |
| Qe, cfs              | 14.07   |
| Qb, cfs              | 16.0    |
| Projected IWC (mg/L) | 296     |

# 5.2.7 Computations for Bayou de Loutre (from Hibank Creek to the mouth of Mill Creek)

IWC computations for chloride, sulfate, and TDS in Bayou de Loutre (from Hibank Creek to the mouth of Mill Creek) were determined utilizing the previously calculated IWCs and flows from section 5.2.6 above for each respective mineral. The calculated IWC for sulfate indicated a higher concentration than the current stream based water quality criteria for Bayou de Loutre. The calculated IWC for chloride and TDS projects lower than current stream based water quality criteria and shows no toxic reasonable potential at this time. Therefore, change in the water quality criteria for chloride and TDS in this reach of Bayou de Loutre (from Hibank Creek to the mouth of Mill Creek) is not being requested at this time.

The following calculations were used to determine the IWC for the relevant mineral in this reach of Bayou de Loutre. The resulting "effluent concentration", for each respective mineral, (chloride - 332 mg/L, sulfate – 619 mg/L, & TDS – 1381 mg/L), was derived from a mass balance calculation utilizing the flow weighted mixed concentrations from Lion Oil 001, GLCC – South 001, GLCC – Central 002, GLCC – Central 004, City of El Dorado South facility 001, Georgia Pacific El Dorado Mill – 004, and Teris -009. The resulting "effluent flow" (combined total of all contributing sources) was 14.07 cfs. The background watershed flow used for this reach came from the watersheds of Loutre Creek (4 cfs), Bayou de Loutre (4 cfs), Gum Creek (4 cfs), Boggy Creek (4 cfs), and Hibank Creek (4 cfs) for a total of 20.0 cfs. The projected IWC were 140 mg/L, 263

mg/L, and 610 mg/L for chloride (no change needed), sulfate, and TDS (no change needed), respectively. Utilizing all the aforementioned data, the IWC is calculated below are summarized in Table 5.8.

IWC<sub>sulfate</sub> = [(20.0 cfs x 13.0 mg/L) + (14.07 cfs x 619 mg/L)] / (20.0 cfs + 14.07 cfs) = 263 mg/L

| Parameters           | Sulfate |  |
|----------------------|---------|--|
| Ce, mg/L             | 619     |  |
| Cb, mg/L             | 13      |  |
| Qe, cfs              | 14.07   |  |
| Qb, cfs              | 20.0    |  |
| Projected IWC (mg/L) | 263     |  |

Table 5.8. Instream Waste Concentration (IWC) Calculations.

# 5.2.8 Computations for Bayou de Loutre (from Mill Creek to the mouth of Buckaloo Branch)

IWC computations for chloride, sulfate, and TDS in Bayou de Loutre (from Mill Creek to the mouth of Buckaloo Branch) were determined utilizing the previously calculated IWCs and flows from section 5.2.7 above for each respective mineral. The calculated IWC for sulfate indicated a higher concentration than the current stream based water quality criteria for Bayou de Loutre. The calculated IWC for chloride and TDS projects lower than current stream based water quality criteria and shows no toxic reasonable potential at this time. Therefore, change in the water quality criteria for chloride and TDS in this reach of Bayou de Loutre (from Mill Creek to the mouth of Buckaloo Branch) is not being requested at this time.

The following calculations were used to determine the IWC for the relevant mineral in this reach of Bayou de Loutre. The resulting "effluent concentration", for each respective mineral, (chloride - 332 mg/L, sulfate – 619 mg/L, & TDS – 1381 mg/L), was derived from a mass balance calculation utilizing the flow weighted mixed concentrations from Lion Oil 001, GLCC – South 001, GLCC – Central 002, GLCC – Central 004, City of El Dorado South facility 001, Georgia Pacific El Dorado Mill – 004, and Teris -009. The resulting "effluent flow" (combined total of all contributing sources) was 14.07 cfs. The background watershed flow used for this reach came from the watersheds of Loutre Creek (4 cfs), Bayou de Loutre (4 cfs), Gum Creek (4 cfs), Boggy Creek (4 cfs), Hibank Creek (4 cfs), and Mill Creek (4 cfs) for a total of 24.0 cfs. The projected IWC were 126 mg/L, 237 mg/L, and 553 mg/L for chloride (no change needed), sulfate, and TDS (no change needed), respectively. Utilizing all the aforementioned data, the IWC is calculated below are summarized in Table 5.9.

IWC<sub>sulfate</sub> = [(24.0 cfs x 13.0 mg/L) + (14.07 cfs x 619 mg/L)] / (24.0 cfs + 14.07 cfs) = 237 mg/L

| Parameters           | Sulfate |
|----------------------|---------|
| Ce, mg/L             | 619     |
| Cb, mg/L             | 13      |
| Qe, cfs              | 14.07   |
| Qb, cfs              | 24.0    |
| Projected IWC (mg/L) | 237     |

Table 5.9. Instream Waste Concentration (IWC) Calculations

# 5.2.9 Computations for Bayou de Loutre (from Buckaloo Branch to the mouth of Bear Creek)

IWC computations for chloride, sulfate, and TDS in Bayou de Loutre (from Buckaloo Branch to the mouth of Bear Creek) were determined utilizing the previously calculated IWCs and flows from section 5.2.8 above for each respective mineral. The calculated IWC for sulfate indicated a higher concentration than the current stream based water quality criteria for Bayou de Loutre. The calculated IWC for chloride and TDS projects lower than current stream based water quality criteria and shows no toxic reasonable potential at this time. Therefore, change in the water quality criteria for chloride and TDS in this reach of Bayou de Loutre (from Buckaloo Branch to the mouth of Bear Creek) is not being requested at this time.

The following calculations were used to determine the IWC for the relevant mineral in this reach of Bayou de Loutre. The resulting "effluent concentration", for each respective mineral, (chloride - 332 mg/L, sulfate – 619 mg/L, & TDS – 1381 mg/L), was derived from a mass balance calculation utilizing the flow weighted mixed concentrations from Lion Oil 001, GLCC – South 001, GLCC – Central 002, GLCC – Central 004, City of El Dorado South facility 001, Georgia Pacific El Dorado Mill – 004, and Teris -009. The resulting "effluent flow" (combined total of all contributing sources) was 14.07 cfs. The background watershed flow used for this reach came from the watersheds of Loutre Creek (4 cfs), Bayou de Loutre (4 cfs), Gum Creek (4 cfs), Boggy Creek (4 cfs), Hibank Creek (4 cfs), Mill Creek (4 cfs), and Buckaloo Branch (4 cfs) for a total of 28.0 cfs. The projected IWC were 114 mg/L, 216 mg/L, and 507 mg/L for chloride (no change needed), sulfate, and TDS (no change needed), respectively. Utilizing all the aforementioned data, the IWC is calculated below are summarized in Table 5.10.

IWC<sub>sulfate</sub> = [(28.0 cfs x 13.0 mg/L) + (14.07 cfs x 619 mg/L)] / (28.0 cfs + 14.07 cfs) = 216 mg/L

| Parameters           | Sulfate |
|----------------------|---------|
| Ce, mg/L             | 619     |
| Cb, mg/L             | 13      |
| Qe, cfs              | 14.07   |
| Qb, cfs              | 28.0    |
| Projected IWC (mg/L) | 216     |

Table 5.10. Instream Waste Concentration (IWC) Calculations

# 5.2.10 Computations for Bayou de Loutre (from Bear Creek to the top of the final segment of Bayou de Loutre)

IWC computations for chloride, sulfate, and TDS in Bayou de Loutre (from Bear Creek to the top of the final segment of Bayou de Loutre) were determined utilizing the previously calculated IWCs and flows from section 5.2.9 above for each respective mineral. The calculated IWC for sulfate indicated a higher concentration than the current stream based water quality criteria for Bayou de Loutre. The calculated IWC for chloride and TDS projects lower than current stream based water quality criteria and shows no toxic reasonable potential at this time. Therefore, change in the water quality criteria for chloride and TDS in this reach of Bayou de Loutre (from Bear Creek to the top of the final segment of Bayou de Loutre) is not being requested at this time.

The following calculations were used to determine the IWC for the relevant mineral in this reach of Bayou de Loutre. The resulting "effluent concentration", for each respective mineral, (chloride - 332 mg/L, sulfate – 619 mg/L, & TDS – 1381 mg/L), was derived from a mass balance calculation utilizing the flow weighted mixed concentrations from Lion Oil 001, GLCC – South 001, GLCC – Central 002, GLCC – Central 004, City of El Dorado South facility 001, Georgia Pacific El Dorado Mill – 004, and Teris -009. The resulting "effluent flow" (combined total of all contributing sources) was 14.07 cfs. The background watershed flow used for this reach came from the watersheds of Loutre Creek (4 cfs), Bayou de Loutre (4 cfs), Gum Creek (4 cfs), Boggy Creek (4 cfs), Hibank Creek (4 cfs), Mill Creek (4 cfs), Buckaloo Branch (4 cfs), and Bear Creek (4 cfs) for a total of 32.0 cfs. The projected IWC were 105 mg/L, 198 mg/L, and 468 mg/L for chloride (no change needed), sulfate, and TDS (no change needed), respectively. Utilizing all the aforementioned data, the IWC is calculated below are summarized in Table 5.11.

IWC<sub>sulfate</sub> = [(32.0 cfs x 13.0 mg/L) + (14.07 cfs x 619 mg/L)] / (32.0 cfs + 14.07 cfs) = 198 mg/L

| Parameters           | Sulfate |
|----------------------|---------|
| Ce, mg/L             | 619     |
| Cb, mg/L             | 13      |
| Qe, cfs              | 14.07   |
| Qb, cfs              | 32.0    |
| Projected IWC (mg/L) | 198     |

| Table 5.11. Instream Waste Concentration (IWC) Calc | culations |
|-----------------------------------------------------|-----------|
|-----------------------------------------------------|-----------|

# 5.2.11 Computations for the final segment of Bayou de Loutre to the Arkansas/Louisiana Stateline

IWC computations for chloride, sulfate, and TDS in the last segment Bayou de Loutre prior to the Arkansas / Louisiana state line were determined utilizing the previously calculated IWCs and flows from section 5.2.10 above for each respective mineral. The calculated IWC for sulfate indicated a higher concentration than the current stream based water quality criteria for Bayou de Loutre. The calculated IWC for chloride and TDS projects lower than current stream based water quality criteria and shows no toxic reasonable potential at this time. Therefore, change in the water quality criteria for chloride and TDS in this final reach of Bayou de Loutre is not being requested at this time.

The following calculations were used to determine the IWC for the relevant mineral in this reach of Bayou de Loutre. The resulting "effluent concentration", for each respective mineral, (chloride - 332 mg/L, sulfate – 619 mg/L, & TDS – 1381 mg/L), was derived from a mass balance calculation utilizing the flow weighted mixed concentrations from Lion Oil 001, GLCC – South 001, GLCC – Central 002, GLCC – Central 004, City of El Dorado South facility 001, Georgia Pacific El Dorado Mill – 004, and Teris -009. The resulting "effluent flow" (combined total of all contributing sources) was 14.07 cfs. The background watershed flow used for this reach came from the watersheds of Loutre Creek (4 cfs), Bayou de Loutre (4 cfs), Gum Creek (4 cfs), Boggy Creek (4 cfs), Hibank Creek (4 cfs), Mill Creek (4 cfs), Buckaloo Branch (4 cfs), Bear Creek (4 cfs), Bayou de Loutre (4 cfs) for a total of 40.0 cfs. The projected IWC were 90 mg/L, 171 mg/L, and 409 mg/L for chloride (no change needed), sulfate, and TDS (no change needed), respectively. Utilizing all the aforementioned data, the IWC is calculated below are summarized in Table 5.12.

IWC<sub>sulfate</sub> = [(40.0 cfs x 13.0 mg/L) + (14.07 cfs x 619 mg/L)] / (40.0 cfs + 14.07 cfs) = 171 mg/L

| Parameters           | Sulfate |
|----------------------|---------|
| Ce, mg/L             | 619     |
| Cb, mg/L             | 13      |
| Qe, cfs              | 14.07   |
| Qb, cfs              | 40.0    |
| Projected IWC (mg/L) | 171     |

#### 5.2.12 Computations for increased capacity.

In response to the increasing need for domestic fuel supplies and limited refinery capacity, Lion Oil anticipates an upgrade in the refinery capacity from 70,000 bpd to 85,000 bpd. This 20% production increase would also result in the proportional increase the TDS. The sources of the TDS increases would be from two primary sources, one; the air emission control equipment capturing and conversing of the  $SO_2$  emissions into  $NA_2SO_4$  and two; sodium chloride from the Crude Unit Desalter, which is the major source of chlorides. As part of the upgrade, it is anticipated that the Cat Cracker capacity will be expanded from the current capacity of 20,000 bpd to 25,000 bpd, and therefore it is likely that the Sulfate/TDS from the scrubber will go up proportionately. In order to account for these increases, the instream criteria are being proposed as the 95 percentile of the historical data set plus twenty percent.

| Table 5.13. Summary of Proposed WQS Modifications. Lion Oil 3rd party rulemaking. Octobe | 2006. |
|------------------------------------------------------------------------------------------|-------|
|------------------------------------------------------------------------------------------|-------|

| Loutre Creek – from Hwy 15<br>South to the confluence of<br>Bayou de Loutre | Bayou de Loutre – from Loutre<br>Creek to the discharge for the<br>City of El Dorado South facility | Bayou de Loutre – from the<br>discharge from the City of El<br>Dorado-South downstream to<br>the mouth of Gum Creek |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Remove Designated Domestic                                                  | Remove Designated Domestic                                                                          | Remove Designated Domestic                                                                                          |
| Water Supply Use                                                            | Water Supply Use                                                                                    | Water Supply Use                                                                                                    |
| Instream Criteria:                                                          | Instream Criteria:                                                                                  | Instream Criteria:                                                                                                  |
| Amend ecoregion dissolved minerals criteria:                                | Amend stream dissolved minerals criteria:                                                           | Amend stream dissolved minerals criteria:                                                                           |
| Chloride from 14 mg/L to 256 mg/L;                                          | Chloride from 250 mg/L to 264,                                                                      | Chloride : NO CHANGE                                                                                                |
| Sulfate from 31 mg/L to 997 mg/L. &                                         | Sulfate from 90 mg/L to 635 mg/L &                                                                  | Sulfate from 90 mg/L to 431 mg/L &                                                                                  |

Table 5.13. (con't) Summary of Proposed WQS Modifications. Lion Oil 3rd party rulemaking. October 2006.

| Bayou de Loutre – from the mouth<br>of Gum Creek downstream to the<br>mouth of Boggy Creek                                                   | Bayou de Loutre – from the<br>mouth of Boggy Creek<br>downstream to the mouth of<br>Hibank Creek                           | Bayou de Loutre – from the<br>mouth of Hibank Creek<br>downstream to the mouth of Mill<br>Creek                             |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| No change in uses                                                                                                                            | No change in uses                                                                                                          | No change in uses                                                                                                           |
| Instream Criteria:                                                                                                                           | Instream Criteria:                                                                                                         | Instream Criteria:                                                                                                          |
| Amend stream dissolved minerals<br>criteria:<br>Chloride: NO CHANGE<br>Sulfate from 90 mg/L to 345 mg/L<br>and TDS from 750 mg/L to 780 mg/L | Amend stream dissolved minerals<br>criteria:<br>Chloride: NO CHANGE<br>Sulfate from 90 mg/L to 296 mg/L&<br>TDS: NO CHANGE | Amend stream dissolved minerals<br>criteria:<br>Chloride: NO CHANGE<br>Sulfate from 90 mg/L to 263 mg/L &<br>TDS: NO CHANGE |

Table 5.13. (con't ) Summary of Proposed WQS Modifications. Lion Oil 3rd party rulemaking. October 2006

| Bayou de Loutre – from the mouth of Mill Creek<br>downstream to the mouth of Buckaloo Branch | Bayou de Loutre – from the mouth of Buckaloo<br>Branch downstream to the mouth of Bear Creek |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| No change in uses                                                                            | No change in uses                                                                            |
| Instream Criteria:                                                                           | Instream Criteria:                                                                           |
| Amend stream dissolved minerals criteria:                                                    | Amend stream dissolved minerals criteria:                                                    |
| Chloride : NO CHANGE                                                                         | Chloride : NO Change                                                                         |
| Sulfate from 90 mg/L to 237 mg/L &                                                           | Sulfate from 90 mg/L to 216 mg/L &                                                           |
| TDS : NO CHANGE                                                                              | TDS: NO CHAMGE                                                                               |

Table 5.13. (con't) Summary of Proposed WQS Modifications. Lion Oil 3<sup>rd</sup> party rulemaking. October 2006

| Bayou de Loutre - from the mouth of Bear Creek to the final segment of Bayou de Loutre. | Bayou de Loutre (Final Segment) to the<br>Arkansas/Louisiana State Line |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| No change in uses                                                                       | No change in uses                                                       |
| Instream Criteria:                                                                      | Instream Criteria:                                                      |
| Amend stream dissolved minerals criteria:                                               | Amend stream dissolved minerals criteria:                               |
| Chloride : NO CHANGE                                                                    | Chloride: NO CHANGE                                                     |
| Sulfate from 90 mg/L to 198 mg/L &                                                      | Sulfate from 90 mg/L to 171 mg/L                                        |
| TDS: NO CHANGE                                                                          | TDS: NO CHANGE.                                                         |

#### 5.2.13 Comparison with the dissolved mineral standard for Louisiana

The proposed third party rule making was considered in light of the state of Louisiana's water quality standards (LWQS). The current Arkansas criteria for sulfate and TDS in Bayou de Loutre are 90 mg/L and 750 mg/L, respectively. The current Louisiana criteria are 45 mg/L and 500 mg/L respectively. Therefore, the existing Arkansas criteria already exceed the existing LA criteria. This proposed third party rule making modifies only the existing sulfate criteria and does not propose modifications to the existing Arkansas criteria for Chlorides of TDS in Bayou de Loutre downstream of the Mouth of Gum Creek (Figure 5.2). As specified in the LWQS, the sulfate criteria for Bayou de Loutre is 45 mg/L, which is ½ the existing Arkansas criteria. In Louisiana, this criterion applies at the long term average flow condition. This flow condition is different from the flow condition at which the mineral criteria are applied as specified by Arkansas' WQS.

In order to determine the potential effect of the proposed rule making on the Louisiana sulfate standard, the long term flow condition for Bayou de Loutre was determined, then applied to the projected facility loadings with consideration of background concentrations.

After review of available flow data, there was no long term period of record flows for Bayou de Loutre within Arkansas. Little Cornie Bayou (LCB) is the watershed adjacent to Bayou de Loutre, to the west. The LCB watershed has similar topography, is in the same ecoregion and presented a relatively undisturbed watershed with very limited point source discharges. The USGS maintains a flow gauging station on LCB (USGS Station 07366200) near Lillie, LA. At this location, the watershed is similar in size to Bayou de Loutre watershed at the state line. The data from the USGS Lillie gauge was used to compute a long-term average flow for Bayou de Loutre. Little Cornie Bayou (USGS Station 07366200) near Lillie, LA has flow data for more than the last 50 years. Due to improvements in flow monitoring and recording, the flow to watershed size ratio was complied for LCB using flow data from the last 21 years. This flow to watershed size ratio was then applied to the watershed size for Bayou de Loutre at the state line to estimate the compliance with the current LA sulfate standard of 45mg/l based on a long term average flow condition.

This method utilized an average flow calculated from the last 21 years (7/1/1985 – 6/30/2006) of the daily flow data at USGS gauging station on Little Cornie Bayou near Lillie, LA (Station No. 07366200). (Appendix F) The average flow (250.2 cfs) was then used, along with the station's watershed size (208.0 mi<sup>2</sup>), to calculate a flow to watershed size ratio. The ratio (1.20 cfs / mi<sup>2</sup>) was then applied to Bayou de Loutre at the state line (watershed size of 125.4 mi<sup>2</sup>). Using the 1.20 cfs / mi<sup>2</sup> ratio this equates to an average background flow at the state line on Bayou de Loutre of approximately 152 cfs. Utilizing the minerals and flow data from the source contributors, and the allowable ecoregion background concentration number for sulfate – 13 mg/L, an IWC was projected for sulfate. The projected IWCs for Bayou de Loutre from at the Arkansas / Louisiana state line equals 45 mg/L and is projected to maintain the state standard at the prorated long term average flow. The basis for the projected IWCs calculations are provided in Appendix F.

During the preparation of this documentation, water quality staff of Louisiana Department of Environmental Quality (LDEQ) was briefed on the upcoming proposed rule making. Information was exchanged and additional information was provided by Lion Oil to LDEQ at their request. During this consultation, LDEQ staff provided documentation that supported Bayou de Loutre's compliance with the Louisiana's existing dissolved mineral standard. This compliance record includes recent monitoring data collected after Lion Oil installed the air emission control equipment in March 2004 (e.g. includes discharges from Lion Oil characteristic of the sulfate and TDS concentrations resulting from the air emissions control equipment installed by Lion Oil). Based on the information presented, LDEQ staff indicated that there was no reason to expect the proposed rule making would have a negative impact on the continued compliance with the dissolved mineral standard.

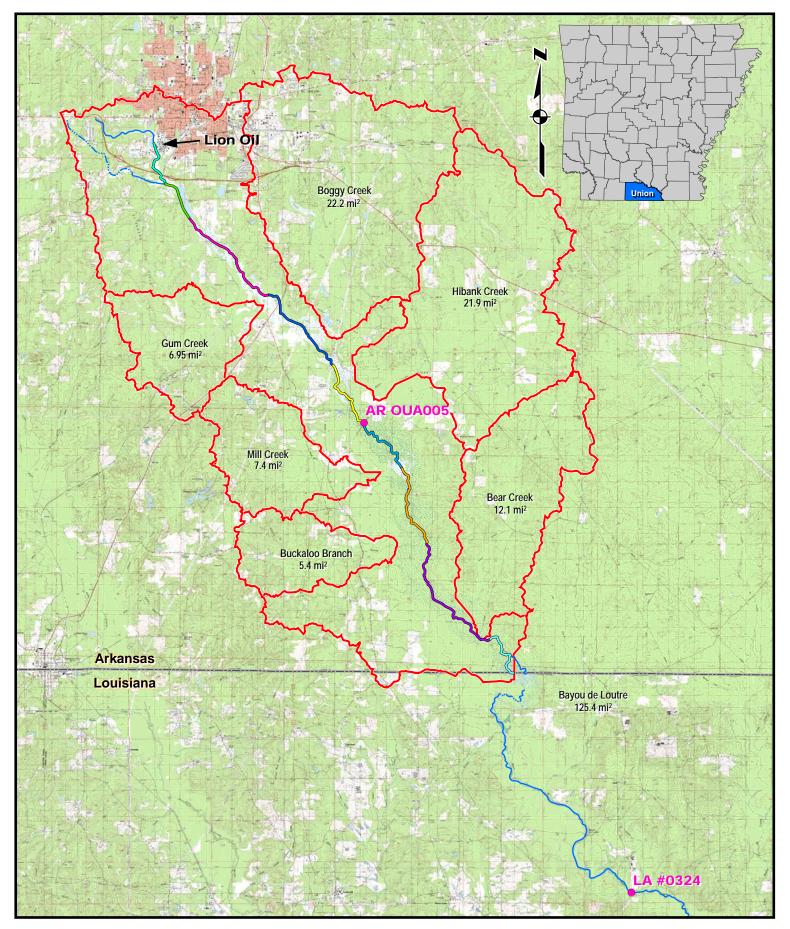



Figure 5.2 Existing and Proposed dissolved mineral criteria for stream segments in Bayou de Loutre watershed. Lion Oil Section 2.306 documentation. September 2006.

In summary, the existing chloride and TDS criteria for the lower reach of Bayou de Loutre are not being modified as part of this rule making. The rule making proposes to increase the existing sulfate criteria from 90 mg/L to 171 mg/L. Although this exceeds the existing LA stream standard, the differences in the applicable flows at which the criteria are applied indicated this modification will not result in compliance issues in Bayou de Loutre for the State of LA.

# **6.0 ALTERNATIVE ANALYSES**

This section summarizes the analyses of alternatives for the Lion Oil facility to maintain the WQS for Loutre Creek and Bayou de Loutre. As seen in Section 5.0, the discharges from Lion Oil maintains protective criteria related to the existing uses; however, it does not maintain the protective criteria for chloride, sulfate, and TDS related to the designated (but not existing) Domestic Water Supply uses assigned to Loutre Creek and Bayou de Loutre (upstream of Gum Creek). In addition, the current concentration of dissolved minerals is projected to cause instream exceedences under critical flow conditions.

Six alternatives were identified to address designated uses and the protective criteria for chloride and TDS. They are as follows:

- 1) no action,
- 2) no discharge,
- 3) hydrograph controlled release,
- 4) treatment
- 5) source reduction/Pollution Prevention
- 6) Water Quality Standards modification.

### 6.1 No Action

This alternative would maintain the current discharge situation. However, the chloride, sulfate, and TDS effluent concentrations would be exceeded at such time a permit limit is established to maintain the designated but non-existing, domestic water supply use. In addition, it is projected that instream exceedences of the ecoregion chloride, sulfate and TDS criteria will occur under critical conditions if there no additional alternative is pursued. The potential for non-compliance with the proposed final permit limits is not an acceptable alternative for Lion Oil or ADEQ.

### 6.2 No Discharge

The no discharge alternative is not economically feasible. Although the Lion Oil facility operates a process wastewater outfall (Outfall 001), the cost and added volume of including all storm water runoff collected throughout the facility would ultimately make it economically infeasible to continue operations.

Lion Oil employs approximately 500 employees with an annual payroll estimated at approximately \$30 million dollars. Lion Oil is a significant employer in Union County. The Company's annual impact on the local economy exceeds \$200 million dollars. In addition, Lion Oil pays approximately \$2.25 million in local and state taxes.

In addition, in order to meet the increasing need for gas and low sulfur diesel fuels, Lion Oil anticipates an upgrade to the refinery capacity from 70,000 bpd to 85,000 bpd. This increase

in production capacity will result in additional jobs and taxes to the local and state economy. In addition, due to limited production capacity elsewhere in the United States, any increase in capacity is beneficial to the product supply.

The no discharge alternative would require the cessation of operations at Lion Oil, an action which would greatly affect the local economy and place increased burden on the US fuel supply. This alternative is considered infeasible due to the socioeconomic effects to the local area and the effect on the domestic fuel supply should the Lion Oil facility close.

### 6.3 Hydrograph Controlled Release (HCR)

The feasibility of a HCR was examined as an alternative for minimizing the impact of Lion Oil's discharges with elevated mineral concentrations. In Lion Oil's situation, an HCR system would not achieve compliance with the ecoregion dissolved minerals water quality criterion because the hydrology of the Loutre Creek is impacted by limited watershed size (<3 mi<sup>2</sup>) at the downstream most storm water outfall location. The small watershed size and the urban development in the watershed, has made storm water flows through the Loutre Creek watershed highly variable with flash increases in response to storm events. In addition the Lion Oil facility comprises a large percent of the Loutre Creek watershed, further reducing the applicability for an HCR system to manage the dissolved minerals discharge for the facility. The timing of storm runoff, the development within the watershed upstream of the facility storm water discharges, and the proportion of facility storm water to watershed waters limits the application of an HCR system. The HCR discharge operational scenario is not considered to be feasible.

A runoff model was developed to determine the upstream flow required to allow the discharge through Outfall 001, with the existing dissolved mineral concentrations that will meet the existing Loutre Creek criteria. The model applied the highest monthly flow from Outfall 001 (POR January 2004-December 2005), during typical ambient conditions (neither wet or dry conditions) and a background concentration as stipulated in the ADEQ CPP for Gulf Coastal streams. The model projected that it would take a 15 inch storm event to generate sufficient background flow to allow the discharge from Outfall 001 maintain the existing instream standard. According to the Rainfall Frequency and Magnitude Atlas for the South Central United States (SRCC Technical Report 97-1), the 100 year 24 hour storm event is approximately 10 inches for this area of Arkansas. This further demonstrates that an HCR approach to permit compliance with the dissolved mineral final permit limits is not feasible. The calculations are provided in Appendix G-1.

### 6.4 Treatment

EPA has no Best Available Technology (BAT) for removal of chloride, sulfate, or TDS from waste streams. While ion exchange (anion) and reverse osmosis treatment technologies exist, these methods currently are not cost effective on a large scale and are not typically recommended for treatment of waters prior to discharge. Also, the concentrated reject streams generated from such processes present their own unique set of potential environmental risks which can be much greater than the storm waters from which the minerals were extracted. In addition this advanced treatment places large burdens on the cost effectiveness of the facility and goods produced.

The technical limitations and uncertain environmental effects of concentrated waste streams generated from ion exchange and reverse osmosis treatment make the treatment alternative infeasible when other alternatives are considered.

Despite these limitations, Lion Oil has investigated the capital and annual operating costs to install advanced treatment for reduction of TDS in the effluent. Specifically, the

treatment process includes ultra-filtration, reverse osmosis, and concentration/crystallization of the system effluent in addition to ancillary storage and equipment. Information on the treatment system is provided in Appendix G-2.

The estimated capital cost (\$43,375,000) and annual operating cost (\$5,746,000) would be overly burdensome and place the facility at a significant competitive disadvantage. Thus, treatment is infeasible in consideration of other alternatives.

### 6.5 Source Reduction/Pollution Prevention

The dissolved minerals in the storm water outfalls are primarily contributed from collected storm water from the site. Recent facility improvements to conserve energy resources, to produce ultra-low sulfur fuels, to reduce sulfur in air emissions, and water conservation efforts have contributed to the increase in dissolved minerals, in both the process wastewater and the storm water. The facility has completed numerous site modifications and prevention activities to reduce storm water contamination as discussed in Section 3.5. Although there may be some additional incrementally small reductions in other pollutants, the efforts at continued cleaner fuels and continued reductions in resource conservation will ultimately result in increased dissolved mineral concentration in both treated process wastewaters and untreated storm waters.

### 6.6 WQS Modifications

Discussions concerning the WQS Modification alternative are contained in the following sections.

#### 6.6.1 Designated Uses

As discussed in Section 3.2, the following designated uses have been assigned to Loutre Creek and Bayou de Loutre in the AWQS.

Loutre Creek

- Primary Contact Recreation,
- Secondary Contact Recreation,
- Seasonal Gulf Coastal Fishery,
- Domestic Water Supply,
- Industrial Water Supply, and
- Agricultural Water Supply.

Bayou de Loutre (upstream of Gum Creek)

- Primary Contact Recreation,
- Secondary Contact Recreation,
- Seasonal Gulf Coastal Fishery,
- Domestic Water Supply,
- Industrial Water Supply, and
- Agricultural Water Supply.

Bayou de Loutre (downstream of Gum Creek)

• Primary Contact Recreation,

- Secondary Contact Recreation,
- Seasonal Gulf Coastal Fishery,
- Industrial Water Supply, and
- Agricultural Water Supply.

#### 6.6.2 Existing Uses

The documented existing fishery use in Loutre Creek and Bayou de Loutre is a Seasonal Gulf Coastal Fishery.

The primary contact recreation use was not documented as an existing use. The uses of agricultural and industrial water supply were also not documented as existing and may be limited due to water volume, but are not precluded due to water quality.

#### 6.6.3 Attainability of the Domestic Water Supply Use

As previously noted based on the documentation provided by ADH, Loutre Creek and Bayou de Loutre (upstream of Gum Creek) is not existing or planned public water supply source. Bayou de Loutre (downstream of Gum Creek) has already had its domestic water supply use removed. In addition, the ASWCC has documented that the removal of the designated domestic water supply use from Loutre Creek or Bayou de Loutre (upstream of Gum Creek) does not conflict with the Arkansas Water Plan.

In addition to an evaluation of the existing and planned use of Loutre Creek and Bayou de Loutre (upstream of Gum Creek) as a domestic water supply, the USEPA Region 6 has requested that information concerning the attainability of the domestic water supply use on the basis of the regulatory criteria contained at 40 CFR 131.10(g) be included in use removal request documentation. Review of the project documentation considering the 40 CFR 131.10(g) criteria demonstrates that removing the designated, but not existing domestic water supply use is appropriate because the use is not attainable based on two of the 40 CFR 131.10(g) criteria. The first of these is criterion No. 2, which states:

"Natural, ephemeral, intermittent or low flow conditions or water levels prevent the attainment of the use, unless these conditions may be compensated for by the discharge of sufficient volume of effluent discharges without violating State water conservation requirements to enable uses to be met."

The Loutre Creek watershed is approximately 5 mi<sup>2</sup> in size, the stream is intermittent in nature and does not have consistent base flows required to supply the volume of water necessary for the development and operation of a domestic water supply. In addition, because of the intermittent nature of the discharge from Lion Oil's storm water outfalls the increased flow supplied sporadically through effluent discharge is not sufficient to compensate for the small watershed size of Loutre Creek. Neither the stream system nor the discharge provides the consistent flow volume required for feasible attainment of a domestic water supply use.

The second applicable 40 CFR 131.10 (g) criterion is No. 5, which states:

"Physical conditions related to the natural features of the water body, such as the lack of a proper substrate, cover, flow, depth, pools, riffles, and the like, unrelated to water quality, preclude attainment of aquatic life protection uses"

As demonstrated in the documentation, the physical characteristics of Loutre Creek, consist primarily of shallow pools and run areas, will not support intake and storage areas necessary for the development of a domestic water supply system. As such, the extensive physical modifications required to develop intake and storage areas would result in the removal of riparian habitat and modification of Gulf Coastal fisheries habitats. Such modifications would impact the existing aquatic life use.

Based upon the previous analyses, the following modifications to the WQS are recommended:

# 6.7 Selected Alternative

Based on the historical discharge presented, the historical biomonitoring record, the results of the aquatic life field assessment, the mass balance modeling and the assessment of alternatives presented above, the selected alternative is to remove the domestic water supply use from sections of Loutre Creek and Bayou De Loutre (Figure 6.1) and modify the WQS for dissolved minerals as summarized in the following tables.

| Loutre Creek – from Hwy 15<br>South to the confluence of<br>Bayou de Loutre                                                  | Bayou de Loutre – from Loutre<br>Creek to the discharge for the<br>City of El Dorado South facility                  | Bayou de Loutre – from the<br>discharge from the City of El<br>Dorado-South downstream to<br>the mouth of Gum Creek |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Remove Designated Domestic<br>Water Supply Use                                                                               | Remove Designated Domestic<br>Water Supply Use                                                                       | Remove Designated Domestic<br>Water Supply Use                                                                      |
| Instream Criteria:                                                                                                           | Instream Criteria:                                                                                                   | Instream Criteria:                                                                                                  |
| Amond a correction discoluted minorale                                                                                       |                                                                                                                      |                                                                                                                     |
| Amend ecoregion dissolved minerals<br>criteria:<br>Chloride from 14 mg/L to 256 mg/L;<br>Sulfate from 31 mg/L to 997 mg/L. & | Amend stream dissolved minerals<br>criteria:<br>Chloride from 250 mg/L to 264,<br>Sulfate from 90 mg/L to 635 mg/L & | Amend stream dissolved minerals<br>criteria:<br>Chloride : NO CHANGE<br>Sulfate from 90 mg/L to 431 mg/L &          |

Table 6.1. Summary of Proposed WQS Modifications. Lion Oil 3<sup>rd</sup> party rulemaking. October 2006.

Table 6.1 (cont.) Summary of Proposed WQS Modifications. Lion Oil 3<sup>rd</sup> party rulemaking. October 2006.

| Bayou de Loutre – from the mouth<br>of Gum Creek downstream to the<br>mouth of Boggy Creek                                                   | Bayou de Loutre – from the<br>mouth of Boggy Creek<br>downstream to the mouth of<br>Hibank Creek                           | Bayou de Loutre – from the<br>mouth of Hibank Creek<br>downstream to the mouth of Mill<br>Creek                             |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| No change in uses                                                                                                                            | No change in uses                                                                                                          | No change in uses                                                                                                           |
| Instream Criteria:                                                                                                                           | Instream Criteria:                                                                                                         | Instream Criteria:                                                                                                          |
| Amend stream dissolved minerals<br>criteria:<br>Chloride: NO CHANGE<br>Sulfate from 90 mg/L to 345 mg/L<br>and TDS from 750 mg/L to 780 mg/L | Amend stream dissolved minerals<br>criteria:<br>Chloride: NO CHANGE<br>Sulfate from 90 mg/L to 296 mg/L&<br>TDS: NO CHANGE | Amend stream dissolved minerals<br>criteria:<br>Chloride: NO CHANGE<br>Sulfate from 90 mg/L to 263 mg/L &<br>TDS: NO CHANGE |

Table 6.1 (cont.) Summary of Proposed WQS Modifications. Lion Oil 3<sup>rd</sup> party rulemaking. October 2006

| Bayou de Loutre – from the mouth of Mill Creek<br>downstream to the mouth of Buckaloo Branch | Bayou de Loutre – from the mouth of Buckaloo<br>Branch downstream to the mouth of Bear Creek |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| No change in uses                                                                            | No change in uses                                                                            |
| Instream Criteria:                                                                           | Instream Criteria:                                                                           |
| Amend stream dissolved minerals criteria:                                                    | Amend stream dissolved minerals criteria:                                                    |
| Chloride : NO CHANGE                                                                         | Chloride : NO Change                                                                         |
| Sulfate from 90 mg/L to 237 mg/L &                                                           | Sulfate from 90 mg/L to 216 mg/L &                                                           |
| TDS : NO CHANGE                                                                              | TDS: NO CHAMGE                                                                               |

Table 6.1 (cont.) Summary of Proposed WQS Modifications. Lion Oil 3<sup>rd</sup> party rulemaking. October 2006

| Bayou de Loutre - from the mouth of Bear Creek to the final segment of Bayou de Loutre. | Bayou de Loutre (Final Segment) to the<br>Arkansas/Louisiana State Line |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| No change in uses                                                                       | No change in uses                                                       |
| Instream Criteria:                                                                      | Instream Criteria:                                                      |
| Amend stream dissolved minerals criteria:                                               | Amend stream dissolved minerals criteria:                               |
| Chloride : NO CHANGE                                                                    | Chloride: NO CHANGE                                                     |
| Sulfate from 90 mg/L to 198 mg/L &                                                      | Sulfate from 90 mg/L to 171 mg/L                                        |
| TDS: NO CHANGE                                                                          | TDS: NO CHANGE.                                                         |

These proposed modifications are supported by the documentation which meets the requirements of WQS Section 2.306 as implemented by the Administrative Guidance Document.

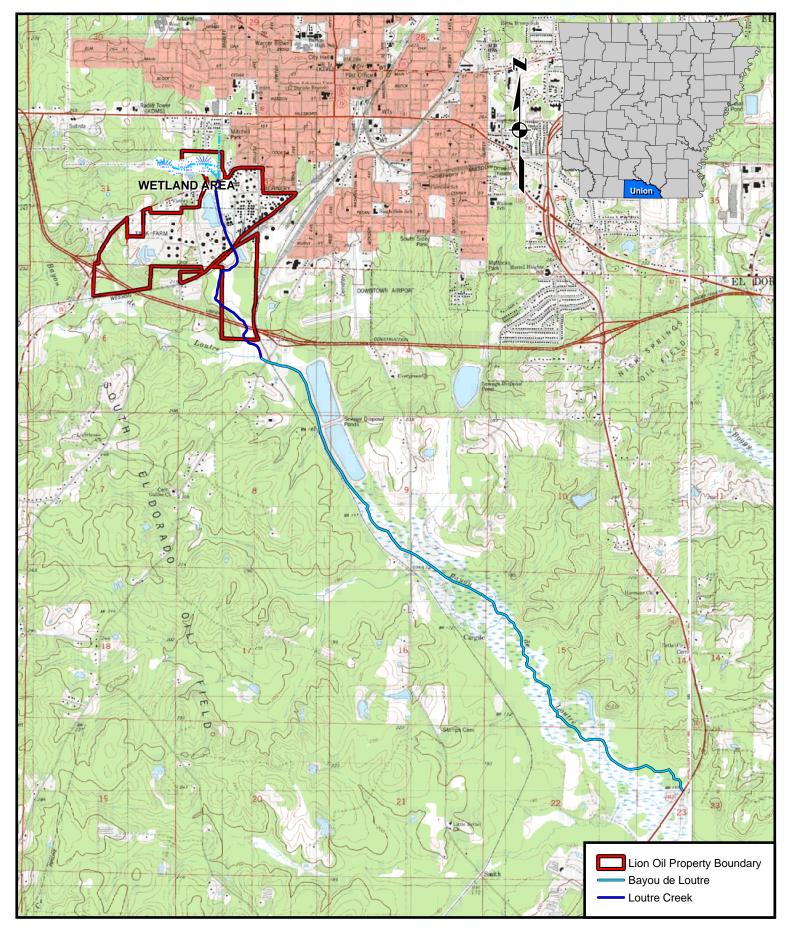



Figure 6.1. Loutre Creek and Bayou de Loutre downstream to the mouth of Gum Creek. Stream reaches proposed for use removal.

# 7.0 REFERENCES

ADEQ, 1998. Regulation No. 2, As Amended: Regulation Establishing Water Quality Standards for Surface Waters of the State of Arkansas, January 1998 (Regulation No. 2).

ADEQ, 1995. State of Arkansas Continuing Planning Process, Update and Revisions, January 1995. ADEQ Water Division.

EPA, 1991. Technical Support Document for Water Quality Based Toxics Control. EPA/505/2-90-001. March 1991.

Robison, H. W. and T. M. Buchanan, 1988. Fishes of Arkansas. University of Arkansas Press. 536 pp.

ADEQ, 1987. Rapid Bioassessment of Lotic Macroinvertebrate Communities: Biocriteria Development. 45 pp.

Pflieger, W. L., 1975. The Fishes of Missouri. Missouri Department of Conservation. 343 pp.

Merritt R&J.C. Cummings 1989. Aquatic insects of North America. 862 pp.

Gilbert 1987. Methods for Environmental Pollution Monitoring.

# Appendix A Aquatic Life Field Study

# Section 2.306 [formerly 4(g)] Field Study Plan

Prepared for:

Lion Oil Company 1000 McHenry Ave. El Dorado, AR 71730

Prepared by:

GBM<sup>c</sup> & Associates 219 Brown Lane Bryant, AR 72022

DRAFT April 18, 2005



# Contents

| 1.0 | Introduction<br>1.1 Background<br>1.2 Study Objective                                                                                             | .1                               |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 2.0 | Quality Assurance/Quality Control2.1 Quality Control2.2 Field Method QC2.3 Data Review and Validation2.4 QA/QC Checks Following Each Stream Visit | .3<br>.5<br>.5                   |
| 3.0 | Watershed Characterization                                                                                                                        | .6                               |
| 4.0 | <ul> <li>Physical Habitat Characterization.</li> <li>4.1 Purpose</li></ul>                                                                        | .7<br>.9<br>12<br>14<br>16<br>17 |
| 5.0 | Water Quality<br>5.1 <i>In-situ</i> Measurements<br>5.2 Water Chemistry                                                                           | 20                               |
| 6.0 | Benthic Macroinvertebrate Community                                                                                                               | 21<br>22                         |
| 7.0 | Fish Community                                                                                                                                    | 23<br>24                         |
| 8.0 | Field Study Schedule                                                                                                                              | 25                               |
| 9.0 | References                                                                                                                                        | 25                               |

## DRAFT

# Figures

| Figure 1.1 | Lion Oil Company - El Dorado facility and outfall locations | 3  |
|------------|-------------------------------------------------------------|----|
| Figure 1.2 | Lion Oil Outfall 001 watershed boundary, outfall locations, |    |
|            | and proposed study reaches.                                 | 4  |
| Figure 4.1 | Stream channel depicting bankfull stage                     |    |
|            | Approximate position of measurements across transect        |    |
| Figure 4.3 | Depiction of percent embedded characteristics               | 14 |
| -          |                                                             |    |

# **Appendices**

Appendix ASelected Standard Operating Procedures from GBM<sup>c</sup> & Associates QAPAppendix BSelected Field Data Forms Physical/Biological Assessments

# **1.0 Introduction**

### 1.1 Background

A third-party rule making is being developed to address the existing final permit limits for dissolved minerals in the Lion Oil Company (Lion Oil) El Dorado Refinery's NPDES permit (AR0000647). The current interim permit limits are monitor and report only. During the interim period, these parameters have been demonstrated to exceed the final permit limitations. In addition, storm water discharges from Outfalls 002, 003. and 004, may not maintain the ecoregion mineral criteria stipulated for the unnamed tributaries of the Gulf Coastal Plain ecoregion in Regulation No. 2. Although Outfalls 005 and 006 are emergency overflow and rarely discharge, any release from these outfalls will also exceed the ecoregion criteria as they currently exist. Currently, Outfall 007 is a controlled storm water/process wastewater release that is discharged on an intermittent basis after testing demonstrates compliance with existing permit limitations. Although there are no existing permit limits on Outfall 007 for minerals, the intermittent discharge from discharge from Outfall 007 could exceed the current ecoregion criteria for dissolved minerals of 14 mg/L (chloride), 31 mg/L (sulfate) and 123 mg/L (total dissolved solids, TDS). These criteria were developed using an ecoregion approach and were developed on a water body specific basis.

Currently, the dissolved solids discharged through Outfall 001 (sulfate and TDS), will not consistently meet the final permit limits of 68 mg/L and 102 mg/L for monthly average and 86 mg/L and 129 mg/L for the daily maximum, respectively. Outfall 001 discharges directly to Loutre Creek (Figure 1.1) and includes process water as well as storm water.

The final permit limits are scheduled to become effective on January 2007, unless they are modified through the third-party rule making provision of the Arkansas Water Quality Standards (Regulation No. 2). The current final dissolved mineral permit limits were developed based on a long term average background flow of 4 CFS and are being implemented to protect the designated but non-existing and unattainable drinking water uses through the application of criteria of 250 mg/L, 250mg/L, and 500 mg/L for chloride, sulfate and TDS, respectively.

The ADEQ recognizes that the application of the dissolved mineral criteria using long term average flows (rather than Q7-10 flows) do not necessarily preclude other designated uses (fishable/swimmable) and have provided for the application of long-term flows to determine site specific instream criteria once the drinking water uses are removed. This third-party rule making is accomplished through the application of Section 2.306 [formerly 4(g)] in Regulation No. 2.

### 1.2 Study Objective

The objective of the study plan is to complete the field documentation required to support a third-party rulemaking in accordance with Section 2.306 to remove the

## DRAFT

Lion Oil has developed and implemented best management practices (BMPs) to address and control storm water discharges and limit exposure of storm water. The facility is located on Highway 15 within the city limits of El Dorado, AR (Figure 1.1). Lion Oil is authorized to discharge treated process waste water, storm water and other nonprocess waters under National Pollutant Discharge Elimination System (NPDES) permit no. AR0000647 into Loutre Creek. Loutre Creek watershed is approximately 2.2 mi<sup>2</sup> at the location of Outfall 001 (Figure 1.2)

# 2.0 Quality Assurance/Quality Control

A complete and thorough Quality Assurance (QA) program with defined data quality objectives (DQO) is an essential part of any biological field study. The degree to which the study data meets the DQO dictates the quality and representativeness of the overall project.

#### 2.1 Quality Control

The DQOs of this study are to attain data that meets the following quality control (QC) criteria:

- 1) Precision is a gauge of the ability of a measurement to be repeated acquiring similar results. The *in-situ* and analytical data will be checked for precision by use of duplicate samples at a minimum rate of 10%. An acceptable level of data precision will be based on the relative percent difference (RPD) between duplicate samples not to exceed 20%. The habitat, fish and macroinvertebrate portion of the study cannot be easily duplicated. Standard collection procedures will be used at each collection station to achieve the greatest degrees of reproducibility possible.
- 2) Representativeness is a gauge of the degree to which a measurement is representative of the true condition. Sampling reaches have been carefully selected as to best represent the conditions in that segment of the stream.
- 3) Comparability is a gauge of the ability of the resulting data to compare to data from similar measurements performed in the same study and in other studies. An effort to use standardized techniques based on EPA accepted methodologies was made to maximize comparability. Also, only experienced and trained personnel are performing the various measurements.
- 4) Completeness is a measure of the degrees of validity of the data collected. Completeness is evaluated by ongoing review of project data by team members to assure that all the necessary data will be collected and is reasonable.

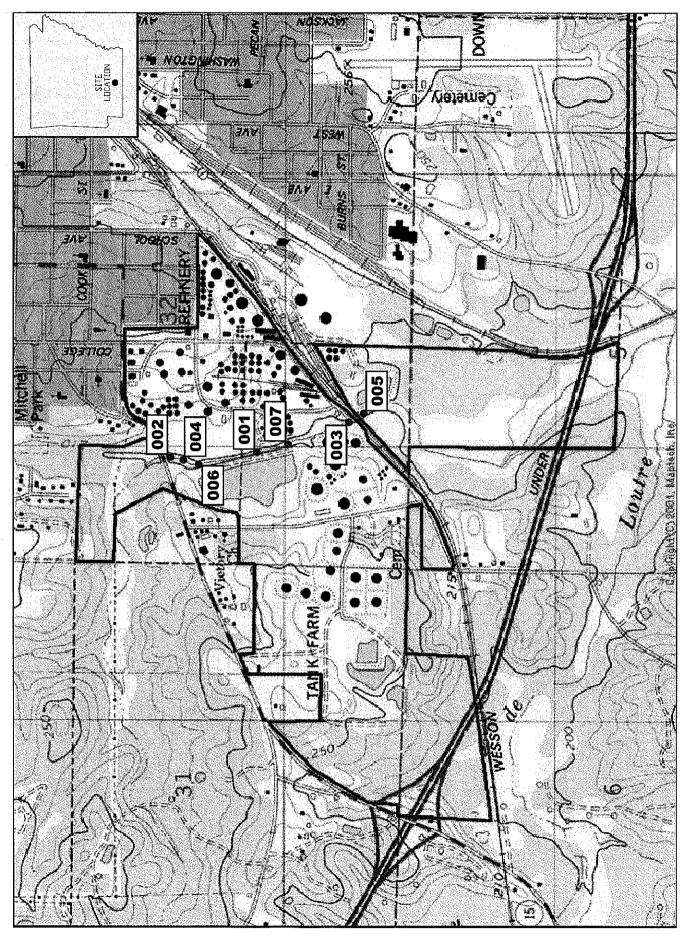



Figure 1.1. Lion Oil Company - El Dorado facility and outfall locations.

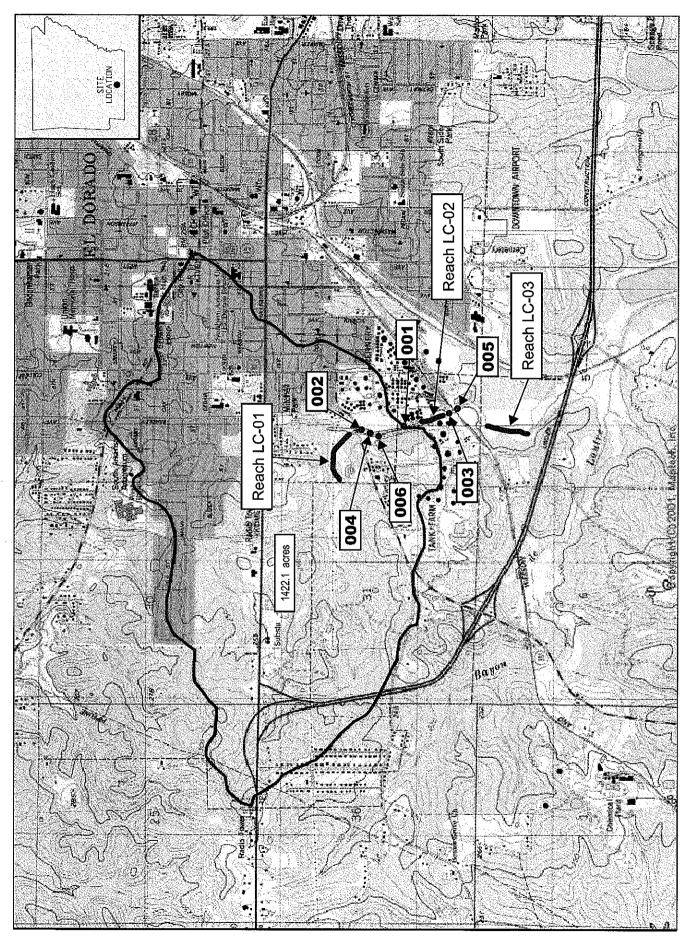



Figure 1.2. Lion Oil outfall 001 watershed boundary, outfall locations and proposed study reaches.

- 5) Accuracy is a gauge of the degree of agreement between the measured value and the real value. Proper instrument calibrations and reference solution checks assure accuracy of *in-situ* data. All field equipment will be utilized and calibrated according to manufacturer's directions. Calibrations will be conducted daily prior to use. If any equipment fails to conform to known QA/QC manufacturers' specifications, the equipment will be replaced with duplicate equipment that will meet the specifications. Accuracy for biological collections/assessments is not quantifiable, since the true value is not known.
- 6) A chain of custody will be executed whenever samples are to be transferred between separate entities (e.g., water quality samples).

### 2.2 Field Method QC

The quality of data collected during this study will be further assured by the following QC measures:

- 1) A Field Equipment Checklist will be maintained and followed for all field trips. Use of the checklist helps ensure that all field equipment and forms are prepared and available for use in the field.
- 2) All methodologies used during this study will be based on approved and widely accepted EPA methodologies. An effort is continuously made to keep abreast of the most current methodologies and to adjust our program so as to be more comparable, representative and accurate.
- 3) Field data sheets are designed for each type of measurement (i.e., *in-situ*, benthos, fish, habitat, etc.). Field sheets contain the necessary information along with space to note anomalies or variances from standard procedures.
- 4) Trained and experienced field biologists will conduct the study. All crucial team members hold college level degrees in biological sciences or related fields. Continuing education is encouraged through short courses, scientific journal review, conference attendance, and readings in current text and manuals to assure up-to-date knowledge of the field.
- 5) Fish and aquatic macroinvertebrates will be identified to the lowest taxonomic level practicable. Taxonomic references will be those widely accepted in the scientific community. Identification checks will be made randomly by the project manager or other senior level scientists to verify the accuracy and of the identifications. This check will occur at a rate of approximately 10%.
- 6) Where analyses are quantifiable EPA approved test methods will be utilized. In these quantifiable cases MDLs will be established and adhered to along with all pertinent QC procedures (i.e., blanks, controls, spikes, and spike duplicates).

### 2.3 Data Review and Validation

It is necessary to establish QC guidelines for reviewing, validating, and if necessary correcting data following its measurement and analysis in the field or laboratory. This is accomplished by following the steps listed below.



- 1) All field record sheets, taxonomic identifications, community metrics, and analytical results will be reviewed for precision, representativeness, comparability, completeness, and accuracy.
- 2) When data quality problems are discovered the project manager and/or the senior scientist will determine the level of the problem and the corrective action, if any, necessary to eliminate the problem.
- 3) Corrective actions will vary along with the type of QC problem and the degree of the problem. Corrective action for a duplicate sample returning an RPD greater than 20% might result in a repeat of the analysis or even a repeat of the sampling event. Corrective action for a field record sheet being incomplete would likely result in a team meeting to facilitate the missing parameters being filled in correctly.

#### 2.4 QA/QC Checks Following Each Stream Visit

Following the conclusion of all activities at each sample reach, the sample team will review all completed data forms and sample labels for accuracy, completeness, and legibility, and will conduct a final inspection of samples collected. If information is missing from the forms or labels, the team leader will make any corrections prior to proceeding to the next sample reach. The team leader will initial all data forms after review. Other team members will inspect and clean sampling equipment, inventory field supplies, prepare samples for shipment or storage as needed.

# 3.0 Watershed Characterization

#### 3.1 Study Reaches

The watershed of the Loutre Creek originates to the northwest of the Lion Oil Refinery but within the city limits and urban development of El Dorado (Figure 1.2). The watershed size at the site of the discharge of Outfall 001 is approximately 2.2 mi<sup>2</sup>. The total watershed of Loutre Creek is less than 4 mi<sup>2</sup> at its confluence with Bayou de Loutre. Loutre Creek bi-sects the Lion Oil facility and has been altered within the refinery boundaries since established in the early 1920's. As part of this third-party rulemaking, stream reaches on Loutre Creek, both upstream and downstream of the refinery and the various discharges will be evaluated. As indicated by Figure 1.2, at a minimum, the individual reaches will include:

- 1. LC 001 Loutre Creek, the receiving stream into which Outfall 001 discharges and upstream of Hwy 15 and any storm water discharge from Lion Oil;
- 2. LC 002 Loutre Creek just downstream of the discharge from Outfall 001 but on Lion Oil property and upstream from the storm water Outfalls 003 and 005; and
- 3. LC 003 Loutre Creek, downstream of all discharges from Lion Oil.

Physical, chemical, and biological data will be collected at each of these reaches in accordance with the following schedule.

### 3.2 Period of Study

Due to the limited watershed size (less than 10 mi<sup>2</sup>) and the nature of the respective discharges (exclusively or primarily storm water), data collection for the thirdparty rule making will occur during the spring seasonal period of the year during steady state flow conditions. It is currently proposed that field activities be completed during the last week of April or the first week of May.

# **4.0 Physical Habitat Characterization**

### 4.1 Purpose

Physical habitat in streams includes all those physical attributes that influence or provide sustenance to biological attributes, both botanical and zoological, within the stream. Stream physical habitat varies naturally, as do biological characteristics; thus, habitat conditions differ even in the absence of point and anthropogenic non-point disturbance. Within a given ecoregion, stream drainage area, stream gradient and the geology are likely to be strong natural determinants of many aspects of stream habitat, because of their influence on discharge, flood stage, and stream energy (both static and kinetic). Kaufmann (1993) identified seven general physical habitat attributes important in influencing stream ecology and the maintenance of biological integrity:

- 1) channel dimensions,
- 2) channel gradient,
- 3) channel substrate size and type,
- 4) habitat complexity and cover,
- 5) riparian vegetation cover and structure,
- 6) anthropogenic alterations, and
- 7) channel riparian interaction.

Land use activities can directly or indirectly alter any and/or all of these attributes. Nevertheless, the trends for each attribute will naturally vary with stream size (drainage area) and overall gradient. The relationships of specific physical habitat measurements described in this section to these seven attributes are discussed by Kaufmann (1993). Although they are actually biological measures, aquatic macrophytes, riparian vegetation, instream habitat and canopy cover are included in this and other physical habitat assessments because of their role in habitat structure and light inputs. The objectives of a habitat characterization are to:

- 1) assess the availability and quality of habitat for the development and maintenance of benthic invertebrate and fish communities, and
- 2) evaluate the role of habitat quality in relation to the attainment of designated uses and biological integrity.

There are three main headings for the components of the physical habitat characterization each with several categories. Measurements for each of the components (14 categories total) are recorded on copies of a two-page field form entitled Stream Habitat Assessment-Semi-Quantitative (Appendix A) and include:

- 1) Channel Morphology
  - a) Reach Length Determination
  - b) Riffle-Pool Sequence
  - c) Depth and Width Regime
- 2) Instream Structure
  - a) Epifaunal Substrate
  - b) Instream Habitat
  - c) Substrate Characterization
  - d) Embeddedness
  - f) Sediment Deposition
  - g) Aquatic Macrophytes and Periphyton
- 3) Riparian Characteristics
  - a) Canopy Cover
  - b) Bank Stability and Slope
  - c) Vegetative Protection
  - d) Riparian Vegetative Zone Width
  - e) Land-use Stream Impacts

Field physical habitat measurements from a field habitat characterization are used in conjunction with water chemistry, temperature, macroinvertebrate and vertebrate (typically fish) community analyses, and other data sources to determine the status of the target streams attainment of designated uses and the water quality required to maintain those uses. The documentation of existing conditions are systematically tabulated using a variety of field data forms. Examples of the forms utilized are provided in Appendix B.

These procedures are intended for evaluating physical habitat in wadeable streams. The field procedures will be applied during spring seasonal conditions with steady base flows. This semi-quantitative habitat procedure will be applied in conjunction with the *General Physical Habitat Characterization* and the *Qualitative Habitat Assessment* to provide a detailed view of the streams habitat condition.

The habitat characterization protocol differs from other rapid habitat assessment approaches (e.g., Plafkin et al., 1989, Rankin, 1995) by employing a, systematic spatial sampling that minimizes bias in the placement and positioning of measurements. Measures are taken over defined channel areas and these sampling areas are placed systematically at spacing that is proportional to the length of the entire study reach. This

## DRAFT

systematic sampling design provides resolution appropriate to the length of the study reach. The habitat assessment protocol is based on those of USEPA in their EMAP and RBP procedures (Lazorchak, 1998 and Barbour, 1999), USGS NAWQA program (Fitzpatrick, 1998) and Missouri Department of Natural Resources ESP (Sarver, 2000). The protocol is objective and repeatable and employs previously developed methods to produce repeatable measures of physical habitat in place of estimation techniques wherever possible.

Two people will complete the specified assessment, including stream flow. The actual time required to complete the habitat characterization at each monitoring location can vary considerably with channel characteristics.

The procedures are employed on a sampling reach of length equal to 20 times the bankfull width, or at least 100 yards of instream distance. The semi-quantitative habitat sampling reach length will include to the extent possible the fish and macroinvertebrate collection reaches. Measurements will be taken in each of 10 subreaches, which are systematically placed, at intervals equal to approximately one tenth (1/10) the length of the represented study reach. Measurements and observations for each habitat characteristic are made in each of the sub-reaches as the assessment team moves along the stream channel. An average or total of the scores for each of the 10 sub-reaches is then calculated resulting in a mean value for each characteristic for the entire reach.

#### 4.2 Procedure

The habitat assessment will be conducted within (or to the extent possible) the stream reach from which the benthic and fish communities are to be characterized. The physical habitat will be characterized from measurements and observations of stream attributes made within 10 sub-reaches. The field team assessing habitat should move along the stream channel (near the thalwag) observing habitat characteristics within each sub-reach. A description of and the rational for measuring each of the attributes are provided below. The details of how these attributes are recorded/evaluated are also described in the GBM<sup>°</sup> QAP.

#### 4.2.1 Channel Morphology

Channel morphology (or geomorphology) is a characterization of the shape of the stream channel including measurements and/or visual estimates of channel dimensions and riffle-pool sequences (i.e., a measure of the amount of riffles, runs and pools that occur in a given reach).

The channel observed includes that portion of the stream between the base flow wetted area and the top of the normal high water channel often referred to as the bankfull stage (Figure 4.1). The "bankfull" or "active" channel is defined as the channel that is filled by moderate-sized flood events that typically occur every one or two years. Such flow levels are on the verge of entering the flood plain and are believed to control channel dimensions in most streams.

## DRAFT

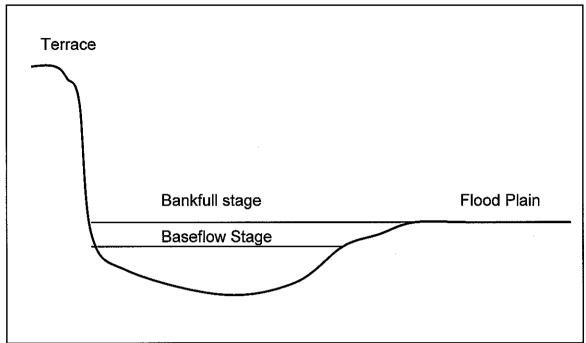



Figure 4.1. Stream channel depicting bankfull stage.

#### 1) Reach Length Determination

First, bankfull depth (depth from stream bottom in thalwag to bankfull stage on the bank) is identified in at least two separate riffles (or alternatively runs in streams not exhibiting riffle morphology) in the study reach. Then bankfull depth and width is determined from five (5) stream transects and recorded on the record sheet. Transect locations should be selected to include each prominent morphology type represented in the stream. Bankfull depths are measured to the nearest 1/10 foot and bankfull widths are measured to the nearest foot using a wading rod and tape measure/range finder, respectively. An average of the 5 bankfull widths is then calculated and multiplied times 20 to arrive at the total reach length for assessment. This total length is then divided by ten to determine the length of each of the ten sub-reaches. Analysis of the first sub-reach should begin at the head of a given stream morphology (i.e., riffle, run or pool).

#### 2) Riffle-Pool Sequence

Stream morphology refers to the abundance and placement (sequencing) of riffles, runs, and pools in a stream system. This sequencing is an indicator of a streams hydrological regime and stability as well as a determinant of its potential to sustain diverse aquatic communities. Beginning at the head of a morphological type (riffle, run or pool) the length of each morphological type in the stream reach should be measured using a range finder or tape measure and recorded on the record sheet. The sequence of each morphological type should be depicted on the record sheet using the provided notations so as to create a

map to the location of each riffle, run or pool. The resulting measurements should provide a quantitative measure of the percent of the study reach representing each stream morphological type (i.e., 40% riffle, 30% run, 30% pool, etc.).

3) Depth and Width Regime

The average stream depth and width will be estimated in riffles (or runs in the absence of riffles) and pools in each sub-reach. Depths will be measured along a transect, similar to that depicted in Figure 4.2, in a representative section of each riffle and pool in the sub-reach. Depths are generally taken in the thalwag (deepest area in stream channel) and approximately half way between the thalwag and the left and right banks. An estimated average depth for riffles and pools occurring in a sub-reach is derived from the cross-sectional depth measurements and recorded on the record sheet to the nearest 1/10 foot. Once completed for all 10 sub-reaches this should provide accurate semi-quantitative measurements of riffle and pool average depth and depth variability across the entire stream reach.

Stream wetted widths will be measured along a transect, in a representative section of each riffle and pool in the sub-reach. An estimated average width for each morphological type in a sub-reach should be recorded on the record sheet to the nearest foot. Once completed for all 10 sub-reaches this should provide accurate semi-quantitative measurements of riffle and pool widths across the entire stream reach.

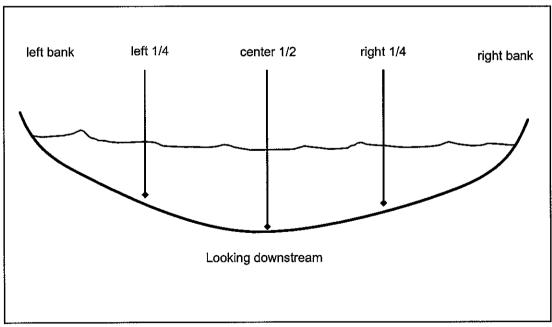



Figure 4.2. Approximate position of measurements across transect.

#### 4.2.2 Instream Structure

Instream structure describes the characteristics of the stream within the wetted perimeter that makes up the habitat suitable for colonization of aquatic biota. This includes information about natural substrates (gravel, boulders, etc), aquatic plants and algae and debris that has been washed into or fallen into the stream, such as logs, leaves, etc. A stream capable of sustaining diverse aquatic communities will contain a variety of instream structure including some that is permanent and some that is mobile during high flow events.

4) Epifaunal Substrate (Macroinvertebrates)

Epifaunal substrate refers to the area on the bottom of the stream (entire wetted perimeter) where macroinvertebrates inhabit. This attribute is scored as a percentage of the stream bottom in a sub-reach which contains substrates suitable for macroinvertebrate colonization. Scoring for this attribute should rely heavily on the stability of the substrate, the size of the interstitial spaces, and the cleanliness (not covered in thick algae or sediment deposits) of the substrate. Cobbles and coarse gravel will score higher percentages as they contain larger interstitial spaces for colonization, while sand and silt would score lower since they provide little spaces. In addition, root wads along the bank would score higher as they are more stable features than would depositional areas or small woody debris.

5) Instream Habitat (Fish)

Instream habitat refers to the habitat features within the wetted perimeter of the stream sub-reach which are available for fish colonization. This attribute is scored as the percentage of the stream bottom (wetted perimeter) in a sub-reach which is covered with fish habitat. As with the epifaunal substrate attribute substrates composed of cobbles, coarse gravels and boulders score higher for fish cover as they provide better spaces for colonization. Other habitats that score high are large woody debris (individual logs with diameter >4 inches or complex woody structures composed of rootwads, logs, or limbs with diameter of 1.5 ft. or greater)and undercut banks. While habitats that score lower are those such as depositional areas, leaf packs, and fine sediments or sand.

6) Substrate Characterization

The dominant stream substrate size classification for riffles and pools within each sub-reach will be recorded on the record sheet. Only substrates within the wetted perimeter are evaluated. This information will be used to characterize the similarities and or differences in substrate structure and complexity in the riffles and pools of the study reach as it relates to the development and maintenance of the systems biological integrity.

## DRAFT

Classify the particle into one of the size classes listed on the Semi-Quantitative Habitat Assessment Field Form based on the size of the intermediate axis (median dimension) of its length, width, and depth. This "median" dimension is the sieve size through which the particle can pass.

| Bedrock       | smooth or rough  |
|---------------|------------------|
| Boulder       | >25 cm           |
| Cobble        | 6-25 cm          |
| Coarse Gravel | 1.6 – 6 cm       |
| Fine Gravel   | 0.2 – 1.6 cm     |
| Sand          | <0.2 cm          |
| Silt/Mud/Clay | fine, not gritty |

Always make notations for unusual substrates such as concrete or asphalt and denote these artificial substrates as "other" and describe them in the comments section of the field data form. Code and describe other artificial (such as large appliances, tires, car bodies, etc.) substrates in the same manner.

#### 7) Embeddedness

Embeddedness is the fraction of a particle's surface that is surrounded by (embedded in) sand or finer sediments on the stream bottom. By definition, the embeddedness of sand, silt, clay, and muck is 100 percent and the embeddedness of hardpan and bedrock is 0 percent.

For this attribute estimations are not made per sub-reach but for the entire stream reach as a whole. An estimation of the "percent embedded" is recorded for coarse riffle substrates in the study reach. This is accomplished by removing 12 pieces of cobble, gravel, or small boulders in at least two different riffles (three maximum) and recording the percent embedded for each. Percent embedded can be visually observed as the darkened portion of the coarse substrate that was buried in the streams fine bed material. If the darkened area covers half the coarse substrates height than the percent embedded is 50%, etc. (Figure 4.3).

## DRAFT

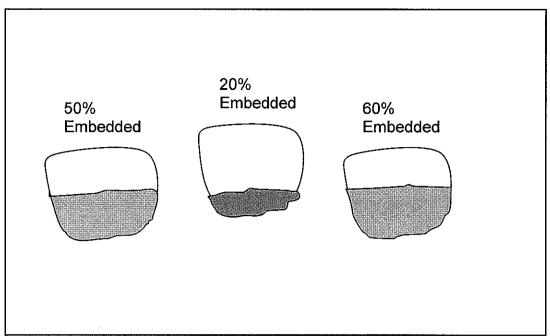



Figure 4.3. Depiction of percent embedded characteristics.

8) Sediment Deposition

The sediment deposition attribute refers to the amount of stream bottom (in the wetted perimeter) that is covered by fine sediments and/or particulate organic matter. This attribute is scored as a percentage of the bottom in each sub-reach which is covered by such loose materials.

9) Aquatic Macrophytes and Periphyton Coverage

An estimate of the percentage of area covered by macrophytes and periphyton in a sub-reach is made and recorded both for riffles and pools. Macrophytes refers to aquatic plants that grow in the stream (both emergent and submerged), and periphyton refers to algae that grows on fixed surfaces. This attribute helps biologists determine stream productivity from a nutrient enrichment perspective and also for the availability of food sources for aquatic biota.

#### 4.2.4 Riparian Characteristics

The riparian area includes the area from the stream bank in a direction away from the stream into the upland areas. It is these stream-side riparian zones that ultimately help shape the stream and provide organic material as nutrients to the aquatic system. A well developed riparian area protects stream banks form erosion, provides shading, inputs nutrients, provides materials as habitat (instream structure) and filters runoff entering the stream. In the absence of well developed riparian zones the stream is more impacted by encroaching land-uses. 10) Canopy Cover

Canopy cover (percent stream shading) over the stream is determined for each of the sub-reaches. Estimates of cover are made by looking into the canopy over the stream channel. Estimates are made from mid-channel and each quarter channel to determine the average percent canopy cover for the width of the stream in the sub-reach. Percent canopy at each measurement point can be estimated visually or by use of a spherial densiometer.

11) Bank Stability and Slope

Bank stability is an important attribute that is an indication of a stream reaches overall hydrologic equilibrium. A bank's stability also determines its ability to provide stable habitat for biota and its propensity to release large sediment yields to the stream, which ultimately cause high turbidity and deposition in downstream reaches. The right and left banks are classified according to the following categories:

| Score 9-10 | = | Stable, little evidence of erosion, < 5% bank eroding         |
|------------|---|---------------------------------------------------------------|
| Score 6-8  | = | Moderately stable, some evidence of new erosion, 5-29% bank   |
|            |   | eroding                                                       |
| Score 3-5  | = | Moderately unstable, obvious new erosion, 30-59% bank eroding |
| Score 1-2  | = | Unstable, most of bank actively eroding, 60-100% bank eroding |

Banks composed of sands and gravels are much less stable than banks composed of silt/mud/clay or cobbles. The density of well rooted (more permanent) vegetation and root structure also help to improve a banks stability.

Average bank slope (in degrees) in a sub-reach, is recorded for each bank (left and right). Bank slope affects the stability of a bank and is an indicator of past erosion. A gentle slope may average 30° while a steep or undercut bank may average 90° or 100°, respectively.

12) Vegetative Protection

Bank vegetative protection is measured as a percent of the bank surface area which is covered by stable riparian vegetation and their associated roots in a sub-reach. Each bank (right and left) is assessed separately and the value recorded on the record sheet. Banks are assessed from the edge of the water to the top of the first terrace or normal top of bank.

13) Riparian Vegetative Zone Width

Riparian zone with encompasses the area from the top of the normal stream bank outwards into the upland area. The broader the riparian vegetative zone width the more protected the stream banks are from alteration, the fewer pollutants will enter the stream from runoff, and the more available food sources there are to be deposited into the stream from the surrounding forest. Riparian zone width is scored for each bank in a sub-reach according to the following scale:

Score 9-10 = Riparian Zone Width > 18 meters Score 6-8 = Riparian Zone Width 18 - 12 meters Score 3-5 = Riparian Zone Width 11 - 6 meters Score 1-2 = Riparian Zone Width < 6 meters

14) Land-Use Stream Impacts

Significant Alteration of the land-uses in the immediate riparian area can have detrimental affects on the stream habitat and biota. Urban and agricultural activities are often considered the more prominent of those land-uses that may impact a stream. These impacts are assessed by indicting a specific land-use impact associated with a sub-reach (on either bank) on the record sheet and assigning a degree of impact score to the land-use. The following land-use categories and impact scoring system are provided:

Land-uses:

- C = Cattle
- R = Row crops
- U = Urban encroachment
- I = Industrial encroachment
- O = Other (noted on field form)

Scoring:

- 0 = no land-use impacts
- 1 = minor impacts
- 2 = moderate impacts
- 3 = major impacts

### 4.3 Scoring and Analysis of Habitat Assessment Data

Scores from the Semi-Quantitative Habitat Assessment can be utilized in two different ways. First, data collected for each attribute (assessment category) can be used independently to describe the study reach collectively. This method results in information such as: average riffle depth, average pool width, percent riffle in entire reach, average bank stability, average (median) substrate size class in pools and riffles, mean percent canopy cover, etc. Second, the data collected during the assessment can be used in conjunction with the Qualitative Habitat Assessment procedure to score each of the ten "qualitative" indices with near quantitative accuracy (semi-quantitative). A combination of the two methodologies should be incorporated into all intensive aquatic biota field studies where habitat assessment accuracy and repeatability is critical. The following sections outline the scoring of the qualitative habitat indices using the semi-quantitative data.

#### 4.3.1 High Gradient (riffle-pool stream complexes)

1) Epifaunal Substrate / Available Fish Cover

Average values from semi-quantitative categories 4 (Epifaunal Substrate) and 5 (Instream Habitat) are combined into an overall average percent coverage and used to score this metric.

The following table presents the scoring criteria:

| Rank       | Optimal | Sub-Optimal | Marginal | Poor  |
|------------|---------|-------------|----------|-------|
| % Coverage | >70%    | 40%-70%     | 20%-39%  | <20%  |
| Score      | 20 -16  | 15 -11      | 10 - 6   | 5 - 1 |

#### 2) Embeddedness

Reach average percent embedded (from category 7) is used directly to score this metric.

| Rank       | Optimal | Sub-Optimal | Marginal | Poor  |
|------------|---------|-------------|----------|-------|
| % Embedded | <25%    | 25%-50%     | 49%-75%  | >75%  |
| Score      | 20 ~16  | 15 -11      | 10 - 6   | 5 - 1 |

3) Velocity / Depth Regime

Semi-Quantitative categories 2 (Riffle-Pool Sequence) and 3 (Depth and Width regime) along with flow and velocity data collected in the reach is used to score this metric. Use the following table to determine which regimes are present:

| Rank       | Slow-deep | Slow-shallow | Fast deep | Fast shallow |
|------------|-----------|--------------|-----------|--------------|
| Velocity   | <1 fps    | <1 fps       | >1 fps    | >1 fps       |
| Depth      | >1.6 feet | <1.6 feet    | >1.6 feet | <1.6 feet    |
| Regime     |           |              |           |              |
| Typical    | Deep pool | Shallow pool | run       | riffle       |
| Morphology |           | _            |           |              |

If a reach has deep and shallow pools, and distinctive run and riffle morphology, then you have at least three regimes and possible all four regimes. Score each rank lower if shallow regimes are the missing regimes. Scoring is applied as per the following table.

| Rank Optimal Sub-Optimal Marginal Poor |              |               |             |            |
|----------------------------------------|--------------|---------------|-------------|------------|
| No. Regimes                            | Four regimes | Three regimes | Two regimes | One regime |
| -                                      | present      | present       | present     | present    |
| Score                                  | 20 -16       | 15 -11        | 10 - 6      | 5 - 1      |

4) Channel Alteration

Scored from visual assessment of entire reach. Not aided by semi-quantitative attributes.

5) Sediment Deposition

Reach average percent bottom affected by deposition (from category 8) is used directly to score this metric.

| Rank Optimal Sub-Optimal Marginal Poor |        |        |         |       |  |
|----------------------------------------|--------|--------|---------|-------|--|
| % Bottom                               | <5%    | 5%-30% | 31%-50% | >50%  |  |
| Affected                               |        |        |         |       |  |
| Score                                  | 20 -16 | 15 -11 | 10 - 6  | 5 - 1 |  |

Utilize the lower end of each scale to represent reaches where recent sediment bar formation is evident.

6) Frequency of Riffles

Using semi-quantitative category 3 (Depth and Width Regime) the average width of the stream is determined as the average of riffle and pool widths combined. Using category 2 (Riffle-Pool Sequence) the distance between riffles can be calculated using the sequencing notations and the morphological lengths. The table presented below should be used to develop scores for this metric.

Example: a reach with an average width of 18 feet, with 4 riffles separated by a 50 foot pool, a 20 foot run, and a 100 foot pool would result in an average distance between riffles of 57 feet. Therefore, the ratio = 57/18 = 3.2 and would rank as Optimal (score @ 18).

| Rank                 | Optimal | Sub-Optimal | Marginal   | Poor    |
|----------------------|---------|-------------|------------|---------|
| Ratio<br>(distance   | <7 : 1  | 7 – 15 : 1  | 16 -25 : 1 | >25 : 1 |
| between<br>riffles : |         |             |            |         |
| stream width)        |         |             |            |         |
| Score                | 20 -16  | 15 - 11     | 10 - 6     | 5 - 1   |

In continuous riffle streams the consistent placement of boulders and logs provides scores in the highest range of the optimal category.

7) Channel Flow Status

Scored from visual assessment of entire reach. Not aided by semi-quantitative attributes.

8) Bank Stability

The average bank stability score for each represented bank from the semiquantitative assessment (category 11) is directly applied to the qualitative assessment scoring for this metric (i.e., an average reach score of 8 for the right bank and 7 for the left bank gets transferred directly to the qualitative score sheet as such.)

9) Vegetative Protection

Reach average percent bank protected (from category 12 of the semiquantitative record sheet) is used directly to score this metric for the right and left bank.

| Rank Optimal Sub-Optimal Marginal Poor |        |           |           |       |  |
|----------------------------------------|--------|-----------|-----------|-------|--|
| % Protected                            | >90%   | 70% - 90% | 50% - 69% | <50%  |  |
| Score                                  | 20 -16 | 15 -11    | 10 - 6    | 5 - 1 |  |

10) Riparian Vegetative Zone Width

The average riparian zone width score for each represented bank from the semiquantitative assessment (category 13) is directly applied to the qualitative assessment scoring for this metric (i.e., an average reach score of 8 for the right bank and 7 for the left bank gets transferred directly to the qualitative score sheet as such.)

# 4.3.2 Alternative Metrics for Low Gradient Streams (pool dominated complexes)

The individual metrics with alternatives for pool dominated stream complexes includes 2, 3, and 6, and are described as follows:

2) Pool Substrate Characterization (replacement for Embeddedness)

Using the Substrate Characterization data from the semi-quantitative assessment (category 6) and the aquatic vegetation assessment (category 9) the following table may be used to score this metric.

| Rank                   | 0       | otimal      | Sub-Optimal    | Marginal       | Poor                    |
|------------------------|---------|-------------|----------------|----------------|-------------------------|
| Substrate              | Cobble  | e or Gravel | Sand/Silt/Clay | Sand/Silt/Clay | Bedrock or<br>Clay Only |
| Macrophytes<br>Present | Yes     | No          | Yes            | No             | No                      |
| Score                  | 20 - 18 | 17 - 16     | 15 - 11        | 10 - 6         | 5 - 1                   |

3) Pool Variability (replacement for Velocity/Depth Regime)

Semi-Quantitative categories 2 (Riffle-Pool Sequence) and 3 (Depth and Width regime) are used to help score this metric. Use the following table to determine pool variability.

| Pool<br>Characteristic | Large-Deep     | Large-Shallow  | Small-Deep     | Small-Shallow  |
|------------------------|----------------|----------------|----------------|----------------|
| Size                   | Length ≥ Width | Length ≥ Width | Length < Width | Length < Width |
| Depth                  | ≥3.2 feet      | < 3.2 feet     | ≥3.2 feet      | < 3.2 feet     |

An equal balance of all four pool types achieves higher scores. A prevalence of shallow pools scores lower.

6) Channel Sinuosity (replacement for Frequency of Riffles)

This metric is assessed separately from the semi-quantitative data. It can be estimated in the field, measured during a longitudinal survey or calculated from current aerial photographs.

## 5.0 Water Quality

During the field study, water quality will be documented through *in-situ* measurements and sampling for laboratory analyses at each of the study reaches as identified in Section 3.1. The following sections present the parameters and documentation methods.

#### 5.1 In-situ Measurements

The following parameters will be monitored at each of the study reaches:

- 1) temperature, C°
- 2) dissolved oxygen, mg/L
- 3) conductivity,  $\mu$ S
- 4) pH, su
- 5) flow, cfs

In accordance with Section 2.0 calibration will be performed and documented according to the manufacturer's recommendations. Details of the methods and procedures utilized are provided in Appendix A.

The *in-situ* measurements are recorded on the second page of the Field Data Form. Other information recorded on the Field Data Forms will include:



- 1) general station location information,
- 2) the field crew completing the assessment,
- 3) current hydrologic conditions,
- 4) antecedent moisture conditions, and
- 5) identification of the meters utilized.

#### 5.2 Water Chemistry

Grab samples for laboratory analysis of chloride, sulfate and TDS will be collected at each sample reach at the same time as *in-situ* measurements are obtained. Analytical results from the laboratory will be retained for use in project documentation. The instream mineral concentrations will also be utilized in the development of the site specific water quality criteria for each discharge.

# **6.0 Benthic Macroinvertebrate Community**

#### 6.1 Introduction

The benthic macroinvertebrate protocol utilized in these field studies is intended to evaluate the biological integrity of wadeable streams for the purpose of detecting stresses on community structure, assessing the relative severity of these stresses, and determining the maintenance of the designated uses. The approach is based on the "Rapid Bioassessment Protocol III – Multi Habitat approach using an aquatic dip net as published by the U.S. Environmental Protection Agency (Barbour, M.I. et al., 1999) as adapted for use in pool dominated streams of the Gulf Coastal Plain Ecoregion. The details of the benthic characterization are provided in Section 9.0 of Appendix A.

The one-man protocol is the preferred macroinvertebrate collecting method for pool dominated streams (a second person can be used for water safety and to keep time and record information on the field forms). The U.S. Geological Survey utilizes the one-man approach for their National Water-Quality Assessment Program (NAWQA; Cuffney et al., 1993).

During this Project, the benthic community of the following reaches will be evaluated:

- 4. LC 001 Loutre Creek, the receiving stream into which Outfall 001 discharges and upstream of Hwy 15 and any storm water discharge from Lion Oil;
- 5. LC 002 Loutre Creek just downstream of the discharge from Outfall 001 but on Lion Oil property and upstream from the storm water Outfalls 003 and 005; and
- 6. LC 003 Loutre Creek, downstream of all discharges from Lion Oil.

#### 6.2 Methods

Qualitative samples of the benthic macroinvertebrate assemblage will be collected over a predetermined period of time using an aquatic dip net and sampling all available microhabitats present within the stream reach.

Each station will be sampled for three minutes according to the RBA protocol. Each sample will be placed in a bucket and condensed with a series of washings through a series of sieves, the smallest of which will be a U.S. Standard #30 sieve.

### 6.3 Sample Processing

Random sub-samples of the concentrated sample will be then placed on a white sorting tray from which the macroinvertebrates will be removed. A 100 organism sub-sample will be randomly picked (according to the RBA procedures) from the tray and field identified to the lowest possible taxon.

The 100 organism sub-samples will be preserved in 70% ethanol or Kayles solution for lab verification of field identifications and as a voucher to be used if more detailed analysis becomes necessary. Laboratory verification will be accomplished using general keys including but not limited to Merritt & Cummings, (1996); Pennak, (1989), and Unsinger (1963). In addition more taxa specific keys such as Mayflies of North and Central America (Edmunds et. al., 1976), Dragonflies of North America, (Needham & Westfall, 1975) or keys developed specifically for Arkansas may be utilized for the laboratory verification of the field identifications.

After the 100 organism random sample is collected, labeled and preserved, the larger debris items (e.g., leaves, sticks, rocks, etc.) in the collected sample will be examined for clinging benthic macroinvertebrates. Any organisms will be removed prior to the larger debris being discarded. The remainder of the original sample not utilized in the selection of the 100-organism sub-sample will be concentrated and retained as a voucher for the sample picking techniques used. The voucher samples will be held at GBM<sup>c</sup> for a period of 24 months following the conclusion of the third party rulemaking at which time the samples may be submitted to an academic zoological collection. The macroinvertebrate assemblages from each station will be analyzed according to several benthic community biometrics. These will include richness (number of different taxa), EPT richness (number of different taxa represented in the orders Ephemeroptera, Plecoptera, and Trichoptera), and species diversity as determined by the Shannon-Wiener Diversity Index.

The analysis will also include the seven biometrics used by the State of Arkansas (ADPCE, 1988) in their RBA scoring system. This scoring system places a value (1 to 4, 1 = excessive differences, 4 = no differences) on each of the seven biometrics to achieve a final mean score. The biometric scoring will indicate the impacts to a benthic community when compared to the benthic community of different reaches, to demonstrate effects of point and or non-point source contributions between reaches.

For each study site, a complete tabulation of taxa, numbers of individuals and their percent composition will be included on the two-page field data sheets – Benthic Macroinvertebrates. The first page of the two-page data form will include general

information identifying the sample reach and investigators as well as site observations to include:

- 1) time sampled,
- 2) relative abundance of aquatic tropic level communities,
- 3) percent of major habitats sampled,
- 4) percent of specific microhabitats sampled, and
- 5) relative abundance of the ordinal groups observed during sample collection.

The second page provides for the listing of the taxa comprising the 100 organism sub-sample and the field identifications and the numbers of each. Also included on page 2 are the general reach identifiers and preliminary summary sections to be used in the application of selected biometric scoring criteria.

## 7.0 Fish Community

## 7.1 Introduction

The fish community supported in a stream is in direct response to available habitat, food sources, and water quality of that particular stream. The presence of a certain level of species richness and diversity along with a community structure similar to that expected in typical streams of the ecoregion are indicators of aquatic ecosystem health.

The objective of the fish community characterization is to collect and identify a representative sample of all except very rare species in the assemblage reflective of the relative abundance within the community assemblage. Backpack electrofishing equipment will be used as the principal sampling gear supplemented by block netting and seining in habitats where flow, substrate and structure affect capture of benthic species. All team personnel will be involved in collecting fish.

Although most of the receiving streams into which the discharges occur are a fraction of the 10 square mile threshold for perennial fish community maintenance, the fish community of the following reaches will be evaluated during this project:

- 1. LC 001 Loutre Creek, the receiving stream into which Outfall 001 discharges and upstream of Hwy 15 and any storm water discharge from Lion Oil;
- 2. LC 002 Loutre Creek just downstream of the discharge from Outfall 001 but on Lion Oil property; and upstream of Storm water discharges 003 and 005; and
- 3. LC 003 Loutre Creek, downstream all discharges from Lion Oil.

## 7.2 Methods

Major factors that influence collecting include flows, water depth, instream obstructions, water turbidity, temperature and conductivity. The primary tool utilized in the fish collections will be a Smith-Root backpack electroshocker. However, seines and block nets may be utilized as necessary to adequately characterize the reaches indicated.

Sampling fish species to determine their proportionate abundance will be conducted after all water quality parameters and/or samples are collected but prior to the collection of the benthic and habitat data as described in Sections 4 and 5.

Shocked fish will be captured with hand held dip nets and held in buckets while the sampling continues throughout the reach. The entire channel within the sampling reach will be sampled. Actual shocking time will continue for not less than 30 minutes unless the wetted habitat area of any reach is too small for 30 minutes of shocking time. The shocker is equipped with an automated timing mechanism which records the amount of time that electricity is actually being applied, or "pedal down time" (PDT). In addition to PDT, the total collection time will be recorded. There will not be a maximum time limit for the collection period, however the collections may be terminated when the principal investigator determines that additional collection time will not likely result in additional fish species. Sampling information will be recorded on the Field Data Sheets - Fish. General comments (perceived fishing efficiency, missed fish, and gear operation suggestions) will be recorded on the lines provided on the form.

An effort to search for and collect fish will be completed at all reaches, even if the stream is extremely small, and it appears that sampling may not collect any specimens.

## 7.3 Sample Processing

Following collection, each sample of fish from a reach will be preserved in formalin for later processing. Sample processing will involve tallying and identifying fish, examining individual specimens for external anomalies, preparing voucher specimens for taxonomic confirmation and archival at a museum.

For each study site, a complete tabulation of taxa, numbers of individuals and their percent composition will be included on the two-page Field Data Sheets – Fish. The first page of the two-page data form will include general information identifying the sample reach and investigators as well as site observations to include:

- 1) time sampled,
- 2) Pedal Down Time (PDT),
- 3) relative abundance of aquatic tropic level communities,
- 4) percent of major habitats sampled,
- 5) percent of specific microhabitats sampled, and
- 6) relative abundance and scoring of substrate.

Ultimately, the fish identification will be verified in the lab using keys in the Fishes of Arkansas (Robison and Buchanan, 1988) and the Fishes of Missouri (Pflieger, 1975) to species level where possible.

The fish collections at each reach will be compared according to several biometrics including: species richness (number of taxa); sunfish richness; species diversity; abundance; dominant ordinal groups; percent of tolerant species; trophic structure; percent of hybrids; percent of diseased fish; and key indicator species as listed in Regulation No. 2 of the ADEQ.

In addition, the fish assemblage will be evaluated utilizing the fish community biocriteria and a comparison to typical Gulf Coastal Ecoregion least disturbed streams. The fish community biocriteria scoring was developed by the ADEQ and uses eight metrics to determine use support status.

## 8.0 Field Study Schedule

The spring seasonal biotic characterizations will be completed during April/ May 2005. This period corresponds to the seasonal fishery period as stipulated in ADEQ seasonal fishery designation. Due to the storm water nature of the discharge and the small watershed size, a perennial fishery use does not apply to the unnamed tributaries into which Outfall 001 discharges.

## 9.0 References

- Barbour, M.T. 1999. Rapid Bioassessment Protocols for use in wadeable streams and rivers. 2<sup>nd</sup> Edition USEPA 841-B-99-002.
- Cuffney, T.F., M.E. Gurtz, and M.R. Meador. 1993. Methods for Collecting Benthic Invertebrate Samples as Part of the National Water-Quality Assessment Program. U.S. Geological Survey Open-File Report 93-406, Raleigh, North Carolina.
- Edmunds, G.F., Jr., S.L. Jensen, and L. Berner. 1976. The mayflies of North and Central America. Univ. Minnesota Press, Minneapolis, MN. 330 pp.
- Kaufmann, P.R. (ed.). 1993. Physical Habitat. pp. 59-69 <u>IN</u>: R.M. Hughes (ed.). Stream Indicator and Design Workshop.
- Merritt, R.W. and K.W. Cummins. 1984. An introduction to the aquatic insects of North America (Second edition). Kendall/Hunt Publishing Company, Dubuque, IA 52001.

- Needham, J.G. and M.J. Westfall, Jr. 1954. Dragonflies of North America. Univ. Calif. Press, Ithaca, NY. pp. 41-57.
- Pennak, R.W. 1989. Freshwater invertebrates of the United States Protozoa to Mollusca (Third edition). John Wiley and Sons, Inc., New York, NY. 628 pp.

Pflieger, W.L, 1975. Fishes of Missouri. Missouri Department of Conservation. 343pp.

- Plafkin, J.L., M.T. Barbour, K.D. Porter, S.K. Gross, R.M. Hughes. 1989. Rapid Bioassessment Protocols for Use in Streams and rivers: Benthic Macroinvertebrates and Fish. EPA/440/4-89/001. U.S. Environmental Protection Agency, Assessment and Watershed Protection Division, Washington, D.C.
- Robison, H.W. and T.M. Buchanan, 1988. Fishes of Arkansas. University of Arkansas Press. 536 pp.
- Unsinger, R.L. 1963. Aquatic insects of California with keys to North American genera and California species. University of California Press, Berkley, CA.
- U.S. Environmental Protection Agency (EPA). 1983. Technical Support Manual: Waterbody Surveys and Assessments for Conducting Use Attainability Analyses.

## **<u>1.0 pH Meter Calibration SOP</u>**

## Purpose

This SOP describes the methods for calibration and use of the portable Orion<sup>®</sup> 200 series pH meters. Field forms used for meter calibration and measurement recording are attached to this SOP.

### Procedure

### Calibration

- 1. Be sure that the electrode (probe) is properly attached and that a good battery is installed.
- 2. Turn the meter on and check the read-out for any warning messages ("Low Bat.", etc.) If problems occur refer to the owners manual for help.
- 3. Record the proper information (date, time, etc.) on the Calibration Field Form (attached) or in a field logbook.
- 4. Remove the probe protection cap and place the probe in pH buffer solution 7.00 (yellow in color) submerging the end to *at least 1 inch*. Allow the meter to adjust to the buffers pH for approximately 1 minute.
- 5. Press the "Cal" button on the meter to begin the calibration process. The display should read "calibration" and "P1" along with the pH reading.
- 6. When the meter has accepted the buffer it will beep and "ready" will be displayed. Press "Yes" to accept the value. Record this number on the pH Calibration Record sheet. The display should now read "P2" at the screen's bottom.
- 7. Remove the probe from the 7.00 buffer and rinse with distilled water to remove any excess buffer solution.
- 8. Place the probe in the second buffer solution, 4.01 (pink) or 10.01 (blue), whichever best brackets the expected pH range to be measured, and stir it gently.
- 9. When the meter has accepted the value it will beep and the "ready" sign will be displayed as in step 6 above. Press "Yes" to accept this value. Record this number on the pH Calibration Record sheet.

GBM<sup>c</sup> v1.1 May 2002 Page 1 of 3

- 10. The display will immediately show the slope, a number that should be between 92% and 102%. Record this number on the pH Calibration Record sheet. If the slope is larger or smaller than this range the meter should be recalibrated.
- 11. A calibration check should be done once the meter is calibrated. This is done simply by placing the probe in the pH 7.00 buffer solution and taking a reading. Record this reading on the pH Calibration Record form. If the reading is between 6.90 and 7.10 then the original calibration remains valid. If the measurement falls outside this range then the meter should be recalibrated.
- 12. Gently shake or rinse off excess liquid from the probe. The meter is now ready for use.
- 13. The pH meter should be calibrated once per day on days that it is used. The pH meter should have its calibration checked once for each sampling trip or once every 5 samples whichever is greater. This is done simply by placing the probe in the pH 7.00 buffer solution and taking a reading. Record this reading on the pH Calibration Record form. If the reading is between 6.90 and 7.10 then the original calibration remains valid. If the measurement falls outside this range then the meter should be recalibrated. Furthermore, if the battery or probe is ever disconnected from the meter during use, a new calibration would be required.

### pH Measurements

- 1. Place the probe in the liquid to be analyzed and stir it gently. The probe should be submerged *at least 1 inch* into the liquid.
- 2. Allow the meter to stabilize on a reading (may take up to 4 minutes). The meter will respond with "ready" when it has properly stabilized. Record the reading. If the meter will not indicate "ready" after several minutes and the pH value displayed is not fluctuating greatly then a value may be recorded without the meter indicating "ready."
- 3. Be sure to turn off the meter when the final pH measurement has been taken and recorded.

### Meter Maintenance/Storage

- 1. Store the meter in a safe dry place.
- 2. Keep the probe cover on the probe when not in use and between measurements.

- 3. A small piece of paper towel soaked in pH buffer 7.00 should be place in the bottom of the probe cover to keep the probe surface wetted with the buffer. The probe should **never** be allowed to dry out.
- 4. Use only "Low Maintenance Triode" ATC probes with the 200 series pH meters (model # 9107BN or equivalent.)

### **Quality Assurance/Quality Control**

- 1. Meters are calibrated biweekly (at a minimum) to ensure proper function and accuracy.
- 2. Values measured during biweekly calibrations are compared between meters to verify accuracy.
- 3. Duplicate measurements should be taken at a rate of 10% (minimum) of samples analyzed.

# 2.0 Dissolved Oxygen (D.O.) Meter Calibration SOP

### Purpose

This SOP describes the methods for calibration and use of the portable YSI Model 58 and Model 85 D.O. meters. Field forms used for meter calibration and measurement recording are attached to this SOP.

### Procedure

### Calibration

### Model 58

- 1. Be sure that the oxygen probe is properly attached to the meter and that the end of the probe is affixed in storage bottle containing a piece of wet sponge or towel to keep the probe moist, and to provide a water-saturated air environment.
- 2. Turn the meter on and check the read-out for the "LOBAT" warning, and for the normally observed display readings. If problems occur refer to the owners manual for help.
- 3. Record the proper information (date, time, etc.) on the Dissolved Oxygen Calibration Record sheet or in a field logbook.
- 4. Set the D.O. meter to "ZERO" and use the "O2 ZERO" knob to adjust the display to 0.0. If the meter will not adjust to zero refer to the owners manual for guidance.
- 5. Perform a Calibration according to one of the following procedures:

Winkler Titration (verification calibration)

- a) Fill a container with at least 500 mL distilled water (or tap water if distilled not available) and allow it to acclimate. It can be aerated overnight to achieve 100% oxygen saturation if desired.
- b) Fill each of two BOD bottles with the water from the container by gently submerging them into the container.
- c) Add one each of the HACH manganous sulfate and alkaline iodide-azide powder pillows to each bottle. Cap the bottles and invert them 15-20 times to mix the solution thoroughly.
- d) Allow the bottles to settle until a precipitate appears in the bottom half of the bottle. This will usually take 3-5 minutes.
- e) Add one HACH sulfamic acid powder pillow to each BOD bottle. Invert the bottles until all the precipitate has been dissolved.

GBM<sup>c</sup> v2.1 May 2002 Page 1 of 4

- f) Using a graduated cylinder measure and place 200 mL of the solution into a flask.
- g) Add 1 mL of HACH starch indicator to the flask. The solution should turn black.
- h) Using a burette filled with sodium thiosulfate (at room temperature) titrate the solution in the flask drop-wise until the solution turns clear.
- i) Record the starting and ending volumes from the burette.
- j) Repeat this titration (steps f-l) for a second flask filled with fresh solution.
- k) Subtract ending volumes from starting volumes to arrive at the volume used for each titration. The volume used is equivalent to the dissolved oxygen content of the water in mg/L.
- I) If the D.O. values from the two titrations differ by more than 5%RPD then the titrations should be repeated.
- m) Remove the D.O probe from the storage bottle and place it in the container holding the water. It must be submerged at least 1 inch below the waters surface. Set the meter to the "0.1 mg/l" measurement mode.. Swirl the probe gently and slowly in the water.
- n) Calibrate the meter to the average of the two dissolved oxygen measurements by turning the "O2 CALIB" knob until the display reads the corresponding D.O. concentration. Record the final calibrated value.

Air Calibration (Standard Calibration)

- a) Set the meter to the temperature measurement mode ("TEMP...").
- b) Record the temperature of the probe in the storage bottle on the record form or in a field logbook.
- c) Refer to the attached table presenting Solubility of Oxygen in Water values (also on back of meter) and find the solubility of oxygen at the corresponding temperature.
- d) Record the appropriate barometric pressure or altitude (use pressure when available).
- e) Refer to the attached table presenting Calibration Values at Various Pressures and Altitudes (also on back of meter) and record the "CALIB VALUE" in % saturation at the corresponding pressure or altitude.
- f) Using the solubility of oxygen value and the % saturation value as a decimal calculate the calibration value by multiplication (i.e. at an altitude Of 1413 ft. and a temperature of 20°C the calibration value would be 8.64 mg/L or 8.6 mg/L).
- g) Set the meter to the D.O. measurement mode ("0.1 mg/l") and adjust the display using the "O2 CALIB" knob to read the calibration value as calculated.
- h) Record the final calibrated value on the record form or in a field logbook.

### Model 85

- 1. Turn on the meter and make sure the meter is in the D.O. mode (will display mg/L).
- 2. Wet the sponge in the calibration/storage chamber and insert the probe into the chamber.
- 3. Allow the D.O. and Temperature readings to stabilize (up to 15 minutes).
- 4. Press the up arrow and down arrow buttons simultaneously.
- 5. When prompted to do so, enter the local altitude in hundreds of feet by scrolling up or down with the up or down arrow buttons.
- 6. Press enter when the correct altitude is displayed. Base altitude on barometric pressure when possible, as it will have an affect on the calibration. See "Air Calibration" above for details.
- 7. When the percent reading is stable, press enter. Save will be displayed on the screen for a few seconds, then the meter will return to the normal operation mode.

NOTE: Each time either of the meters is turned off they should be recalibrated.

### D.O. Measurements

### Model 58 and 85

- 1. Set the meter to the D.O. measurement mode. Place the probe in the liquid to be analyzed and stir it gently and slowly to keep water passing over the probe membrane. The probe should be submerged *at least 1 inch* into the liquid.
- 2. Allow the meter to stabilize on a reading (should take less than one minute). Once the meter has stabilized record the reading.
- 3. If the meter will not stabilize check the probe for air bubbles. If bubbles are found shake the probe firmly but not violently a couple of times and re-measure. If problems still occur probe maintenance is necessary.
- 4. The meter should be placed in the "ZERO" mode between measurements to conserve battery life. Be sure to turn off the meter when the final D.O. measurement has been taken and recorded.

### Meter Maintenance/Storage

1. Store the meter in a safe dry place.

GBM<sup>c</sup> v2.1 May 2002 Page 3 of 4

- 2. Keep the probe cover on the probe when not in use and between measurements.
- 3. A small piece of sponge or paper towel soaked in clean water should be place in the bottom of the probe cover to keep the probe surface moist. The probe should **never** be allowed to dry out.
- 4. The probe membrane should be replaced at a minimum every 6 months or whenever the meter fails to perform to standard.
- 5. Use only YSI replacement parts and probes with the meter.

## **Quality Assurance/Quality Control**

- 1. Meters are calibrated biweekly (at a minimum) to ensure proper function and accuracy.
- 2. Values measured during biweekly calibrations are compared between meters to verify accuracy.
- 3. Duplicate measurements should be taken at a rate of 10% (minimum) of samples analyzed.

## 3.0 Conductivity Meter Calibration and Measurement SOP

## Purpose

This SOP describes the methods for calibration and use of portable YSI conductivity meters. Field forms used for meter calibration and measurement recording are attached to this SOP.

## Procedure

## Calibration

Calibration of YSI conductivity meters is performed by the manufacturer and is rarely needed. However, the accuracy of the meter should be monitored bi-weekly and before each use. The bi-weekly monitoring of accuracy should be recorded in the calibration log book, along with date/time performed and name of person performing task.

- 1. Turn the instrument on and allow it to complete its self test procedure.
- 2. Bi-weekly the instrument should be checked for accuracy using a standard of 80 uS/cm. The meter should be set to measure specific conductance. The steps listed below under "Conductivity Measurements" should be followed for checking conductivity accuracy. This standard check should be recorded in the calibration log book.
- 3. YSI conductivity meters are calibrated a minimum of once a year or when there is reason to believe the instrument is reading incorrectly (outside the range of  $80\pm10$  uS/cm during the accuracy check).
- 4. To calibrate, select a calibration solution, which is most similar to the sample you will be measuring. The following should serve as a guideline:

for sea water choose a 50 mS/cm conductivity standard, for fresh water choose a 1 mS/cm conductivity standard, and for brackish water choose a 10 mS/cm conductivity standard.

- 5. Place at least 3 inches of solution in a clean glass beaker.
- 6. Insert the probe into the beaker deep enough to completely cover the oval shaped hole on the side of the probe. Do not rest the probe on the bottom of the container -- suspend it above the bottom at least 1/4 inch.

GBM<sup>c</sup> v3.1 May 2002 Page 1 of 3

- 7. Allow at least 60 seconds for the temperature reading to become stable.
- 8. Move the probe vigorously from side to side to dislodge any air bubbles from the electrodes.
- 9. Press and release the up and down keys (∧,∨) at the same time. The CAL symbol will appear at the bottom left of the display to indicate that the instrument is now in Calibration Mode.
- 10. Use the up or down arrow key to adjust the reading on the display until it matches the value of the calibration solution you are using.
- 11. Once the display reads the exact value of the calibration solution being used press the ENTER key once. The word "SAVE" will flash across the display for a second indicating that the calibration has been accepted.

### Conductivity Measurements

- 1. Press the "ON/OFF" button to turn the meter on. The meter will go through a selftest procedure, which will last for several seconds. The cell constant will be displayed when the self-test is finished. Consult the Operations Manual if an error is displayed during the self-test.
- Select the mode of measurement on the meter by pressing and releasing the "MODE" button on the meter. GBM<sup>C</sup> generally measures specific conductance in its field studies. The following are the modes of measurement capable of the YSI 30 meter:

*Conductivity* - measurement of the conductive material in the liquid sample without regard to temperature. Displayed when the large numbers on the display will be followed by the respective units, and the temperature units will not be flashing.

Specific Conductance - temperature compensated conductivity which automatically adjusts the reading to a calculated value which would have been read if the sample had been at 25°C. Displayed when the large numbers on the display will be followed by the respective units, and the temperature units will be flashing.

Salinity - A calculation done by the instrument electronics, based upon the conductivity and temperature readings. Displayed when large numbers on the display will be followed by ppt.

3. Insert the probe into the solution being measured for conductivity, making sure that the probe is inserted deep enough to cover the hole located on its side. If possible,

refrain from touching any solid located in the solution, and hold the probe at least 1/4 inch from the bottom and sides of any container used to hold the sample. The probe should also be vigorously shaken in the solution to dislodge any air bubbles, which may be adhered.

NOTE: The YSI meters are factory calibrated, and retain the last calibration conducted. This means that once batteries are installed, or when the meter is turned on, you are ready to begin taking measurements.

### Meter Maintenance/Storage

Always rinse the conductivity cell with clean water after each use.

### Cleaning the conductivity cell

- 1. Dip the cell in cleaning solution of 1:1 isopropyl alcohol and 10N HCl, and agitate for two to three minutes.
- 2. Remove the cell from the cleaning solution.
- 3. Use a nylon brush to dislodge any contaminants from inside the electrode chamber.
- 4. Repeat steps one and two until the cell is completely clean. Rinse the cell thoroughly in deionized water.
- 5. Store the conductivity cell in the meter storage chamber.

## **Quality Assurance/Quality Control**

- 1. Meters are calibrated biweekly (at a minimum) to ensure proper function and accuracy.
- 2. Values measured during biweekly calibrations are compared between meters to verify accuracy.
- 3. Duplicate measurements should be taken at a rate of 10% (minimum) of samples analyzed.

# 4.0 Temperature Measurement/Check SOP

## Purpose

This SOP describes the methods for the measurement of temperature using the Orion MODEL 230 A pH meter, Hach MODEL 50050 pH meter, YSI MODEL 58 DO meter, YSI MODEL 30 conductivity meter, and YSI MODEL 85 combination meter. Field forms used for meter calibration and measurement recording are attached to this SOP.

## Procedure

### Accuracy Check for all Instruments

- 1. Insert the probe for the corresponding instrument into a container holding water, and allow the temperature reading to stabilize.
- 2. Record the temperature displayed on each respective instrument in the calibration log book along with date/time and individual performing the task.
- 3. Compare the actual temperature of the water measured with a certified calibrated thermometer to the temperature measured by the respective instruments.
- 4. If the temperature relative percent difference exceeds 20%, then do not use that particular meter for temperature analysis.

### Temperature Measurement

### Orion Model 230 A pH meter

- 1. Connect the combination pH/temperature electrode to the meter.
- 2. Turn the meter on, and allow it to go through its self-test.
- 3. Insert the probe into the solution to be measured.
- 4. The temperature read out is located in the lower left of the LCD on the meter.

### HACH EC10 pH/mV/temperature meter

- 1. Connect the combination pH/temperature electrode to the meter.
- 2. Turn the meter on, and allow it to go through its self-test.
- 3. Insert the probe into the solution to be measured.
- 4. The temperature read out is located in the prompt line followed by ATC.

## YSI Model 30 Conductivity meter and YSI Model 85 Combination meter

- 1. Turn the meter on.
- 2. Insert the probe into the solution to be measured.
- 3. The temperature read out is located in the lower right of the LCD on the meter.

GBM<sup>c</sup> v4.1 May 2002 Page 1 of 2

### YSI Model 58 Dissolved Oxygen meter

- 1. Turn the meter to temperature mode.
- 2. Insert the probe into the solution to be measured.
- 3. The temperature read out is located on the screen.

## **Quality Assurance/Quality Control**

- 1. Meters are calibrated biweekly (at a minimum) to ensure proper function and accuracy.
- 2. Values measured during biweekly calibrations are compared between meters to verify accuracy.
- 3. Duplicate measurements should be taken at a rate of 10% (minimum) of samples analyzed.

# 5.0 Flow Measurements SOP

## Purpose

This SOP describes the procedure used in the determination of water flow, which is necessary for the calculation of water volume passing through a given water body.

No single method for measuring discharge is applicable to all types of stream channels. The preferred procedure for obtaining discharge data is based on "velocity-area" methods (e.g., Rantz and others, 1982; Linsley et al., 1982). For streams that are too small or too shallow to use the equipment required for the velocity-area procedure, two alternative procedures are presented.

Stream discharge is equal to the product of the mean current velocity and vertical cross sectional area of flowing water. Discharge measurements are critical for assessing pollutant loading and reaeration rates used for dissolved oxygen modeling, as well as, other characteristics that are very sensitive to stream flow differences. Discharge will be measured at a suitable location within the sample reach that is as close as possible to the location where chemical samples are collected so that these data correspond. Field data forms for recording measurements are attached to this SOP.

## Procedure

## Velocity Area Procedure

Because velocity and depth typically vary greatly across a stream, accuracy in field measurements is achieved by measuring the mean velocity and flow cross-sectional area of many increments across a channel. Each increment gives a subtotal of the stream discharge, and the whole is calculated as the sum of these parts.

A Marsh McBirney Model 201 Portable Water Current Meter will be used whenever conditions allow. The site selected for flow measurements will be chosen on the basis of the most uniform streambed cross-section. This facilitates the best measurements since non-uniform streambeds may cause errors in velocity and depth. Manmade structures (bridges and culverts) may be used as flow measurement sites, but are not ideal.

Discharge measurements are generally made at only one carefully chosen channel cross section within the sampling reach. It is important to choose a channel cross section that is as much like a canal as possible, void of obstructions, as this provides the best conditions for measuring discharge by the velocity-area method. Rocks and other obstructions may be removed to improve the cross-section before any measurements are made. However, because removing obstacles from one part of a cross-section affects adjacent water velocities, you must not change the cross-section once you commence collecting the set of velocity and depth measurements.

The procedure for obtaining depth and velocity measurements is outlined below:

- Locate a cross-section of the stream channel for discharge determination that exhibits as many of these qualities as possible: Segment of stream above and below cross-section is straight, depths mostly greater than .5 feet, and velocities mostly greater than 0.5 feet/second. Do not measure discharge in a pool. Flow should be relatively uniform, with no eddies, backwaters, or excessive turbulence.
- 2) Stretch a tape measure across the stream perpendicular to its flow, with the "zero" end of the rod or tape on the left bank, as viewed when looking downstream. Tightly suspend the measuring tape across the stream, approximately one-foot above water level and secure at both ends.
- 3) Record the total wetted distance indicated by the tape from the left descending bank (LDB) to the right descending bank (RDB).
- 4) Attach the velocity meter probe to the calibrated wading rod that indicates depth and holds the flow probe at 60% depth. Check to ensure the meter is functioning properly and the correct calibration value is displayed. If necessary the meter and probe can be calibrated according to the instructions in the QA/QC section of this SOP (which is based on manufacturers recommendations).
- 5) Divide the total wetted stream width into equally sized intervals, generally one foot wide (minimum of ten measurement locations, but never less than 1/2 foot increments).
- 6) Stand downstream of the tape and to the side of the midpoint of the first interval (closest to the LDB).
- 7) Place the wading rod in the stream at the midpoint of the interval. Record the distance from the left bank (in feet) and the depth indicated on the wading rod (in tenths of a foot) on the Flow Measurement Form.
- 8) Stand downstream of the probe to avoid disrupting the stream flow. If the water depth is less than 3 ft., adjust the position of the probe on the wading rod so it is at 60% of the measured depth below the surface of the water (Meador et al., 1993). The probe is set at the 60% depth by adjusting the foot scale on the sliding rod with the tenth scale on the depth gauge rod. If the water depth is greater than 3 ft., take measurements at 20% and 80% of the depth from the water surface. The average of these two readings is considered the water velocity for the respective measurement point. To set the probe at the 20% depth, first multiply the water depth by two, then use the calculated number to line up the foot scale as with the

60% depth. The same method is used for the 80% depth, except the calculated value is the water depth divided by two.

- 9) Face the probe upstream at a right angle to the cross-section. Do not adjust the angle of the probe, even if local flow eddies hit at oblique angles to the cross-section.
- 10) Wait 20 seconds to allow the meter to equilibrate then measure the velocity. Record the value on the Flow Measurement Form. For the electromagnetic current meter (e.g., Marsh-McBirney), use the lowest time constant scale setting on the meter that provides stable readings.
- 11) Move to the midpoint of the next interval and repeat Steps 6 through 8. Continue until depth and velocity measurements have been recorded for all intervals.
- 12) Record the data from each measurement on the Discharge Flow Recording form.

### Timed Filling Procedure

In channels too "small" for the velocity-area method, discharge can be determined directly by measuring the time it takes to fill a container of known volume. "Small" is defined as a channel so shallow that the current velocity probe cannot be placed in the water, or where the channel is broken up and irregular due to rocks and debris, and suitable cross-section for using the velocity area procedure is not available. This can be an extremely precise and accurate method, but requires a natural or constructed spillway of free-falling water. If obtaining data by this procedure will result in a lot of channel disturbance or stir up a lot of sediment, wait until after all biological and chemical measurements and sampling activities have been completed.

Choose a cross-section of the stream that contains one or more natural spillways or plunges that collectively include the entire stream flow. A temporary spillway can also be constructed using a portable V-notch weir, plastic sheeting, or other materials that are available onsite. Choose a location within the sampling reach that is narrow and easy to block when using a portable weir. Position the weir in the channel so that the entire flow of the stream is completely rerouted through its notch. Impound the flow with the weir, making sure that water is not flowing beneath or around the side of the weir. Use mud or stones and plastic sheeting to get a good waterproof seal. The notch must be high enough to create a small spillway as water flows over its sharp crest.

Make sure that the entire flow of the spillway is going into the bucket. Record the time it takes to fill a measured volume on the Field Measurement Form. Repeat the procedure five times. If the cross-section contains multiple spillways, you will need to do separate determinations for each spillway. If so, clearly indicate which time and volume data replicates should be averaged together for each spillway; use additional field measurement forms if necessary.

## Neutrally-Buoyant Object Procedure

In streams too shallow to use the velocity-area method the neutrally-buoyant object method may be employed. This procedure involves measuring the time it takes a floating object to pass a known stream distance. This is done using buoyant objects that float low in the water such as key limes, sticks, or small rubber balls. The following steps should always be followed to ensure accurate results.

- 1. Mark off on the stream bank the starting and ending points. These should be far enough apart to allow at least 10 seconds of drift time between them. Record the distance between the two points in feet to the nearest 0.1 foot.
- 2. Place the buoyant object in the water upstream of the starting point and begin timing on a stopwatch when the object reaches the start line.
- 3. Record the elapsed time till the object crosses the end line, in seconds to the nearest 0.1 seconds.
- 4. Repeat steps two and three at least three times to develop an average time of passage in seconds.
- 5. Average velocity is equal to distance divided by average elapsed time.
- 6. Measure cross sectional depths and width in the middle of the flow path to acquire a cross sectional wetted area. This can be used along with the average velocity to determine flow in cubic feet per second.

### **Observations and Calculations**

Discharge is usually determined after collecting water chemistry samples. Although discharge is part of the physical habitat indicator, it is presented as a separate section.

Flow data will be recorded on the Discharge Flow Recording forms. Any additional observations will be recorded in field notebooks. Calculations will be performed using hand held calculators to determine flow volume in CFS. The calculated volume will be evaluated for reasonableness and may be repeated if there are questions regarding the flow accuracy. A sketch of the stream cross section should be added to the flow form, especially if there were critical conditions that may have impacted the flow measurement.

The following calculations are used to calculate flow/discharge:

- a. Calculate Area (A) by multiplying Width (W) X Depth (D).
- b. Calculate discharge (Q) by multiplying Velocity (V) by Area (A).
- c. Calculate total Area (A) and Discharge (Q) in each respective column.

GBM<sup>c</sup> v5.1 May 2002 Page 4 of 5 d. Calculate average Velocity (V) by dividing summed Discharge (Q) by summed area or by taking an average of each velocity measurement.

### **QA/QC Stream flow Current Velocity Meters**

Field teams will be using an electromagnetic type meter (e.g., Marsh McBirney Model 201 D). General guidelines regarding performance checks and inspection of current meters are presented below. If required the operating manual for the specific meter will be referenced for information as necessary.

Periodically or prior to field studies, the meter is calibrated to a zero value using a bucket of quiescent water and the following routine. The probe is placed in the bucket and allowed to sit for 30 minutes with no disturbance. The velocity value obtained should be  $0.0 \pm 0.1$ . The meter is adjusted to zero if the value is outside this range.

Duplicate flow measurements are taken for at least one in ten sites where flow is measured. A relative percent difference (RPD) is calculated, and must be less than 20% to be within control parameters. Any values exceeding 20% are investigated to determine the cause and the need for corrective action. When possible flow measurement values are compared to gauging station data or data from fixed flow meters as a QA check

## 6.0 General Physical Characterization SOP

## Purpose

The physical characteristics of an entire watershed are important components of an overall biological assessment of an individual stream. Watershed features and uses have a great affect on the development of a stream morphology and its biota.

Physical characterization includes documentation of weather conditions before and during the survey, description of stream origin and type, flow status, watershed features (landuse, etc), instream morphological features, water observations, and sediment observations. These parameters provide a general overview of the stream system in which a study is occurring.

### Procedure

A General Physical Characterization Field Form (attached) should be completed for each stream reach in a study. The information (apart form general headings) provided below is included on the field form. A brief explanation of how to complete the information under each parameter heading is provided below.

Parameter:

- 1. Stream Name
- 2. Latitude/Longitude
- 3. River Basin (basin the stream is a part of)
- 4. Weather Conditions

Check the appropriate box for the current weather conditions and the weather conditions in the past 24 hours. If there is cloud cover provide an approximation of the percent coverage. Indicate if there has been significant rain in the past 7 days. Provide an estimate (or measure) of air temperature.

5. Stream Attributes

Check the box indicating if the stream is perennial, intermittent, or tidal. Check if the stream is a coldwater habitat (trout) or a warmwater habitat (bass). Mark the correct stream geological origin (glacial, montane, swamp, etc.) Estimate or measure, on a topographic map, the catchment size and record on the field form.

### 6. Hydrology

Check the appropriate current flow status of the stream (low, moderate, high) and indicate if flow measurements will be taken.

7. Watershed Features

Check the appropriate boxes concerning dominant land uses (pasture, industrial, etc.) in the area of the stream. Mark appropriate boxes concerning potential non-point source (NPS) pollution contributions. Note watershed erosion evidence observed.

8. Instream Features

Assess what portion of the stream reach can be characterized by the three morphological types (riffle, run, pool). Make an effort to assess the entire reach accurately and rank each morphological type as a percentage of the whole reach (i.e. 30% riffle, 50% run, 20% pool). Complete this parameter by having each participating field biologist collaborate in the ratings. Have each collaborating biologist initial the field form in this section. Note if any channelization or dams are present.

9. Water/Observations

Assess the water for odors, turbidity, and surface sheen's and mark the appropriate descriptor listed on the field form.

10. Sediment/Observations

Assess the sediment for odor and deposits and mark the appropriate descriptor on the field form.

Make additional notes and observations for each category directly on the field form or provide a code to reference comments written in a separate field notebook.

# 7.0 Semi-Quantitative Habitat Assessment SOP

## Purpose

Physical habitat in streams includes all those physical attributes that influence or provide sustenance to biological attributes, both botanical and zoological, within the stream. Stream physical habitat varies naturally, as do biological characteristics; thus, habitat conditions differ even in the absence of point and anthropogenic non-point disturbance. Within a given ecoregion, stream drainage area, stream gradient and the geology are likely to be strong natural determinants of many aspects of stream habitat, because of their influence on discharge, flood stage, and stream energy (both static and kinetic). Kaufmann (1993) identified seven general physical habitat attributes important in influencing stream ecology and the maintenance of biological integrity:

- 1) channel dimensions,
- 2) channel gradient,
- 3) channel substrate size and type,
- 4) habitat complexity and cover,
- 5) riparian vegetation cover and structure,
- 6) anthropogenic alterations, and
- 7) channel-riparian interaction.

Land use activities can directly or indirectly alter any and/or all of these attributes. Nevertheless, the trends for each attribute will naturally vary with stream size (drainage area) and overall gradient. The relationships of specific physical habitat measurements described in this section to these seven attributes are discussed by Kaufmann (1993). Although they are actually biological measures, aquatic macrophytes, riparian vegetation, in-stream habitat and canopy cover are included in this and other physical habitat assessments because of their role in habitat structure and light inputs

The objectives of a habitat characterization are to:

- 1) assess the availability and quality of habitat for the development and maintenance of benthic invertebrate and fish communities, and
- 2) evaluate the role of habitat quality in relation to the attainment of designated uses and biological integrity.

There are three main headings for the components of the physical habitat characterization each with several categories. Measurements for each of the components (14 categories total) are recorded on copies of a two-page field form entitled Stream Habitat Assessment (Semi-Quantitative), and include:

- 1) Channel Morphology
  - a) Reach Length Determination
  - b) Riffle-Pool Sequence
  - c) Depth and Width Regime

GBM<sup>c</sup> v1.0 April 5, 2005 Page 1 of 12

### 2) In-Stream Structure

- a) Epifaunal substrate
- b) In-Stream Habitat
- c) Substrate Characterization
- d) Embeddedness
- e) Sediment Deposition
- f) Aquatic Macrophytes and Periphyton
- 3) Riparian Characteristics
  - a) Canopy Cover
  - b) Bank Stability and slope
  - c) Vegetative Protection
  - d) Riparian Vegetative Zone Width
  - e) Land-use Stream Impacts

Field physical habitat measurements from a field habitat characterization are used in conjunction with water chemistry, temperature, macroinvertebrate and vertebrate (typically fish) community analyses, and other data sources to determine the status of the target streams attainment of designated uses and the water quality required to maintain those uses.

These procedures are intended for evaluating physical habitat in wadeable streams, but may be adapted for use in larger streams as necessary. The field procedures applied to this characterization are most efficiently applied during low flow conditions and during times when terrestrial vegetation is active, but can also be applied during spring seasonal conditions with higher base flows. This collection of procedures is designed for monitoring applications where robust, quantitative or semi-quantitative descriptions of habitat are desired. This semi-quantitative habitat procedure is usually used in conjunction with the *General Physical Habitat Characterization* and the *Qualitative Habitat Assessment* to provide a detailed view of the streams habitat condition.

The habitat characterization protocol provided herein differs from other rapid habitat assessment approaches (e.g., Plafkin et al., 1989, Rankin, 1995) by employing a, systematic spatial sampling that minimizes bias in the placement and positioning of measurements. Measures are taken over defined channel areas and these sampling areas are placed systematically at spacing that is proportional to the length of the entire study reach. This systematic sampling design provides resolution appropriate to the length of the study reach. The habitat assessment protocol summarized in this SOP is based on those of USEPA in their EMAP and RBP procedures (Lazorchak, 1998 and Barbour, 1999), USGS NAWQA program (Fitzpatrick, 1998) and Missouri Department of Natural Resources ESP (Sarver, 2000).

We strive to make the protocol objective and repeatable by using previously developed methods to produce repeatable measures of physical habitat in place of estimation techniques wherever possible.

Two people typically complete the specified assessment, including stream flow measurements, in about two hours of field time. However, the time required can vary considerably with channel characteristics.

The procedures are employed on a sampling reach of length equal to 20 times the bankfull width, or at least 100 yards of in-stream distance. The semi-quantitative habitat sampling reach length should coincide as much as possible with that of the fish and macroinvertebrate

GBM<sup>c</sup> v1.0 April 5, 2005 Page 2 of 12 collection reaches. Measurements are taken in each of 10 sub-reaches, which are systematically placed, at intervals equal to approximately one tenth (1/10) the length of the represented study reach. Measurements and observations for each habitat characteristic are made in each of the sub-reaches as the assessment team moves along the stream channel. An average or total of the scores for each of the 10 sub-reaches is then calculated resulting in a mean value for each characteristic for the entire reach.

### Procedure

The habitat assessment will be conducted within (or to the extent possible) the stream reach from which the benthic and fish communities are to be characterized. The physical habitat will be characterized from measurements and observations of stream attributes made within 10 sub-reaches. The team assessing habitat should move along the stream channel (near the thalwag) observing habitat characteristics within each sub-reach. A description of and the rational for measuring each of the attributes are provided below. The details of how these attributes are recorded/evaluated are also described below in the following sections.

### Channel Morphology

Channel morphology (or geomorphology) is a characterization of the shape of the stream channel including measurements and/or visual estimates of channel dimensions and riffle-pool sequences. i.e. a measure of the amount of riffles, runs and pools that occur in a given reach.

The channel observed includes that portion of the stream between the base flow wetted area and the top of the normal high water channel often referred to as the bankfull stage (Figure 1.) The "bankfull" or "active" channel is defined as the channel that is filled by moderate-sized flood events that typically occur every one or two years. Such flow levels are on the verge of entering the flood plain and are believed to control channel dimensions in most streams.

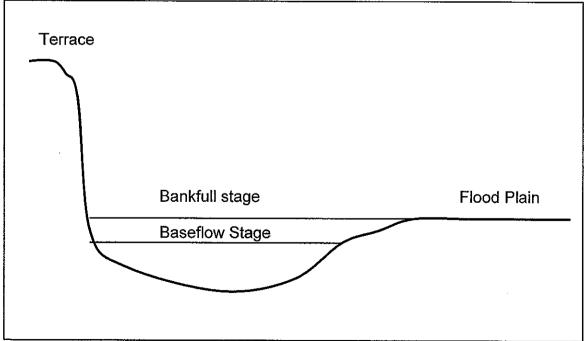



Figure 1. Stream channel depicting bankfull stage.

GBM<sup>c</sup> v1.0 April 5, 2005 Page 3 of 12

### 1) Reach Length Determination

First, bankfull depth (depth from stream bottom in thalwag to bankfull stage on the bank) is identified in at least two separate riffles (or alternatively runs in streams not exhibiting riffle morphology) in the study reach. Then bankfull depth and width is determined from 5 stream transects and recorded on the record sheet. Transect locations should be selected to include each prominent morphology type represented in the stream. Bankfull depths are measured to the nearest 1/10 foot and bankfull widths are measured to the nearest foot using a wading rod and tape measure/range finder, respectively. An average of the 5 bankfull widths is then calculated and multiplied times 20 to arrive at the total reach length for assessment. This total length is then divided by ten to determine the length of each of the ten sub-reaches. Analysis of the first sub-reach should begin at the head of a given stream morphology (i.e. riffle, run or pool).

#### 2) Riffle-Pool Sequence

Stream morphology refers to the abundance and placement (sequencing) of riffles, runs, and pools in a stream system. This sequencing is an indicator of a streams hydrological regime and stability as well as a determinant of its potential to sustain diverse aquatic communities. Beginning at the head of a morphological type (riffle, run or pool) the length of each morphological type in the stream reach should be measured using a range finder or tape measure and recorded on the record sheet. The sequence of each morphological type should be depicted on the record sheet using the provided notations so as to create a map to the location of each riffle, run or pool. The resulting measurements should provide a quantitative measure of the percent of the study reach representing each stream morphological type (i.e. 40% riffle, 30% run, 30% pool, etc).

#### 3) Depth and Width Regime

The average stream depth and width will be estimated in riffles (or runs in the absence of riffles) and pools in each sub-reach. Depths will be measured along a transect, similar to that depicted in Figure 2, in a representative section of each riffle and pool in the sub-reach. Depths are generally taken in the thalwag (deepest area in stream channel) and approximately half way between the thalwag and the left and right banks. An estimated average depth for riffles and pools occurring in a sub-reach is derived from the cross-sectional depth measurements and recorded on the record sheet to the nearest 1/10 foot. Once completed for all 10 sub-reaches this should provide accurate semi-quantitative measurements of riffle and pool average depth and depth variability across the entire stream reach.

Stream wetted widths will be measured along a transect, in a representative section of each riffle and pool in the sub-reach. An estimated average width for each morphological type in a sub-reach should be recorded on the record sheet to the nearest foot. Once completed for all 10 sub-reaches this should provide accurate semiquantitative measurements of riffle and pool widths across the entire stream reach.

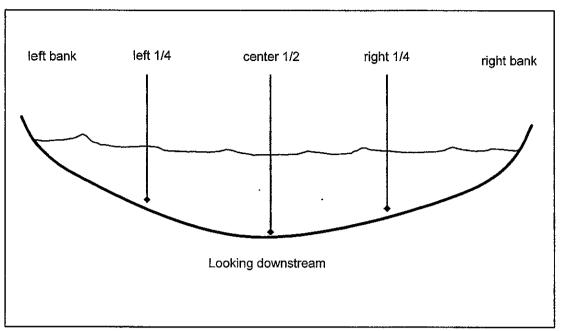



Figure 2. Approximate position of measurements across transect.

### In-Stream Structure

In-stream structure describes the characteristics of the stream within the wetted perimeter that makes up the habitat suitable for colonization of aquatic biota. This includes information about natural substrates (gravel, boulders, etc), aquatic plants and algae and debris that has been washed into or fallen into the stream, such as logs, leaves, etc. A stream capable of sustaining diverse aquatic communities will contain a variety of in-stream structure including some that is permanent and some that is mobile during high flow events.

4) Epifaunal Substrate (Macroinvertebrates)

Epifaunal substrate refers to the area on the bottom of the stream (entire wetted perimeter) where macroinvertebrates inhabit. This attribute is scored as a percentage of the stream bottom in a sub-reach which contains substrates suitable for macroinvertebrate colonization. Scoring for this attribute should rely heavily on the stability of the substrate, the size of the interstitial spaces, and the cleanliness (not covered in thick algae or sediment deposits) of the substrate. Cobbles and coarse gravel will score higher percentages as they contain larger interstitial spaces for colonization, while sand and silt would score lower since they provide little spaces. In addition, root wads along the bank would score higher as they are more stable features than would depositional areas or small woody debris.

5) In-Stream Habitat (Fish)

In-stream habitat refers to the habitat features within the wetted perimeter of the stream sub-reach which are available for fish colonization. This attribute is scored as the percentage of the stream bottom (wetted perimeter) in a sub-reach which is covered with fish habitat. As with the epifaunal substrate attribute

substrates composed of cobbles, coarse gravels and boulders score higher for fish cover as they provide better spaces for colonization. Other habitats that score high are large woody debris (individual logs with diameter >4 inches or complex woody structures composed of rootwads, logs, or limbs with diameter of 1.5 ft. or greater)and undercut banks. While habitats that score lower are those such as depositional areas, leaf packs, and fine sediments or sand.

### 6) Substrate Characterization

The dominant stream substrate size classification for riffles and pools within each subreach will be recorded on the record sheet. Only substrates within the wetted perimeter are evaluated. This information will be used to characterize the similarities and or differences in substrate structure and complexity in the riffles and pools of the study reach as it relates to the development and maintenance of the systems biological integrity.

Classify the particle into one of the size classes listed on the Semi-Quantitative Habitat Assessment Field Form based on the size of the intermediate axis (median dimension) of its length, width, and depth. This "median" dimension is the sieve size through which the particle can pass.

| Bedrock       | smooth or rough  |
|---------------|------------------|
| Boulder       | >25 cm           |
| Cobble        | 6-25 cm          |
| Coarse Gravel | 1.6 – 6 cm       |
| Fine Gravel   | 0.2 – 1.6 cm     |
| Sand          | <0.2 cm          |
| Silt/Mud/Clay | fine, not gritty |

Always make notations for unusual substrates such as concrete or asphalt and denote these artificial substrates as "other" and describe them in the comments section of the field data form. Code and describe other artificial (such as large appliances, tires, car bodies, etc.) substrates in the same manner.

#### 7) Embeddedness

Embeddedness is the fraction of a particle's surface that is surrounded by (embedded in) sand or finer sediments on the stream bottom. By definition, the embeddedness of sand, silt, clay, and muck is 100 percent and the embeddedness of hardpan and bedrock is 0 percent.

For this attribute estimations are not made per sub-reach but for the entire stream reach as a whole. An estimation of the "percent embedded" is recorded for coarse riffle substrates in the study reach. This is accomplished by removing 12 pieces of cobble, gravel, or small boulders in at least two different riffles (three maximum) and recording the percent embedded for each. Percent embedded can be visually observed as the darkened portion of the coarse substrate that was buried in the streams fine bed material. If the darkened area covers half the coarse substrates height than the percent embedded is 50%, etc (Figure 3.)

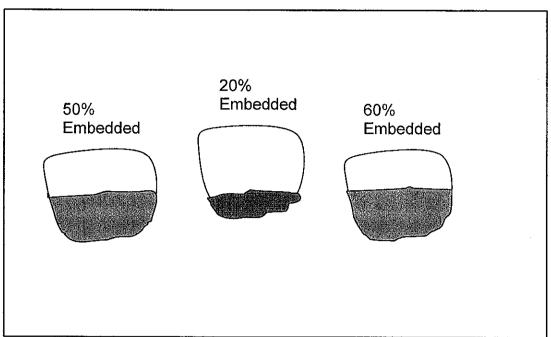



Figure 3. Depiction of percent embedded characteristics.

8) Sediment Deposition

The sediment deposition attribute refers to the amount of stream bottom (in the wetted perimeter) that is covered by fine sediments and/or particulate organic matter. This attribute is scored as a percentage of the bottom in each sub-reach which is covered by such loose materials.

9) Aquatic Macrophytes and Periphyton Coverage

An estimate of the percentage of area covered by macrophytes and periphyton in a subreach is made and recorded both for riffles and pools. Macrophytes refers to aquatic plants that grow in the stream (both emergent and submerged), and periphyton refers to algae that grows on fixed surfaces. This attribute helps biologists determine stream productivity from a nutrient enrichment perspective and also for the availability of food sources for aquatic biota.

### Riparian Characteristics

The riparian area includes the area from the stream bank in a direction away from the stream into the upland areas. It is these stream-side riparian zones that ultimately help shape the stream and provide organic material as nutrients to the aquatic system. A well developed riparian area protects stream banks form erosion, provides shading, inputs nutrients, provides materials as habitat (in-stream structure) and filters run-off entering the stream. In the absence of well developed riparian zones the stream is more impacted by encroaching land-uses.

#### 10) Canopy Cover

Canopy cover (percent stream shading) over the stream is determined for each of the sub-reaches. Estimates of cover are made by looking into the canopy over the stream channel. Estimates are made from mid-channel and each quarter channel to determine the average percent canopy cover for the width of the stream in the sub-reach. Percent canopy at each measurement point can be estimated visually or by use of a spherial densiometer.

#### 11) Bank Stability and Slope

Bank stability is an important attribute that is an indication of a stream reaches overall hydrologic equilibrium. A bank's stability also determines its ability to provide stable habitat for biota and its propensity to release large sediment yields to the stream, which ultimately cause high turbidity and deposition in downstream reaches. The right and left banks are classified according to the following categories:

Score 9-10 = Stable, little evidence of erosion, < 5% bank eroding Score 6-8 = Moderately stable, some evidence of new erosion, 5-29% bank eroding Score 3-5 = Moderately unstable, obvious new erosion, 30-59% bank eroding Score 1-2 = Unstable, most of bank actively eroding, 60-100% bank eroding

Banks composed of sands and gravels are much less stable than banks composed of silt/mud/clay or cobbles. The density of well rooted (more permanent) vegetation and root structure also help to improve a banks stability.

Average bank slope (in degrees) in a sub-reach, is recorded for each bank (left and right). Bank slope affects the stability of a bank and is an indicator of past erosion. A gentle slope may average 30° while a steep or undercut bank may average 90° or 100°, respectively.

12) Vegetative Protection

Bank vegetative protection is measured as a percent of the bank surface area which is covered by stable riparian vegetation and their associated roots in a sub-reach. Each bank (right and left) is assessed separately and the value recorded on the record sheet. Banks are assessed from the edge of the water to the top of the first terrace or normal top of bank.

#### 13) Riparian Vegetative Zone Width

Riparian zone with encompasses the area from the top of the normal stream bank outwards into the upland area. The broader the riparian vegetative zone width the more protected the stream banks are from alteration, the fewer pollutants will enter the stream from run-off, and the more available food sources there are to be deposited into the stream from the surrounding forest. Riparian zone width is scored for each bank in a sub-reach according to the following scale:

Score 9-10 = Riparian Zone Width > 18 meters Score 6-8 = Riparian Zone Width 18 - 12 meters Score 3-5 = Riparian Zone Width 11 - 6 meters Score 1-2 = Riparian Zone Width < 6 meters

GBM<sup>c</sup> v1.0 April 5, 2005 Page 8 of 12 14) Land-Use Stream Impacts

Significant Alteration of the land-uses in the immediate riparian area can have detrimental affects on the stream habitat and biota. Urban and agricultural activities are often considered the more prominent of those land-uses that may impact a stream. These impacts are assessed by indicting a specific land-use impact associated with a sub-reach (on either bank) on the record sheet and assigning a degree of impact score to the land-use. The following land-use categories and impact scoring system are provided:

Land-uses: C = Cattle, R = Row Crops, U = Urban encroachment, I = Industrial Encroachment, and O = Other (noted on field form)

Scoring: 0 = no land-use impacts,

- 1 = minor impacts,
- 2 = moderate impacts, and
- 3 = major impacts

### Scoring and Analysis of Habitat Assessment Data

Scores from the Semi-Quantitative Habitat Assessment can be utilized in two different ways. First, data collected for each attribute (assessment category) can be used independently to describe the study reach collectively. This method results in information such as: average riffle depth, average pool width, %riffle in entire reach, average bank stability, average (median) substrate size class in pools and riffles, mean %canopy cover, etc. Second, the data collected during the assessment can be used in conjunction with the Qualitative Habitat Assessment procedure to score each of the ten "qualitative" indices with near quantitative accuracy (semi-quantitative). A combination of the two methodologies should be incorporated into all intensive aquatic biota field studies where habitat assessment accuracy and repeatability is critical. The following sections outline the scoring of the qualitative habitat indices using the semi-quantitative data.

### *High Gradient (riffle-pool stream complexes)*

1) Epifaunal Substrate / Available Fish Cover

Average values from semi-quantitative categories 4 (Epifaunal Substrate) and 5 (In-Stream habitat) are combined into an overall average percent coverage and used to score this metric.

The following table presents the scoring criteria:

| Rank       | Optimal | Sub-Optimal | Marginal | Poor  |
|------------|---------|-------------|----------|-------|
| % Coverage | >70%    | 40%-70%     | 20%-39%  | <20%  |
| Score      | 20 -16  | 15 -11      | 10 - 6   | 5 - 1 |

### 2) Embeddedness

Reach average percent embedded (from category 7) is used directly to score this metric.

| Score      | 20 -16  | 15 -11      | 10 - 6   | 5 - 1 |
|------------|---------|-------------|----------|-------|
| % Embedded | <25%    | 25%-50%     | 49%-75%  | >75%  |
| Rank       | Optimal | Sub-Optimal | Marginal | Poor  |

### 3) Velocity / Depth Regime

Semi-Quantitative categories 2 (Riffle-Pool Sequence) and 3 (Depth and Width regime) along with flow and velocity data collected in the reach is used to score this metric. Use the following table to determine which regimes are present:

| Rank       | Slow-deep | Slow-shallow | Fast deep | Fast shallow |
|------------|-----------|--------------|-----------|--------------|
| Velocity   | <1 fps    | <1 fps       | >1 fps    | >1 fps       |
| Depth      | >1.6 feet | <1.6 feet    | >1.6 feet | <1.6 feet    |
| Regime     |           |              |           |              |
| Typical    | Deep pool | Shallow pool | run       | riffle       |
| Morphology |           |              |           |              |

If a reach has deep and shallow pools, and distinctive run and riffle morphology, then you have at least three regimes and possible all four regimes. Score each rank lower if shallow regimes are the missing regimes. Scoring is applied as per the following table.

| Rank Rank   | Optimal 😪    | Sub-Optimal   | Marginal    | Poor       |
|-------------|--------------|---------------|-------------|------------|
| No. Regimes | Four regimes | Three regimes | Two regimes | One regime |
|             | present      | present       | present     | present    |
| Score       | 20 -16       | 15 -11        | 10 - 6      | 5 - 1      |

### 4) Channel Alteration

Scored from visual assessment of entire reach. Not aided by semi-quantitative attributes.

. .

### 5) Sediment Deposition

Reach average percent bottom affected by deposition (from category 8) is used directly to score this metric.

| Rank     | Optimal | Sub-Optimal | Marginal | Poor  |
|----------|---------|-------------|----------|-------|
| % Bottom | <5%     | 5%-30%      | 31%-50%  | >50%  |
| Affected |         |             |          |       |
| Score    | 20 -16  | 15 -11      | 10-6     | 5 - 1 |

Utilize the lower end of each scale to represent reaches where recent sediment bar formation is evident.

### 6) Frequency of Riffles

Using semi-quantitative category 3 (Depth and Width Regime) the average width of the stream is determined as the average of riffle and pool widths combined. Using category 2 (Riffle-Pool Sequence) the distance between riffles can be calculated using the sequencing notations and the morphological lengths. The table presented below should be used to develop scores for this metric.

Example: a reach with an average width of 18 feet, with 4 riffles separated by a 50 foot pool, a 20 foot run, and a 100 foot pool would result in an average distance between riffles of 57 feet. Therefore, the ratio = 57/18 = 3.2 and would rank as Optimal (score @ 18).

| Rank                 | Optimal | Sub-Optimal | Marginal   | Poor    |
|----------------------|---------|-------------|------------|---------|
| Ratio<br>(distance   | <7:1    | 7 – 15 : 1  | 16 -25 : 1 | >25 : 1 |
| between<br>riffles : |         |             |            |         |
| stream width)        |         |             |            |         |
| Score                | 20 -16  | 15 -11      | 10 - 6     | 5 - 1   |

In continuous riffle streams the consistent placement of boulders and logs provides scores in the highest range of the optimal category.

7) Channel Flow Status

Scored from visual assessment of entire reach. Not aided by semi-quantitative attributes.

8) Bank Stability

The average bank stability score for each represented bank from the semi-quantitative assessment (category 11) is directly applied to the qualitative assessment scoring for this metric (i.e. an average reach score of 8 for the right bank and 7 for the left bank gets transferred directly to the qualitative score sheet as such.)

9) Vegetative Protection

Reach average percent bank protected (from category 12 of the semi-quantitative record sheet) is used directly to score this metric for the right and left bank.

| Rank Optimal Sub-Optimal Marginal Poor |        |           |           |      |  |  |
|----------------------------------------|--------|-----------|-----------|------|--|--|
| % Protected                            | >90%   | 70% - 90% | 50% - 69% | <50% |  |  |
| Score                                  | 20 -16 | 15 -11    | 10 - 6    | 5-1  |  |  |

10) Riparian Vegetative Zone Width

The average riparian zone width score for each represented bank from the semiquantitative assessment (category 13) is directly applied to the qualitative assessment scoring for this metric (i.e. an average reach score of 8 for the right bank and 7 for the left bank gets transferred directly to the qualitative score sheet as such.)

### Alternative Metrics for Low Gradient Streams (pool dominated complexes)

2) Pool Substrate Characterization (replacement for Embeddedness)

Using the Substrate Characterization data from the semi-quantitative assessment (category 6) and the aquatic vegetation assessment (category 9) the following table may be used to score this metric.

| Rank                   | Op      | timal     | Sub-Optimal    | Marginal       | Poor                    |
|------------------------|---------|-----------|----------------|----------------|-------------------------|
| Substrate              | Cobble  | or Gravel | Sand/Silt/Clay | Sand/Silt/Clay | Bedrock or<br>Clay Only |
| Macrophytes<br>Present | Yes     | No        | Yes            | No             | No                      |
| Score                  | 20 - 18 | 17 - 16   | 15 - 11        | 10 - 6         | 5 - 1                   |

3) Pool Variability (replacement for Velocity/Depth Regime)

Semi-Quantitative categories 2 (Riffle-Pool Sequence) and 3 (Depth and Width regime) are used to help score this metric. Use the following table to determine pool variability.

| Pool<br>Characteristic | Large-Deep     | Large-Shallow  | Small-Deep     | Small-Shallow  |
|------------------------|----------------|----------------|----------------|----------------|
| Size                   | Length ≥ Width | Length ≥ Width | Length < Width | Length < Width |
| Depth                  | ≥3.2 feet      | < 3.2 feet     | ≥3.2 feet      | < 3.2 feet     |

An equal balance of all four pool types achieves higher scores. A prevalence of shallow pools scores lower.

6) Channel Sinuosity (replacement for Frequency of Riffles)

This metric is assessed separately from the semi-quantitative data. It can be estimated in the field, measured during a longitudinal survey or calculated from current aerial photographs.

# 8.0 Qualitative Habitat Assessment (Habitat Potential) SOP

# Purpose/Objective

After all other samples and field data have been collected, the field team conducts an overall habitat assessment of the stream, makes a general visual assessment of the stream, and performs a final check of the data forms and samples before leaving the stream site. The habitat assessment protocol used is adapted from EPA's "Rapid Bioassessment Protocols..." (Barbour et al, 1999), and has been refined from various applications across the country. The approach focuses on integrating information from specific parameters on the structure of the physical habitat.

The objective of the visual stream assessment is to record field team observations of catchment and stream characteristics that are useful for data validation, future data interpretation, ecological value assessment, development of associations, and verification of stressor data. The observations and impressions of field teams are extremely valuable. Thus, it is important that these observations about stream characteristics be recorded for future data interpretation. The assessment form is designed as a template for recording pertinent field observations. It is by no means comprehensive and any additional observations should be recorded in the Comments section of the form.

Based on the perception gained from collecting samples and measurements from throughout the sampling reach, the reach will be classified as either "Riffle/run" or "Pool/glide" prevalent based on visual impressions of the dominant habitat type. The prevalent habitat type will be based on which habitat type occupies the majority of the length of the sampling reach. A different field data form is completed depending upon the prevalent habitat type.

For each prevalent habitat type, ten characteristics (termed "parameters") of habitat are considered and evaluated as part of the rapid habitat assessment. These parameters are described below. Most of the parameters are evaluated similarly for both types of prevalent (Riffle/run and Pool/glide) habitats. In four cases, the same parameter is evaluated differently, or a different, but ecologically equivalent, parameter is evaluated in riffle/run prevalent streams versus pool/glide prevalent streams. Epifaunal substrates are evaluated differently in riffle/run and pool/glide prevalent streams. Substrate embeddedness is evaluated in riffle/run prevalent streams. The presence of four potential types of microhabitat types based on combinations of depth and current velocity is evaluated in riffle/run prevalent streams, while the presence of four potential

GBM<sup>c</sup> v8.1 May 2002 Page 1 of 6 types of pool microhabitat based on depth and area are evaluated in pool/glide prevalent streams. The frequency of riffles is evaluated in riffle/run prevalent streams, while channel sinuosity is evaluated in pool/glide prevalent streams.

# Procedure

For each of the ten parameters, rate the overall quality of the sampling reach on a scale of 0 to 20. Scores for each parameter are recorded on the pool/glide or riffle/run version of the Qualitative Habitat Assessment Field Form. If the stream is classified as a pool/glide prevalent stream, record your scores for each parameter on the pool/glide version of the Qualitative Habitat Assessment Field Form. Transfer the scores assigned for each parameter to the box in the left-hand column of the form. Sum the scores for each parameter and record the total score in the box at the bottom of page 2 of the form. Divide the total score by ten to arrive at a reach average score.

The following parameters are used for the evaluation:

- 1. epifaunal substrate/available cover,
- 2. (a)embededdness, or
- (b)pool substrate characterization,
- (a)velocity and depth regimens, or (b)pool variability,
- 4. channel alteration,
- 5. sediment deposition,
- 6. (a)frequency of riffles, or (b)channel sinuosity,
- 7. channel flow status,
- 8. bank stability,
- 9. vegetative protection, and
- 10. riparian vegetative zone width.

Each reach will be evaluated by two to four experienced field biologists who ranked each attribute independently and summed them for a total score. The scores were then averaged to produce the overall ranking. Calculated scores placed the reach into a habitat category of optimal (16-20), suboptimal (11-15), marginal (6-10), or poor (1-5). The distinction within the four (4) categories may be subjective. (e.g., a large patch of clear cut logging on a hill overlooking the stream would be rated high within the poor category [a rating of 5] while limited logging activity right on the stream bank would be rated low within the poor category [a rating of 1]). When assessing reach characteristics, the entire sampling reach is considered a third level evaluation.

Complete the assessment form after all other sampling and measurement activities have been completed. Take into account all observations the sampling team has made while at the site. The assessment includes the following components:

#### Parameter

1. Epifaunal Substrate/Available Cover

#### **Description and Rationale**

Essentially the amount of niche space or hard substrates (gravel, cobble) for macroinvertebrate colonization and the amount of available cover (logs, branches) for fish refugia. Numerous types of insect larvae attach themselves to rocks, logs, branches, or other submerged substrates. The greater the variety and number of available niches, and cover the greater the variety of insects and fishes in the stream. Rocky bottom areas are critical for maintaining a healthy variety of insects in most high gradient stream. Woody cover is critical in developing a well-balanced fish community. The abundance, distribution, and quality of substrate and other stable colonizing surfaces and cover (e.g., old logs, snags, and aquatic vegetation) maximize the potential for colonization by fish and insects.

- 2a. Embeddedness The extent to which rocks (gravel, cobble, and (high gradient) boulders) are covered or sunken into the silt, sand, or mud of the stream bottom. Generally, as rocks become embedded. surface area the available to macroinvertebrates and fish for shelter, spawning, and egg incubation is decreased. To estimate the percent of embeddedness, observe the amount of silt or finer sediments overlying and surrounding the rocks. kicking does not dislodge the rocks or cobble, they may be greatly embedded. It is useful to observe the extent of the dark area on their underside of a few rocks.
- 2b. Pool Substrate Characterization (low gradient) Gravel or firm vegetated pool substrates support a wider variety of organisms than a pool substrate dominated by mud or bedrock and no plants. In addition, a stream that has a uniform substrate in its pools will support far fewer types of organisms than a stream that has a variety of substrate types.

- 3a. Velocity and Depth Regimens (high gradient)
  There are four primary current and depth combinations: (1)slow-deep, (2)slow-shallow, (3)fast-deep, and (4)fast-shallow. The best streams in high gradient regions will have all four combinations present. The presence or availability of these four habitats relates to the ability of the stream to provide and maintain a stable aquatic environment. In general use a depth of 0.5 m to separate shallow from deep and a current velocity of 0.3 m/sec to separate fast from slow.
- 3b. Pool Variability (low gradient) Rates the overall mixture of pool types found in streams, according to size and depth. The four basic types of pools are large-shallow, large-deep, smallshallow, and small-deep. A stream with many pool types will support a wide variety of aquatic species. Rivers with sinuosity (few bends) and monotonous pool characteristics do not have sufficient quantities and types of habitat to support a diverse aquatic community. As a general guideline, consider a pool deep if it is greater than 1 m deep, and large if its length, width, or oblique dimension is greater than half the stream width.
- 4. Channel Alteration Basically a measure of large-scale changes in the shape of the stream channel. Many streams in urban agricultural areas have been straightened, and deepened or diverted into concrete channels, often for flood control purposes. Such streams have far fewer natural habitats for fish, macroinvertebrates, and plants than do naturally meandering streams. Channel alteration is present when the stream runs through a concrete channel; when artificial embankments, rip-rap, and other forms of artificial bank stabilization or structures are present; when the stream is very straight for significant distances; when dams and bridges are present; and when other such changes have occurred.

- 5. Sediment The amount of sediment that has accumulated and the Deposition changes that have occurred to the stream bottom as a result of the deposition. Deposition occurs from large-scale movement of sediment caused bv watershed erosion. Sediment deposition may cause the formation of islands, point bars (areas of increased deposition usually at the beginning of meanders that increase in size as the channel is diverted toward the outer bank) or shoals or result in the filling of pools. Increased sedimentation also results in increased deposition. Usually this is evident in areas that are obstructed by natural or man-made debris and areas where the stream flow decreases, such as bends. High levels of sediment deposition create an unstable and continually changing environment that becomes unsuitable for many organisms.
- 6a. Frequency of Riffles (high gradient) The sequence of riffles occurring in a stream. Riffles are a source of high-quality habitat and diverse fauna; therefore, an increased frequency of occurrence greatly enhances the diversity of the stream community. For areas where riffles are uncommon, a run/bend ratio can be used as a measure of sinuosity. A large degree of sinuosity provides for diverse habitat and fauna, and the stream is better able to handle the high-energy flows that result from storms than are relatively straight streams.
- 6b. Channel Evaluates the meandering or relative frequency of Sinuosity bends of for aquatic organisms, whereas straight (low gradient) stream segments are characterized by monotonous habitats that are prone to flooding. A high degree of sinuosity creates a variety of pools and reduces the energy from surges when the stream flow fluctuates. The absorption of this energy by bends protects the stream from excessive erosion and flooding. In "ox bow" streams of coastal areas and deltas, meanders are highly exaggerated and transient. Natural conditions are shifting channels and bends. Alteration of these streams is usually in the form of flow regulation and diversion.

- 7. Channel Flow Status The degree to which the channel is filled with water. The flow status will change as the channel enlarges or as flow decreases as a result of dams and other obstructions, diversions for irrigation, or drought. When water does not cover much of the streambed, the amount of useable substrate for aquatic organisms is limited.
- 8. Bank Stability The stream banks are eroded (or have the potential for erosion). Steep banks are more likely to collapse and suffer from erosion than are gently sloping banks and are therefore considered to be unstable. Signs of erosion include crumbling, unvegetated banks, exposed tree roots, and exposed soil
- 9. Vegetative The amount of the stream bank and near-stream Protection riparian area that is covered by vegetation. The root systems of plants growing on stream banks help hold soil in place, thereby reducing the amount of erosion that is likely to occur. This parameter supplies information on the ability of the bank to resist erosion. as well as some additional information on the uptake of nutrients by the plants, the control on instream scouring, and stream shading. Banks that have full, natural plant growth are better for fish and macroinvertebrates than are banks without vegetative protection or those shored up with concrete or riprap.
- 10. Riparian The width of natural vegetation from the edge of the Vegetated Zone stream bank (riparian buffer zone). The riparian Width vegetative zone serves as a buffer zone to pollutants entering a stream from runoff, controls erosion, and provides stream habitat and nutrient input into the stream. A relatively undisturbed riparian zone reflects a healthy stream system; narrow, far less useful riparian zones occur when roads, parking lots, fields, lawns, bare soil, rocks, or buildings are near the stream bank. The presence of "old fields" (i.e., a previously developed field allowed to convert to natural conditions) will rate higher than fields in continuous or periodic use. Paths and walkways in an otherwise undisturbed riparian zone may be judged to be Inconsequential to destruction of the riparian zone.

# 9.0 Benthic Macroinvertebrate Protocol SOP

# Purpose

Benthic invertebrates inhabit the sediment or live on the bottom substrates of streams. The diversity and the presence of an expected level of benthic community reflects the maintenance of a systems biological integrity. Monitoring these assemblages is useful in assessing the status of the water body and detecting trends in ecological condition. Benthic communities respond to a wide array of stressors in different ways so that it is often possible to determine the type of stress that has affected a macroinvertebrate community (e.g., Klemm et al., 1990). Because many macroinvertebrates have relatively long life cycles of a year or more and are relatively immobile, macroinvertebrate community structure can be a function of present or past conditions. The benthic invertebrate community also reflects the effects of habitat availability, and the long-term exposure to physical and chemical properties of the water in which they develop and live.

The benthic macroinvertebrate protocol is intended to evaluate the biological integrity of wadeable streams for the purpose of detecting stresses on community structure, assessing the relative severity of these stresses, and determine the maintenance of the designated uses. The approach are based on the *Rapid Bioassessment Protocols for Wadeable Streams and Rivers* published by the U.S. Environmental Protection Agency (Barbour, 1999). Variations of the approach is utilized by the U.S. Geological Survey for their National Water-Quality Assessment Program (NAWQA; Cuffney et al., 1993) and by the EPA in their Environmental Monitoring and Assessment Program (EMAP, Lazorchak, 1998). The protocol requires only one person and is the preferred macroinvertebrate collecting method where habitat is variable (a second person can be used for water safety and to keep time and record information on the field forms). The methodology used by GBMc & Associates is a modification of the EPA "Multi-habitat Approach" (Barbour, 1999) designed to better assess pool dominated streams and riffle dominated streams using similar but different collection techniques. The approach can be generally considered a semi-quantitative methodology, in that there is some measure of abundance on a per sample basis and data is comparable to other collections.

# Procedure

# Pool Dominated Stream/Multihabitat Approach

An aquatic dip net is used to sample all available microhabitats present within the stream reach. Sampling is conducted using kicking, jabbing, and sweeping techniques. Kicking involves placing the net on the substrate and kicking the substrate upstream of the net allowing the dislodged invertebrates and debris to float into the net. Jabbing involves quick jabs of the net into submerged or exposed habitat types (macrophytes, root wads, branches, etc.) in an effort to dislodge invertebrates for capture. Sweeping entails sweeping the net through or above a habitat type to dislodge and capture invertebrates. Sweeping is often done above sandy and silty areas and root wads so as to capture as little debris as possible but still dislodge organisms. Sampling effort is timed on a stopwatch for a total of three minutes. Only time actually spent kicking, jabbing, or sweeping is allowed to accrue on the timer. The net is periodically emptied into a bucket for transport of the sample up and down the stream reach.

GBM<sup>c</sup> v9.1 May 2002 Page 1 of 4

# **Riffle Dominated Stream**

An aquatic dip net (generally the rectangular sort at least 16" wide) is used to sample the riffle habitat in a stream. The net is placed on the stream bottom and the substrate upstream of the net is vigorously kicked by the sampler to dislodge invertebrates allowing them to drift into the net. Sampling is conducted in this manner at different riffle locations throughout the study reach for a total kick time of 5 minutes. It may be useful to sweep the net through the dislodged and drifting debris in an effort to pick up as many invertebrates as possible. Kick time is monitored with a stop watch allowing time to accrue only during kicking and subsequent drift time. The net contents are placed in a bucket for holding after each riffle sample is collected.

# Sample Processing

After collection, samples are initially sorted and concentrated using a series of U.S. standard sieves the smallest of which has a #30 mesh with an opening size of  $600\mu$ m. Random subsamples of the concentrated sample will be placed on a white sorting tray from which the macroinvertebrates will be removed. A 100 organism sub-sample will be randomly picked from the tray and field identified to the lowest possible taxon. A representative amount of the concentrated sample is picked to be sure that each type of debris (i.e. leafs, algal mats, sediment, etc.) have been checked for macroinvertebrates. The 100 organism sub-samples will be preserved in Kaylee's Solution (a fixative, 15 pts. ethanol, 6 pts. formalin, 1 pt. glacial acetic acid, 30 pts. deionized water) or 70% ethanol for lab verification of field identifications and as a voucher to be used if more detailed analysis becomes necessary. If the sample is placed in Kaylee's solution it is removed and placed in 70% ethanol within 7-days. Each sample is labeled inside with a waterproof label and outside with laboratory tape containing the following information:

- station I.D.,
- location (waterbody, county, state),
- project number,
- date/time,
- initials of collector, and
- collection method/duration.

After the 100 organism random sample is collected, labeled and preserved, the larger debris items (e.g. leaves, sticks, rocks etc.) in the collected sample will be examined for clinging benthic macroinvertebrates. Any organisms will be removed prior to the debris being discarded. The remainder of the original sample not utilized in the selection of the 100-organism sub-sample will be concentrated and retained as a voucher for the sample picking (sub-sampling) techniques used. The voucher samples will be preserved in either Kaylee's Solution or 70 % ethanol. Voucher samples will be held at GBM<sup>c</sup> for a period of 24 months, from the conclusion of the study at which time the samples may be submitted to an academic zoological collection.

For each study site, a complete tabulation of taxa, numbers of individuals and their percent composition will be included on the Benthic Macroinvertebrates Field Data Form (attached). The first page of the form will include general information identifying the sample reach and investigators as well as site observations to include:

- 1. time sampled,
- 2. relative abundance of aquatic trophic level communities (periphyton, macrophytes, etc.),
- 3. percent of major habitats sampled,
- 4. percent of specific microhabitats sampled, and
- 5. relative abundance of the ordinal groups observed during sample collection.

The second page provides for the listing of the taxa comprising the 100 organism sub-sample and the field identifications and the numbers of each. Also included on page 2 are the general reach identifiers and preliminary summary sections to be used in the application of selected biometric scoring criteria.

All macroinvertebrate identifications shall be verified in the laboratory by experienced invertebrate biologists. Laboratory verification will be accomplished using general keys including but not limited to Merritt & Cummings, (1996); and Pennak, (1989). In addition more taxa specific keys such as Mayflies of North and Central America (Edmunds et, al, 1976), Dragonflies of North America, (Needham & Westfall, 1975) or species specific keys developed for a state or region will be utilized for the laboratory verification of the field identifications.

# **Community Biometric Analysis**

The qualitative samples are used to taxonomically characterize the aquatic community, identify indicator taxa and determine relative abundance of taxa and ecological types. The macroinvertebrate assemblages from each station are analyzed according to several benthic community biometrics. These will include richness (number of different taxa), EPT richness (number of different taxa represented in the orders Ephemeroptera, Plecoptera, and Trichoptera), percentage of dominant ordinal groups, species diversity as determined by the Shannon-Wiener diversity Index, and functional feeding group assessment. The analysis may also include the seven biometrics used by the State of Arkansas (ADPC&E, 1988) in their RBA scoring system, as well as other state specific biotic indexes. The biometric scoring activity will indicate the impacts to a benthic community when compared to the benthic community of different reaches, to demonstrate effects of point and or non-point source contributions between reaches.

# **Alternative Sampling and Processing Methodologies**

An alternative processing technique may be used for the macroinvertebrate samples collected using the preceding RBA protocols. This technique involves concentrating the entire sample in the field and preserving it for transport to the laboratory. No on-site picking occurs. Once in the lab the sample is further concentrated and sorted to size using standard sieves. The sample is then placed into white sorting trays. Every macroinvertebrate in the sample is picked out and placed in a sample container. Once the entire sample has been picked and all organisms are in a single container the macroinvertebrates are poured onto a gridded and numbered sorting tray and swirled to distribute them randomly and as evenly as possible throughout the tray. Random numbers are then drawn that correspond to a given grid. All of the macroinvertebrates found in that grid are then removed and tallied. This process continues until a sample of sufficient size has been achieved, usually 100, 200, or 300 macroinvertebrates. The final sample size is dependent on the level of random error that is acceptable in the study. The macroinvertebrates are then identified to the lowest taxonomic level possible and the assemblage is analyzed as outlined above.

GBM<sup>c</sup> v9.1 May 2002 Page 3 of 4 In addition to the semi-quantitative sampling protocols described in the preceding sections other semi-quantitative and quantitative methodology may be utilized where circumstances require a more detailed and precise assessment of the macroinvertebrate community. Quantitative and semi-quantitative protocols utilize sampling devices where a known area of substrate is sampled (i.e. 1.0 ft<sup>2</sup>, 0.1 m<sup>2</sup>, etc.) such as with a Surber Sampler or a Hester-Dendy, respectively. Quantitative techniques require processing of the entire sample collected to remove all macroinvertebrates captured. Macroinvertebrates are identified to the lowest possible taxonomic level, enumerated, and calculations of density per unit area are completed at varying taxonomic levels. Biometric analysis can then be completed using the same metrics as in the semi-quantitative assessment.

# **Quality Control**

Field teams collecting macroinvertebrates are led by experienced aquatic biologists and ecologists. Field forms designed specifically for macroinvertebrate collection studies and set up to include all pertinent field data are completed for each sample site. All field forms are reviewed at the end of the study for completeness and accuracy. Identification of macroinvertebrates is verified in the laboratory by an experienced invertebrate biologist. Periodic spot checks to verify laboratory identifications are made by a qualified biologist on the team. Efforts are made to remain abreast of current research in macroinvertebrate biology and identification techniques through scientific journals and conferences. In addition, EPA document updates and new information on macroinvertebrate community assessment is tracked via the internet.

Macroinvertebrate duplicate samples are collected at one of ten study sites. In years where less than ten sites are sampled a minimum of one duplicate sample should be collected at a given site. Duplicate samples are treated the same way as the base sample for processing and identification. A similarity index is calculated for the duplicate and base samples. Index results indicating similarity less than 65% are considered out of control. In the case of an "out of control" condition the organism identifications will be assessed as will the collection techniques. Corrective action will be determined by the project manager and/or the senior biologist and could include adjustments to techniques or a re-sampling of the sites in question.

# 10.0 Fish Collection Protocol SOP

# **Purpose/Objective**

The fish community supported in a stream is in direct response to available habitat, food sources, and water quality of that particular stream. The presence of a certain level of species richness and diversity along with a community structure similar to that expected in typical streams of a ecoregion are indicators of aquatic ecosystem health.

The objective of the fish community characterization is to collect and identify a representative sample of all except very rare species in the assemblage reflective of the relative abundance within the community. Backpack electrofishing equipment is used as the principal sampling gear supplemented by block netting and seining in habitats where flow, substrate and structure affect the capture of fish species. Other methods of fish sampling may be implemented when conditions are not adequate for backpack electrofishing or seining; these may include, using boat electrofishing equipment and/or hook and line sampling equipment. Usually 2 - 4 team members will make up the sampling team involved in collecting the aquatic vertebrates.

Major factors that influence collecting include flows, water depth, in-stream obstructions, water turbidity, temperature and conductivity. The primary tool utilized in the fish collections will be a Smith-Root backpack electroshocker. However, seines and block nets may be utilized as necessary to adequately characterize a sampling reach. The shocker is equipped with an automated timing mechanism which records the amount of time that electricity is actually being applied, or "pedal down time" (PDT).

Sampling fish species to determine their proportionate abundance will be conducted after all water quality parameters and/or samples are collected but prior to the collection of the macroinvertebrate sample and habitat data.

Shocked fish were captured with hand held dip nets and held in buckets while the sampling continued. The entire stream width within the sampling reach will be sampled. PDT time will continue for not less than 30 minutes unless the wetted habitat of any reach limits the PDT. In addition to the PDT, the total collection time will be recorded.

Unless specified in a project specific sampling analysis plan (SAP), there will not be a maximum time limit for the collection period, however the collections may be terminated when in the opinion of the principal investigator determines that a representative collection has been obtained. Sampling information is recorded on the Fish Community Collection Form, general comments (perceived fishing efficiency, missed fish, and gear operation suggestions) will be recorded on the lines provided on this form.

An effort to search for and collect fish will be completed at all targeted reaches, even if the stream is extremely small, and it appears that sampling may not collect any

GBM<sup>c</sup> v10.1 May 2002 Page 1 of 5 specimens. If no specimens are collected, complete the "NONE COLLECTED" field on the Fish Collection Form. Provide an explanation in the comments section of the form.

# Procedure

# Electroshocking

The procedure to sample with the backpack electrofisher unit is presented below:

Initially a decision will have to be made on what type of current to be used, alternating current (AC) or direct current (DC). AC flows from the anode and the cathode with an alternating direction of current flow. This alternating flow of current causes the fish to have strong muscle contractions, resulting in immobilization. AC has the highest electrofishing success rate but also poses the highest risk of permanent injury to the fish (particularly to larger specimens). DC is the direct flow of electrical current from the cathode to the anode. DC causes the fishes muscles to contract in such a way that the fish swim towards the anode probe. Muscle contractions occur until the fish is so close to the probe that the higher level of electricity stuns the fish. DC pulse length and duration can be adjusted with the shocking unit mode switches to more efficiently apply electricity that will draw fish to the probe without causing injury.

Make sure that the unit is full of properly mixed gas and oil (100:1), attach cathode (cable tail that drags behind operator, and anode (actual shocking probe with thumb switch to control electricity current)

Select the initial voltage based on the measured conductivity of the stream. For high conductivity water ( $300 - 1200 \ \mu$ S) use a voltage setting of  $100 - 400 \ volts$ . For medium conductivity water ( $100 - 300 \ \mu$ S) use a voltage setting of  $500 - 800 \ volts$ . For low conductivity water ( $10 - 100 \ \mu$ S) use a voltage setting of  $900 - 1100 \ volts$ .

Select the initial frequency and/or wavelength based on the expected size of fish. Find a setting, using the number dial (1 - 16) and the letter dial (A - P), that will allow you to have maximum amperage output without overloading the unit, typically 0.7 - 1.9 amps. Start with a setting of I-6 and adjust letters then numbers to find your setting. A higher mode setting provides more amperage as does a higher voltage setting. Typical setting used by GBMc & Associates are I (5-7) and J (5-7) at a voltage of 100-300 volts.

Record the latitude and longitude of the starting location and the starting time for electrofishing. Start the electrofisher, place the generator on the 300VA position for full generator output, set the timer to zero, and depress the switch to begin fishing. Starting at the bottom of the reach, fish in an upstream direction. Adjust voltage and waveform **output according to sampling effectiveness and incidental mortality to specimens.** The backpack unit is equipped with an audio alarm that sounds when the output voltage exceeds 30 V. It also serves as an input current indicator for pulse cycles greater than 5Hz. It begins as a strong continuous tone and begins to beep

slowly at currents of 1.25 amps. It beeps faster as input current increases. In case of an overload (in excess of 3 amps), the beep becomes very rapid and the overload indicator comes on. Release the anode switch and adjust voltage and waveform and continue fishing.

When fishing, slowly sweep the anode wand from side to side in the water in riffles and pools. Sample available cut-bank and snag habitat areas as well as riffles and pools. Move the wand in and out of large snags or deep cuts or release the electrode switch, move the wand away slightly, depress the switch again and sweep the wand away from the cover to draw fish out into open. In fast, shallow water, it may be more effective to use a seine or a couple of handheld nets as a block net; sweep the anode and fish downstream into the net.

In streams wider than can be effectively sampled during a single pass (generally 5 ft or more), it may be necessary to work from the midline of the stream channel to the banks. Be sure that deep, shallow, fast, slow, complex, and simple habitats are all sampled. In stretches with deep pools, fish the margins of the pool as much as possible, being extremely careful not to step into deep water.

One or two netters follow along beside or slightly behind the person operating the electrofisher (on the anode side). Each netter uses an insulated dip net to retrieve stunned individual fish, which are then deposited into a bucket carried by one of the netters for later processing

At the completion of electrofishing, note the PDT, total sampling time, the total distance sampled, and information obtained while sampling. Record this information on the Fish Collection Form or in a team member's field notebook.

# **Electrofishing Precautions**

Because fishes and amphibians are collected using portable electrofishing units, safety procedures must be followed meticulously at all times. Primary responsibility for safety while electrofishing rests with the principal investigator. Electrofishing units have a high voltage output and may deliver a dangerous electrical shock. While electrofishing, avoid contact with the water unless sufficiently insulated against electrical shock. Use chest waders and rubber gloves to prevent the chance of electric shock

Avoid contact with the anode and cathode at all times due to the potential shock hazard. While electrofishing avoid reaching into the water. If it is necessary for a team member to reach into the water to pick up a fish or something that has been dropped, do so only after the electrical current has been interrupted and the anode is removed from the water. Do not resume electrofishing until all individuals are clear of the electroshock hazard. The electrofishing equipment is equipped with a 45° tilt switch that interrupts the current and may shut off the unit completely in the event the person carrying the unit falls. Do not make any modifications to the electrofishing unit that would bypass the unit's automatic shutoff features.

Electrofishing equipment will not be utilized near unprotected people, pets, or livestock. Activity will be discontinued during thunderstorms or heavy rain.

# Seining

Seining may be used in conjunction with electrofishing to ensure sampling of those species which may otherwise be under presented by an electrofishing survey alone (e.g., darters, madtoms, and benthic cyprinids). Seining may also be used in sites where the stream is too deep for electrofishing to be conducted safely or in turbid, simple, soft-bottomed streams where it is more effective.

Depending on the particular use (block netting vs. active seining) and the habitat, different sizes of seines are used. In riffle habitats, the seine is held stationary while team members disturb the substrate immediately upstream of the net. In pools, the seine is pulled back and forth across the pool, using the shore and other natural habitat breaks as barriers, or pulled rapidly downstream through the pool and then swept toward the shore. Block nets may be used in very large pools to limit escape or as seines. Large nets are typically deployed parallel to the current and swept to shore.

Proceed upstream through the reach, allocating the seining effort among habitat areas (riffles and pools) so that the entire reach is sampled. Deposit fish collected by seining into a bucket for later processing. It is not necessary to segregate the fish collected via electroshocking or seining. However the number of seine hauls and the time expanded in seining will be recorded on the Fish Field Data Sheet. At the completion of sampling activities (electrofishing and/or seining), record the total fishing time on the Fish Field Data Sheets.

# Sample Processing

Sample processing involves tallying and identifying fish, examining individual specimens for external anomalies, preparing voucher specimens for taxonomic confirmation and archival at GBM<sup>c</sup>.

Unless otherwise specified in a project specific SAP, at the end of each sampling effort fish from the entire reach are preserved in formalin for identification in the lab. For each study site, a complete tabulation of taxa, numbers of individuals and their percent composition will be included on the 2 page Field Data Sheets – Fish (attached). The first page of the 2-page data form will include general information identifying the sample reach and investigators as well as site observations to include:

time sampled, pedal down time (PDT), relative abundance of aquatic trophic level communities, percent of major habitats sampled, percent of specific microhabitats sampled, and relative abundance and scoring of substrate. The second page provides for the listing of the taxa (field identification) and the numbers of each. Also included on page 2 are the general reach identifiers.

Ultimately, the fish identification will be verified in the lab using keys in the Fishes of Arkansas (Robison, 1988) and the Fishes of Missouri (Pflieger, 1975) to species level where possible.

The fish collections at each reach will be compared according to several biometrics which may include: species richness (number of taxa); sunfish richness; species diversity; abundance; dominant ordinal groups; percent of tolerant species; trophic structure; percent of hybrids; and percent of diseased fish. The analysis may also include the eight biometrics used by the State of Arkansas in their RBA scoring system. This scoring system places a value of 0, 2, or 4 on each of the eight biometrics to achieve a final mean score. The final mean score (0 to 32, 0-8=not supporting, 9-16=impaired, 17-24=generally supporting, 25-32=fully supporting) will indicate the impacts to a fish community when compared to the fish community of different reaches, to demonstrate effects of point and or non-point source contributions between reaches.

# Sample Maintenance

At the conclusion of all identifications, all fish collections are placed in 40% - 50% isopropyl alcohol for permanent preservation. The fish collections are maintained at GBMc & Associates for a period of three years after the completion of the project. An archive list of all fish collections is on file at GBMc & Associates. After the three year time period is up preserved fish may be offered to a scholastic institution or museum, discarded in an appropriate manner, or remain in storage at GBMc & Associates.

# Quality Control

Field teams collecting fish are led by experienced aquatic biologists. A team of qualified personnel using proven sampling techniques makes field collections. Sampling equipment is routinely inspected to maintain and ensure proper working order prior to a sampling trip. Adjustment in the field to the equipment and/or techniques can be made in the field by the sampling team to improve the collection results. All aspects of the fish collection are documented in team members' personal field books, as well as specific field forms. The field forms are designed specifically for fish collection studies and are set up to include all pertinent field data. Field forms are completed for each sample site. All field forms are reviewed at the end of the study for completeness and accuracy.

Identification of the collected fish starts in the field and is conducted by one or more experienced aquatic biologists that were involved in the collection effort. Field identifications are later verified in the laboratory by an experienced aquatic biologist. Laboratory identifications are then confirmed by a senior biologist to ensure completeness and accuracy. Efforts are made to remain abreast of current research in fisheries biology and identification techniques through scientific journals and conferences. In addition, EPA document updates and new information on fish assessment is tracked via the internet.

GBM<sup>c</sup> v10.1 May 2002 Page 5 of 5

# **12.0 Sample Collection and Custody**

# Purpose

This SOP describes the materials and methods necessary for the routine collection of water and wastewater samples for the analysis of various conventional and unconventional pollutants. It also gives guidance for the completion of the COC forms necessary for each set of samples collected for laboratory analysis. This SOP provides general guidance and should not be substituted for a study specific work plan and/or Sampling and Analysis Plan.

# Procedures

# Sample Collection

- 1. Fill out an Equipment Checklist for each sampling trip, checking (✓) all the necessary gear for sample completion.
- 2. Clean sample bottles should be supplied by the laboratory or a reputable scientific supply company. Be sure to have an extra set of sample bottles on hand on each field trip.
- 3. Check all bottles prepared by the lab to ensure the proper analyses are covered with the correct type of preservation. (Table 1)
- 4. A duplicate sample for a given analyte shall be taken, 1 for every 10 samples collected. That is, a duplicate sample will be collected 10% of the time. A duplicate sample is simply a second sample taken from the same location immediately following the original sample. The duplicate sample serves as a quality control check for the sample sources (stream water, etc.) variability, and the sampling methodology repeatability.
- 5. A field blank shall be collected 10% of the time (1 in 10 samples) when metals or organic chemicals are being analyzed. A field blank is simply a sample bottle filled with deionized water (blank water) on-site at the study location to represent any potential contamination present at the site or in the sampling techniques.
- 6. A trip blank should be collected at the rate of 1 per 10 samples when metals or organic chemicals are being analyzed. A trip blank is a bottle filled in the lab with deionized water to verify blank water and sample bottle purity.
- 7. Use appropriate safety precautions while collecting the samples (i.e., wear latex gloves, Tyvek<sup>®</sup> suits, etc.) as necessary.
- 8. Place a label on the sample bottle, prior to collecting the samples, and record the following information on the label using a permanent marker (e.g., Sharpie<sup>®</sup>):
  - a. sample identification,
  - b. date of collection,
  - c. time of collection,
  - d. initials of collectors, and

GBM<sup>°</sup> v12.1 May 2002 Page 1 of 3

- e. parameters to be analyzed (NH<sub>3</sub>-N, Total Cu, etc.)
- 9. Fill one bottle per site completely, and place the cap securely on the bottle.

When filling sample bottles be sure to choose a representative sample location which is accessible in a manner as to prevent bottom and/or attached solid materials from entering the sample bottle. Samples should be taken in flowing water where possible. Samples should be taken from below the water surface if depth allows.

- 10. Place the bottle in an ice filled ice chest to keep the sample cool (4°C±2). If the ice chest(s) will be shipped to a laboratory, ice should be placed in a plastic bag(s) to prevent possible sample contamination from melting.
- 11. Record sample information on the Field Data Form or in a field notebook, along with any pertinent observations. If available, record instantaneous flow at the time of sample collection. This is important if the samples are from an NPDES discharge or other regulatory monitored system.
- 12. If samples are to be composited according to flow (flow-weighted) the following protoccol should be followed:
  - a) record a flow for each sample time on the COC form
  - b) include compositing instructions on the COC form for laboratory use
- 13. Measure any necessary in-situ parameters (pH, temperature, dissolved oxygen, specific conductivity) and record on the appropriate field form or in a field notebook.
- 14. When sampling is complete a COC form should be completed.
- 15. Take note of sample holding times (Table 1) and make an effort to return samples to lab as soon as possible.

# Chain of Custody (COC)

- 1. A COC form (attached) must be filled out for all samples submitted to the laboratory for analysis.
- 2. The COC form must be filled out with a ballpoint pen, and signed in the appropriate locations by each individual receiving the sample(s).
- 3. The following information *must be completed* on each COC form:
  - a. company/facility,
  - b. contact name,
  - c. address,
  - d. phone number,
  - e. sample id,
  - f. sample description (where taken),
  - g. date (from sample bottle),
  - h. time (from sample bottle),

GBM<sup>c</sup> v12.1 May 2002 Page 2 of 3

- i. number of containers,
- j. preservative,
- k. parameters to analyze at lab,
- I. sampler(s),
- m. shipment method,
- n. turnaround time required,
- o. coc form completed by,
- p. coc form checked by, and
- q. relinquished by
- 4. Each completed COC form shall be photocopied and the copy filed.
- 5. If shipping ice chests to a laboratory, the original COC form should be placed in a ziplock bag and then taped to the inside top of the ice chest for shipment.
- 6. At the lab the COC form will be received and signed. A copy of the COC form should be returned by the lab, along with the analysis results, when completed.

# **14.0 Turbidity Meter Calibration SOP**

# Purpose

This SOP describes the methods for calibration and use of the portable HACH Model 2100P Turbidimeter.

# Calibration

#### Procedure

1. Prepare formazin 20, 100, and 800 NTU calibration dilutions immediately before calibrating. The solutions are made with a well mixed 4000 NTU stock solution and high quality dilution water (<0.5 NTU) as follows:

Dilution water--Deionized water. The deionized water should have a turbidity reading <0.5 NTU.

- 20 NTU--Add 0.5 mL stock solution to a 100 mL volumetric flask and bring to volume.
- 100 NTU--Add 2.5 mL stock solution to a 100 mL volumetric flask and bring to volume.
- 800 NTU--Add 20 mL stock solution to a 100mL volumetric flask and bring to volume.

(The 4000 NTU solution is stable for up to a year, but dilutions deteriorate more rapidly.)

- 2. Use the same sample cuvette for each different dilution reading. Rinse the clean cuvette with dilution water three times; then fill to the line with dilution water.
- 3. Place the instrument on a flat surface. Then insert the sample cuvette into the cuvette compartment with the orientation mark on the cuvette aligned with the mark on the front of the compartment. Close the lid and press I/O.
- 4. Turn the signal average off by pressing the Signal Average key until off is indicated. Then press calibrate (CAL). CAL and S0 should be displayed on the screen along with the value for the S0 standard for the last calibration.
- 5. Press READ. After the count down is completed, the blank value will be displayed, then the display will advance to the next standard. Remove the sample cuvette. (In case of error, refer to manual.)
- 6. S1 and 20 NTU will be displayed on the screen.

GBM<sup>c</sup> v14.1 May 2002 Page 1 of 4

- 7. Rinse the sample cuvette 3 times with the well mixed, 20 NTU standard. Then fill the cuvette to the line with the 20 NTU standard.
- 8. Clean the outside of the cuvette with a soft, lint-free cloth removing water spots and fingerprints. Then apply a thin film of silicone oil and spread the oil evenly over the outside surface with a soft cloth.
- 9. Insert the sample cuvette into the cuvette compartment with the orientation mark on the cuvette aligned with the mark on the front of the compartment.
- 10. Close the lid and press READ. After the count down is completed, the standard value will be displayed, then the display will advance to the next standard. Remove the sample cuvette.
- 11. Repeat steps 6 through 10 for the S2 and S3 samples (100 and 800 NTU, respectively.)
- 12. After S3 has been read, the display will show S0. Remove the sample cuvette. Press CAL to accept the calibration.
- 13. Once the calibration has been accepted, the instrument will automatically proceed to measurement mode.

(If any errors occur during calibration, revert to manual for explanation.)

# Calibration Verification

The 2100P Turbidimeter does not require calibration before every measurement. Gelex® Standards are used for routine calibration checks. Routine calibration checks should be performed bi-monthly. If the Gelex® standards read more than 5% from their recorded value, the meter should be recalibrated.

# Procedure

### Assigning values to the Gelex® standards

- 1. Calibrate the meter as described above.
- 2. Select the automatic range mode using the RANGE key.
- 3. Turn the signal average off by pressing the SIGNAL AVERAGE key until SIG AVG is not displayed on the screen.
- 4. Clean the outside of the Gelex® vile with a soft, lint-free cloth removing water spots and fingerprints. Then apply a thin film of silicone oil and spread the oil evenly over the outside surface with a soft cloth.

GBM<sup>c</sup> v14.1 May 2002 Page 2 of 4

- 5. Insert the 0-10 NTU Gelex® standard into the cuvette compartment with the orientation mark on the vile aligned with the mark on the front of the compartment. Close the compartment lid.
- 6. Press READ and record the displayed value after the lamp signal is no longer displayed on the screen.
- 7. Remove the vile and mark the value on the band near the top of the vile with a permanent marker.
- 8. Repeat steps 3 through 6 for the other Gelex® standards.
- 9. The values for each Gelex® standard should be reassigned each time a new calibration is performed.

#### Checking meter calibration

- 1. The Gelex® standards should be used as a routine check for instrument calibration. If the standards do not read within 5% of the assigned value, the instrument should be recalibrated before use, and new values assigned to the Gelex® standards.
- 2. Place the instrument on a flat surface.
- 3. After turning the instrument on, select the automatic range mode using the RANGE key.
- 4. Turn the signal average off by pressing the SIGNAL AVERAGE key until SIG AVG is not displayed on the screen.
- 5. Clean the outside of the Gelex® vile with a soft, lint-free cloth removing water spots and fingerprints. Then apply a thin film of silicone oil and spread the oil evenly over the outside surface with a soft cloth.
- 6. Insert the 0-10 NTU Gelex® standard into the cuvette compartment with the orientation mark on the vile aligned with the mark on the front of the compartment. Close the compartment lid.
- 7. Press READ and record the displayed value after the lamp signal is no longer displayed on the screen.
- 8. Remove the vile and compare the value on the band near the top of the vile with the recorded value. If the recorded value is within 5% of the value marked on the vile, continue to step 8. Otherwise recalibrate the instrument.
- 9. Repeat steps 3 through 6 for the other Gelex® standards.

GBM<sup>c</sup> v14.1 May 2002 Page 3 of 4

# **Turbidity Measurements**

### Procedure

- 1. Collect a representative sample of the liquid to be analyzed in a clean container. Rinse the clean sample cuvette three times with the sample water and fill to the line with sample, taking care to prevent the formation of air bubbles and not leave fingerprints on the sides of the cuvette.
- 2. Clean the outside of the cuvette with a soft, lint-free cloth removing water spots and fingerprints. Then apply a thin film of silicone oil and spread the oil evenly over the outside surface with a soft cloth.
- 3. Place the instrument on a flat surface and turn it on by pressing I/O.
- 4. Insert the sample cuvette into the cuvette compartment with the orientation mark on the cuvette aligned with the mark on the front of the compartment and close the lid.
- 5. Select automatic range by pressing the RANGE key until AUTO RNG is displayed.
- 6. Turn the signal average off by pressing the SIGNAL AVERAGE key until SIG AVG is not displayed on the screen.
- 7. Press READ and record the turbidity value after the lamp symbol is no longer displayed on the screen.

#### Meter Maintenance/Storage

- 1. Store the meter in the designated portable carrying case.
- 2. The meter should not be stored or left in a "dirty" condition.
- 3. The sample cuvette, silicone oil, and Gelex® standards should be stored in clean state in the proper boxes in the portable carrying case.
- 4. The 4000 NTU stock solution should be stored in a refrigerator at 5<sup>o</sup> C.

# **Quality Assurance/Quality Control**

- 1. Meters are calibrated biweekly (at a minimum) to ensure proper function and accuracy.
- 2. Duplicate measurements should be taken at a rate of 10% (minimum) of samples analyzed.

GBM<sup>c</sup> v14.1 May 2002 Page 4 of 4 FIELD MEASUREMENT RECORD (Date

REVIEWED BY:

**Field Data Form** 

ر ور

Page\_\_\_

 $\langle \gamma \rangle$ 

( )

| Notes                                      |  |   |   |  |  |      |   |      |      |  |                                        |
|--------------------------------------------|--|---|---|--|--|------|---|------|------|--|----------------------------------------|
| Sample # of<br>Containers<br>S=Sed. W=Wat. |  |   |   |  |  |      |   | <br> | <br> |  | -                                      |
| Sam<br>Cor<br>S≡Sed.                       |  |   |   |  |  |      |   |      |      |  |                                        |
| pH su                                      |  |   |   |  |  |      |   |      |      |  |                                        |
| Sp. Cond.<br>uS                            |  |   | : |  |  |      |   |      |      |  |                                        |
| DO mg/l                                    |  |   |   |  |  |      |   |      |      |  |                                        |
| Temp<br>C°                                 |  |   |   |  |  |      |   |      |      |  |                                        |
| Field<br>Crew                              |  | - |   |  |  | <br> | : |      |      |  | made                                   |
| Time                                       |  |   |   |  |  |      |   |      |      |  | eck was                                |
| Date                                       |  |   |   |  |  |      |   |      |      |  | ration ch                              |
| Station/Depth                              |  |   |   |  |  |      |   |      |      |  | * Indicates calibration check was made |

V1.0 1096

**Calibration Field Form** 

 $\bigcirc$ 

( )

C

|                                                      | S:                                |                  |                             | ients:                   |  |                                              |               |  |                                           | Comments:                 |             |             |                                             | nts:        |                 |  |  |       |
|------------------------------------------------------|-----------------------------------|------------------|-----------------------------|--------------------------|--|----------------------------------------------|---------------|--|-------------------------------------------|---------------------------|-------------|-------------|---------------------------------------------|-------------|-----------------|--|--|-------|
|                                                      | Comments:                         |                  |                             | Comments:                |  |                                              | Comments:     |  |                                           |                           | 0-1000      |             |                                             | Comments:   |                 |  |  | <br>- |
|                                                      | Barometric<br>Pressure<br>(mm Hg) | -<br>-<br>-<br>- |                             | 7.00 Buffer<br>Check     |  |                                              | Meter Cond: ( |  |                                           | Meter Reading             | 0 0-100     | -           |                                             |             | Temperature °C: |  |  |       |
|                                                      | Altitude B<br>(ft) P<br>(r        |                  |                             | Slope:                   |  |                                              | Mete          |  |                                           | Me                        | 0-1000 0-10 |             |                                             | Meter       | Tempe           |  |  | <br>  |
|                                                      | Air<br>Ition                      |                  |                             |                          |  | -                                            | Standard:     |  |                                           | Gel Standard:             | 0-100 0-    |             |                                             | ometer      | Temperature °C: |  |  |       |
| Record                                               | 100 %<br>Satura<br>(mg/l)         |                  |                             | Standard<br>(4, 7, 10):  |  | -                                            |               |  |                                           | Gel St                    | 0-10        |             |                                             | Thermometer | Tempei          |  |  |       |
| Calibration                                          | Meter:                            |                  | -                           | Meter:                   |  | on Record                                    | Meter:        |  | Secord                                    | Meter:                    |             | -<br>-<br>- | on Record                                   | Meter:      |                 |  |  |       |
| <b>Dissolved Oxygen Meter Air Calibration Record</b> | Calibrators<br>Initials:          |                  | pH Meter Calibration Record | Calibrators<br>Initials: |  | <b>Conductivity Meter Calibration Record</b> | Calibrators   |  | <b>Turbidity Meter Calibration Record</b> | Calibrators<br>Initials : |             |             | <b>Temperature Meter Calibration Record</b> | Calibrators | Initials:       |  |  |       |
| Dissolved Ox                                         | Date/Time:                        |                  | pH Meter Cali               | Date/Time:               |  | Conductivity I                               | Date/Time:    |  | <b>Turbidity Met</b>                      | Date/Time: 0              |             |             | Temperature                                 | Date/Time:  |                 |  |  |       |

V1.0 04/00

# FIELD EQUIPMENT CHECKLIST



#### **Project No:**

Crew:

#### Field Instruments

- Battery Charger
- D.O. Meter (calibration kit, batts)
- D.O. Water Saturation Kit (air
- pump, tubing, jar)
- pH Meter (stds, bottle batts)
- Conductivity Meter (batteries) Depth (chart, probe, batts)
- Hach Kit (batts, methods,
- chems, stds)
- Flow (batts, meter, rod, calc,
- forms, waders, tape/tag line)
- Isco (instruments, bottles,
- batts, tubing, strainers, clamps)
- Turbidity Meter/Kit
- Range finder
- GPS

#### Miscellaneous

- Cash advance Credit card Pens Camera/film Small recorder Rubber boots Waders Rain suits Flashlight Knife, scissors Tape measure(s) Rope
- Tool box
- Backpack Wash bottles
- Crest gages
- Alconox/brush
- Trash bags
- Duct tape
- 5 gal. Bottle
- DI/tap water
- Flagging
- Keys (gate, gage, etc.)
- Extra vehicle key

#### Aquatic Life Surveys

- Tag line/Tape measure (Habitat) Aquatic Dip net
- Seine
- Fish nets
- Containers
- Preservative (alcohol, Kaylees, formaldehyde)
- Sieves

V1.2-08/04

- Sorting trays (picking, gridded) Forceps
- Electroshocker (pig tail, extra probe, extra conductors, rubber gloves, generator gas/mix, spark plugs)

#### Ground Water Sample Collection

- Water level indicator
- Pumps/batteries
- Tubing Turbidmeter
- Bailers (disp./other)
- Hexane
- Field forms
- 0.45 µm Filter apparatus
- Water level detector

#### Boat Usage

- Life jackets
- Paddles
- Boat cushions
- Anchor
- Motor battery
- Motor oil
- Gas tanks
  - Trolling motor
- Depth finder (graph)
- Spare tire

#### Field Forms/Documentation

- Field forms Habitat Field forms - Fish/Bugs
- Field forms Chemistry
- Field log book
- COC forms
- Ziplock bags
- Maps
  - Sampling plan
  - Pens/pencils
- Clipboards

#### Safety

- Hard hats
- Safety glasses Face shields
- Eye wash bottle
- Gloves
- Steel toe boots
- Hazcomm materials
- Tyvex suits
- Sun protection
- Bug spray
- Water, drinks
- Soap, alcohol, bandages
- 2-way radios

#### Sample Collection (General)

- Sample bottles
- Extra sample bottles
- Sharpies, pens
- Clear tape/dispenser
- Bucket(s)/rope
- Ice chests/ice
- Horizontal water bottle
- Sediment spoons/bowls
- Dredge (hoist)

Decon, Equipment

Wetlands Delineation

Plant field books

ACOE Data Forms

Rhodamine WT dve

5 gal. glass container

Graduated cylinder

Beakers (600 mL)

Mounting Anchors

Logger Manuals

Secchi Disk

Whirl Paks

Plankton Net

3% Formalin

Macrophyte Gear

Water level Loggers

Logger Data Retrieval (Palm /

PVC Pipe for Installations

Horizontal Water Bottle

Chlorophyll a equipment (filter,

cylinder, MgCO3, pipettes,

aspirator, aluminum foil)

membrane filters, flask, graduated

Fluorometer/accessories

Auto samplers/batteries, bottles

Wetland Assessment Forms

Munsell soil color charts

Soil Probe

Spade/shovel

α.α-dipyridal

Plant press

Machete

Magnifier loop

Power inverter

Sample vials

Dve standards

Labeling tape

Pipettes

laptop)

Lake Studies

Hydraulic Studies

- Core sampler (handle, extensions, body, tips, cap, slip wrench,
- sleeves/caps)
- DI water Extra labels

# GENERAL PHYSICAL CHARACTERIZATION FIELD FORM

| STATION I.D:              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LOCATION:                                                                                                                            |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| STREAM NAME:              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RIVER BASIN:                                                                                                                         |
| LAT:                      | LONG:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PROJECT:                                                                                                                             |
| INVESTIGATORS:            | DATE/TIME:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FORM CHECKED BY:                                                                                                                     |
| WEATHER<br>CONDITIONS     | Now       Past                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Heavy rain in the last 7 days?       Yes       No         Air Temperature°C/°F         %       Other                                 |
| STREAM<br>ATTRIBUTES      | ☐ Montane, non-glacial ☐<br>☐ Swamp and bog ☐                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Spring-fed     Catchment Area:mi <sup>2</sup> Mixture of origins     Stream Order:                                                   |
| HYDROLOGY                 | Flows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Flows Measured?       Reach: Slope       & Sinuosity         None       Yes       No      ft/mi                                      |
| WATERSHED<br>FEATURES     | Predominant Surrounding Land         Forest%       Sub-U         Pasture%       Comm         Row Crops%       Indust         Urban%       Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rban       Industrial Storm Water         hercial%       Urban/Sub-Urban Storm Water                                                 |
| RIPARIAN<br>VEGETATION    | ☐ Mature Forest% ☐ Shr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ub/Sapling% 🔲 Herbs/Grasses% 🔲 Turf%                                                                                                 |
| STREAM<br>MORPHOLOGY      | 🗌 Riffle% 🔲 Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | % 🔲 Pool%                                                                                                                            |
| STREAM<br>DISTURBANCES    | ☐ Roads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | es 🔲 Beaver Dams 🛄 Point Source<br>Access 🗍 Mining 🛄 ATV Crossing 🗌 Other                                                            |
| WATER/<br>OBSERVATIONS    | Local Watershed Erosion:       Image: Channel Dynamics:       Image: Channel Dynamics:       Image: Channel Dynamics:         Water Odors       Image: Channel Dynamics:       Image: Channel Dynamics:       Image: Channel Dynamics:         Image: Water Odors       Image: Channel Dynamics:       Image: Channel Dynamics:       Image: Channel Dynamics:         Image: Water Odors       Image: Channel Dynamics:       Image: Channel Dynamics:       Image: Channel Dynamics:         Image: Water Odors       Image: Channel Dynamics:       Image: Channel Dynamics:       Image: Channel Dynamics:         Image: Water Odors       Image: Channel Dynamics:       Image: Channel Dynamics:       Image: Channel Dynamics:         Image: Water Odors       Image: Channel Dynamics:       Image: Channel Dynamics:       Image: Channel Dynamics:         Image: Water Odors       Image: Channel Dynamics:       Image: Channel Dynamics:       Image: Channel Dynamics:         Image: Water Odors       Image: Channel Dynamics:       Image: Channel Dynamics:       Image: Channel Dynamics:         Image: Water Odors       Image: Channel Dynamics:       Image: Channel Dynamics:       Image: Channel Dynamics:         Image: Water Odors       Image: Channel Dynamics:       Image: Channel Dynamics:       Image: Channel Dynamics:         Image: Water Odors       Image: Channel Dynamics:       Image: Channel Dynamics: <td< th=""><th></th></td<> |                                                                                                                                      |
|                           | Turbidity/Water Clarity (if not m         Clear       Slightly tu         Opaque       Stained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Irbid                                                                                                                                |
| SEDIMENT/<br>OBSERVATIONS | Sediment Odor          Normal       Sewage       [         Chemical       Anaerobic       [         Other       Other       [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sediment Deposits          Petroleum       Sludge       Sawdust       Oils         None       Sand       Relict shells         Other |

Quantitative Habitat Ch. acterization Field Form

 $\left( \right)$ 

 $\bigcirc$ 

| Sta          | Station I.D:                            |                                                  |             |                               |                                          |                                    |                                         | Tran                       | sect # | Transect # (circle): | -               | 2                  | 3<br>4                                      | 5 - (                                                 | 6 7                     | 80                                                | 6         | (<br>10)              |
|--------------|-----------------------------------------|--------------------------------------------------|-------------|-------------------------------|------------------------------------------|------------------------------------|-----------------------------------------|----------------------------|--------|----------------------|-----------------|--------------------|---------------------------------------------|-------------------------------------------------------|-------------------------|---------------------------------------------------|-----------|-----------------------|
| Str          | Stream Name:                            | 1e;                                              |             | Client:                       | it:                                      |                                    |                                         |                            |        |                      | Dat             | Date/Time:         |                                             |                                                       |                         |                                                   |           |                       |
| Loc          | Location:                               |                                                  |             | Inves                         | Investigators                            | rs:                                |                                         |                            |        |                      | Re              | Reason For Survey: | r Surve                                     | ÿ:                                                    |                         | -                                                 |           |                       |
| Lat:         |                                         | Long:                                            |             | Form                          | Com                                      | Form Completed By:                 | By:                                     |                            |        |                      | Form            | m Chec             | ked By                                      | Checked By (date/time):                               | ie):                    |                                                   |           |                       |
| Str<br>(Fo   | Stream Morpholog<br>(For Entire Reach): | Stream Morphological Type<br>(For Entire Reach): | Riff        | Riffie 🛛 Number.              | er                                       |                                    |                                         | Run                        | ž<br>D | Number:              |                 |                    |                                             | Pool D                                                | Number:                 |                                                   |           |                       |
| Tota         | Total Reach length, ft:                 | ength, ft:                                       | Fen         | Length, ft:                   |                                          | =%                                 |                                         | Length, ft:                | μ, fi: |                      | = %             |                    |                                             | Length, ft:                                           |                         | %                                                 | п         |                       |
| Ţ            | Transect                                | ц                                                | Depth       | Stree                         | am Ha                                    | bitat (F                           | Stream Habitat (Fish Cover)             | 'er)                       |        |                      | %Stre           | eam Sul            | bstrate                                     | %Stream Substrate (row total = 100%)                  | l = 100                 | (%)                                               |           |                       |
|              | I.D. &<br>Width                         | Number & (                                       | <br>€       |                               | Type                                     | & Abun                             | Abundance                               |                            |        |                      |                 |                    | Type                                        |                                                       |                         |                                                   |           | ver<br>T              |
|              | (ft.)                                   |                                                  | Depressions | Woody Debris,<br>Moody Debris | woody Debris,<br>(mč.>) lisms<br>(mc.3m) | Aquatic Vegetation<br>Leafy Debris | gnignsrhevO<br>Vorsthangn<br>VoitstegeV | Boulders /<br>Outcroppings | bioveD | Bedrock (rough)      | Boulder (>25cm) | (mo22-a) elddoo    | Coarse Gravel<br>(1.6-6.0cm)<br>Fine Gravel | (mo0.8-5.0)<br>bns2<br>(vfity,mo5.0>)<br>(vitionalia) | (not onl(tv)<br>Hardpan | (firm/consolidated)<br>Organic Matter<br>(ground) | pəppəqm∃% | oD (qonsD%            |
|              |                                         | 1. (Iff. Bank)                                   |             |                               |                                          |                                    |                                         |                            |        |                      |                 |                    |                                             |                                                       |                         |                                                   |           |                       |
|              | Width:                                  | 2. (Ift. ¼)                                      |             |                               |                                          |                                    |                                         |                            |        |                      |                 |                    |                                             |                                                       |                         |                                                   |           |                       |
| :01          |                                         | 3. (center ½)                                    |             |                               |                                          |                                    |                                         |                            |        |                      |                 |                    |                                             |                                                       |                         |                                                   |           |                       |
| i toe        |                                         | 4. (rt. ¼)                                       |             |                               |                                          |                                    |                                         |                            |        |                      |                 |                    |                                             |                                                       |                         |                                                   |           |                       |
| sue          |                                         | 5. (rt. Bank)                                    |             |                               |                                          |                                    |                                         |                            |        |                      |                 |                    |                                             |                                                       |                         |                                                   |           |                       |
| 'nΤ          |                                         | Average:                                         |             |                               |                                          |                                    |                                         |                            |        |                      |                 |                    |                                             |                                                       |                         |                                                   |           |                       |
|              |                                         | 1. (Ift. Bank)                                   |             |                               |                                          |                                    |                                         |                            |        |                      |                 |                    |                                             |                                                       |                         |                                                   |           |                       |
|              | Width:                                  | 2. (Ift. ¼)                                      |             |                               |                                          |                                    |                                         |                            |        |                      |                 |                    |                                             |                                                       |                         |                                                   |           |                       |
| :0N          |                                         | 3. (center ½)                                    |             |                               |                                          |                                    |                                         |                            |        |                      |                 |                    |                                             |                                                       |                         |                                                   |           |                       |
| 1 <b>3</b> 9 |                                         | 4. (rt. ¼)                                       |             |                               |                                          |                                    |                                         | -                          |        |                      |                 |                    |                                             |                                                       |                         |                                                   |           |                       |
| sue          |                                         | 5. (rt. Bank)                                    |             |                               |                                          |                                    |                                         |                            |        |                      |                 |                    |                                             |                                                       |                         |                                                   |           |                       |
| л            |                                         | Average:                                         |             |                               |                                          |                                    |                                         |                            |        |                      |                 |                    |                                             |                                                       |                         |                                                   |           |                       |
| Stre         | am Read                                 | Stream Reach Habitat Summary:                    |             |                               |                                          |                                    | :                                       |                            |        |                      |                 |                    |                                             |                                                       |                         |                                                   |           |                       |
| Sub          | strate Ty                               | Substrate Type Reach Summary (% Occurrence):     | Occurrer    | Ice):                         |                                          |                                    |                                         |                            |        |                      |                 |                    |                                             |                                                       |                         |                                                   |           |                       |
| Key          | to Habita                               | Key to Habitat and Other Categorical Measures:   | l Measur    |                               | 0 = Devoid (0%)                          | -                                  | = Sparse (<10%)                         | : (<10%)                   | 2 = N  | = Moderate (10%-40%) | e (10%~         |                    | = Heav                                      | 3 = Heavy (40%-75%)                                   |                         | = Very                                            | Heavy     | 4 = Very Heavy (>75%) |

PAGE 1 OF 2 V1.3 04/15/05 Quantitative Habitat Charterization Field Form cont.

 $\bigcirc$ 

 $\bigcirc$ 

| Station I.D.                         |                 |                                                 |                    |                   | Irans                                    | I ransect # (circle): | le): 1                   | 2                | 4 5 -              | ( 9 /                | 8                     | 9 10      |
|--------------------------------------|-----------------|-------------------------------------------------|--------------------|-------------------|------------------------------------------|-----------------------|--------------------------|------------------|--------------------|----------------------|-----------------------|-----------|
| Stream Characteristics:              | Transect No:    | ct No:                                          |                    |                   |                                          |                       | Transect No:             | :t No:           |                    |                      |                       |           |
| Stream Wetted Width, ft:             |                 |                                                 |                    |                   |                                          |                       |                          |                  |                    |                      |                       |           |
| Channel Width, ft:                   |                 |                                                 |                    | -                 |                                          |                       |                          |                  |                    |                      |                       |           |
| Left Bank Height, ft                 |                 |                                                 |                    |                   |                                          |                       |                          |                  |                    |                      |                       |           |
| Right Bank Height, ft:               |                 |                                                 |                    |                   |                                          |                       |                          |                  |                    |                      |                       |           |
| Distance From Last Transect, ft:     |                 |                                                 |                    |                   |                                          |                       |                          |                  |                    |                      |                       |           |
| Transect Stream                      | Riffle 🗆        | Run 🛛                                           |                    | (check one)       | one)                                     |                       | Riffle 🛛                 | Run 🛛            |                    | (check one)          | one)                  |           |
| Morphological Type:                  | Length, ft:     | t                                               |                    |                   |                                          |                       | Length, ft:              |                  |                    |                      |                       |           |
| Periphyton Coverage:                 | 0               | On Substrate                                    | ate                |                   | On Habitat                               | at                    |                          | On Substrate     | ite                |                      | On Habitat            | at        |
|                                      | 0               | 5                                               | 3 4                | 0                 | 5                                        | 3 4                   | 0                        | 2                | 3 4                | 0                    | 2                     | 3 4       |
| Bank Cover/Habitat:                  | Ľ               | Left Bank (LB)                                  | LB)                | Rig               | Right Bank (RB                           | RB)                   | Γ                        | Left Bank (LB    | B)                 | Rig                  | Right Bank (RB)       | RB)       |
| Roots:                               | 0               | 2                                               | 3 4                | 0 1               | 5                                        | 3 4                   | 0                        | 2                | 3 4                | 0                    | 2                     | 3 4       |
| Brush:                               | 0               | 0                                               | 3 4                | 0                 | 5                                        | 3 4                   | 0                        | 2                | 3 4                | 0                    | 2                     | 3 4       |
| Undercut Bank:                       | 0 1             | 2                                               | 3 4                | 0 1               |                                          | 3 4                   | 0                        | 0                | 3 4                | 0                    | 2                     | 3 4       |
| Vegetation:                          | 0 1             | 2                                               | 34                 | 0 1               | 2                                        | 34                    | 0                        | 2                | 3 4                | 0                    |                       | 3 4       |
| Devoid:                              | 0 1             | 2                                               | 3 4                | 0                 | 5                                        | 3 4                   | 0                        | 2                | 3 4                | 0                    | 2                     | 3         |
| Bank Slope:                          | Ľ               | Left Bank (LB)                                  | LB)                | Rig               | Right Bank (RB)                          | RB)                   | L6                       | Left Bank (LB    | -B)                | Rig                  | Right Bank (RB)       | RB)       |
| (check appropriate box)              | Flat            | Mod.                                            | Steep              | Flat              | Mod.                                     | Steep                 | Flat                     | Mod.             | Steep              | Flat                 | Mod.                  | Steep     |
| Flat (<8°), Mod(9-30°), Steep (>30°) |                 |                                                 |                    |                   |                                          |                       |                          |                  |                    |                      |                       |           |
| Bank Stability:                      | Stable          | Mod.                                            | Unstab             | Stable            | Mod.                                     | Unstab                | Stable                   | Mod.             | Unstab.            | Stable               | Mod.                  | Unstab    |
| (check appropriate box)              |                 |                                                 |                    |                   |                                          |                       |                          |                  |                    |                      |                       |           |
| Riparian Ground Cover:               | Ľ               | Left Bank (LB)                                  | LB)                | Ric               | Right Bank (RB                           | RB)                   | L6                       | Left Bank (LB)   | B)                 | Rig                  | Right Bank (RB)       | RB)       |
| % Herbs/Grasses                      |                 |                                                 |                    |                   |                                          |                       |                          |                  |                    |                      |                       |           |
| % Shrubs/Trees                       |                 |                                                 |                    |                   |                                          |                       |                          |                  |                    |                      |                       |           |
| % Soil/Sand                          |                 |                                                 |                    |                   |                                          |                       |                          |                  |                    |                      |                       |           |
| % Rock                               |                 |                                                 |                    |                   |                                          |                       |                          |                  |                    |                      |                       |           |
| Riparian Canopy Cover: (%)           |                 |                                                 |                    |                   |                                          |                       |                          |                  |                    |                      |                       |           |
| Canopy Tree Type: (circle one)       | Decid           | Decid Conif Mixed                               | Mixed              | Decid.            | – Conif                                  | - Mixed               | Decid                    | Conif.           | - Mixed            | Decid                | - Conif               | - Mixed   |
| Riparian Land-use: (circle one)      | Past Cl<br>Fore | Past Crops - Ind Resid.<br>Forest - Silvi Other | - Resid<br>- Other | Past - Cr<br>Fore | Past - Crops - Ind -<br>Forest - Silvi - | - Resid<br>Other      | Past - Crops<br>Forest - | - Ind<br>Silvi - | - Resid -<br>Other | Past - Cro<br>Forest | ps – Ind<br>– Silvi – | - Resid - |
|                                      |                 |                                                 |                    |                   |                                          |                       |                          |                  |                    |                      |                       |           |

PAGE 2 OF 2 V1.3 04/15/05

### Stream Habitat Assessment

| [] | Date: | Analyst: | Station #: | Location: |
|----|-------|----------|------------|-----------|
|    |       |          | Sample #:  |           |

#### **Reach Length Determination**

| Parameter |   | Meas | surement Nu | mber |   |         | Total Reach              | Sub-Reach                |
|-----------|---|------|-------------|------|---|---------|--------------------------|--------------------------|
|           | 1 | 2    | 3           | 4    | 5 | Average | Length <sup>1</sup> (ft) | Length <sup>2</sup> (ft) |
| Bankfull  |   |      |             |      |   |         |                          |                          |
| Width     |   |      |             |      |   |         |                          |                          |
| Bankfull  |   |      |             |      |   |         | na                       | na                       |
| Depth     |   |      |             |      |   |         |                          |                          |

<sup>1</sup>Average width times 20 <sup>2</sup> Total Length divided by 10

#### **Riffle-Pool Sequence**

| Morph.                    |   |   |   | Re    | ach Numb | er - Leng | th in Feet |   |   |    |
|---------------------------|---|---|---|-------|----------|-----------|------------|---|---|----|
| Type:                     | 1 | 2 | 3 | 4     | 5        | 6         | 7          | 8 | 9 | 10 |
| Morph.<br>Type:<br>Riffle |   |   |   |       |          |           |            |   |   |    |
| Run                       |   |   |   |       |          |           |            |   |   |    |
| Pool<br>Total             |   |   |   |       |          |           |            |   |   |    |
| Total                     |   |   |   |       |          |           |            |   |   |    |
| Sequence <sup>1</sup>     |   |   |   | ····· |          | 1         |            |   |   |    |

<sup>1</sup>Riffle="xxx", Run="ooo", Pool="-----"

#### **Epifaunal Substrate/Available Cover**

| Section | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Average |
|---------|---|---|---|---|---|---|---|---|---|----|---------|
| %       |   |   |   |   |   |   |   |   |   |    |         |

#### **Substrate Characterization**

| Morph. |   |   |   |   | Reach | No Do | minant su | bstrate |   |    |         |
|--------|---|---|---|---|-------|-------|-----------|---------|---|----|---------|
| Туре   | 1 | 2 | 3 | 4 | 5     | 6     | 7         | 8       | 9 | 10 | Average |
| Riffle |   |   |   |   |       |       |           |         |   |    |         |
| Pool   |   |   |   |   |       |       |           |         |   |    |         |

BR=Bedrock, BLD=Boulder, COB=Cobble, CG=Coarse Gravel, FG=Fine Gravel, S=Sand, SC=Silt/Clay

#### Embeddedness

| Cobble | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|--------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| % Emb. |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| Cat.   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |

Predominant Category \_\_\_\_\_

Category I = 0-25% Embedded

Category II = 25.1-50% Embedded Category III = 50.1-75% Embedded

Category IV = > 75% Embedded

#### **Sediment Deposition**

| Section | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Average |
|---------|---|---|---|---|---|---|---|---|---|----|---------|
| %       |   |   |   |   |   |   |   |   |   |    |         |

#### Depth Regime

| Morph. |   |   |   |   | Reach l |   | rage Dep |   |   |    |         |
|--------|---|---|---|---|---------|---|----------|---|---|----|---------|
| Туре   | 1 | 2 | 3 | 4 | 5       | 6 | 7        | 8 | 9 | 10 | Average |
| Riffle | [ |   |   |   |         |   |          |   |   |    |         |
| Pool   |   |   |   |   |         |   |          |   |   |    |         |

#### Canopy Cover (Stream Shading)

|   |         |   |   | R | each No. | - Percent | (%) Sha |   | n Stream | Channel |    |         |
|---|---------|---|---|---|----------|-----------|---------|---|----------|---------|----|---------|
|   |         | 1 | 2 | 3 | 4        | 5         | 6       | 7 | 8        | 9       | 10 | Average |
| [ | Shading |   |   |   |          |           |         |   |          |         |    |         |

#### Bank Stability

| LB<br>Section             | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Predominant<br>Category |
|---------------------------|---|---|---|---|---|---|---|---|---|----|-------------------------|
| Category<br>RB<br>Section | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Predominant<br>Category |
| Category                  |   |   |   |   |   |   |   |   |   |    |                         |

Category I = Stable. < 5% bank affected.

Category II = Moderately stable. 5-29.9% of bank reach has erosion.

Category III = Moderately unstable. 30-59.9% of bank reach has erosion.

Category IV = Unstable. Many eroded areas; 60-100% of bank reach has erosion.

#### Vegetative Protection

| LB<br>Section      | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Average |
|--------------------|---|---|---|---|---|---|---|---|---|----|---------|
| %<br>RB<br>Section | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Average |
| %                  |   |   |   |   |   |   |   |   |   |    |         |

#### **Riparian Vegetative Zone Width**

| LB<br>Section             | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Predominant<br>Category |
|---------------------------|---|---|---|---|---|---|---|---|---|----|-------------------------|
| Category<br>RB<br>Section | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Predominant<br>Category |
| Category                  |   |   |   |   |   |   |   |   |   |    |                         |

Category I = > 18 meters

Category II = 17.9-12 meters

Category III = 11.9-6 meters

Category IV = < 6 meters

#### In-Stream Habitat (Available Fish Cover, bkf-bkf)

|       |   |   |   | Reach N | lo Avail | ability and | d Quality | of Fish Ha | abitat |    |         |
|-------|---|---|---|---------|----------|-------------|-----------|------------|--------|----|---------|
|       | 1 | 2 | 3 | 4       | 5        | 6           | 7         | 8          | 9      | 10 | Average |
| Score |   |   |   |         |          |             |           |            |        |    |         |

Scoring: 20-16 Optimal, 15-11 Sub-optimal, 10-6 Marginal, 5-0 Poor

#### Aquatic Macrophytes and Periphyton

|             |                           |                           |                           |                                                                                                                           | Rea                                            | ich No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - Abunda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ance                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                         |                                                                                                                    |
|-------------|---------------------------|---------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|             | 1                         | 2                         | 3                         | 4                                                                                                                         | 5                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                      | Average                                                                                                            |
| Macrophytes |                           |                           |                           |                                                                                                                           |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                         |                                                                                                                    |
| Periphyton  |                           |                           |                           |                                                                                                                           |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                         |                                                                                                                    |
| Macrophytes |                           |                           |                           |                                                                                                                           |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                         |                                                                                                                    |
| Periphyton  |                           |                           |                           |                                                                                                                           |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                         |                                                                                                                    |
|             | Periphyton<br>Macrophytes | Periphyton<br>Macrophytes | Periphyton<br>Macrophytes | Macrophytes     Image: Complex state       Periphyton     Image: Complex state       Macrophytes     Image: Complex state | Macrophytes       Periphyton       Macrophytes | 12345Macrophytes </td <td>123456Macrophytes<!--</td--><td>1         2         3         4         5         6         7           Macrophytes        </td><td>Macrophytes     Image: Constraint of the second secon</td><td>1         2         3         4         5         6         7         8         9           Macrophytes        </td><td>1         2         3         4         5         6         7         8         9         10           Macrophytes        </td></td> | 123456Macrophytes </td <td>1         2         3         4         5         6         7           Macrophytes        </td> <td>Macrophytes     Image: Constraint of the second secon</td> <td>1         2         3         4         5         6         7         8         9           Macrophytes        </td> <td>1         2         3         4         5         6         7         8         9         10           Macrophytes        </td> | 1         2         3         4         5         6         7           Macrophytes | Macrophytes     Image: Constraint of the second secon | 1         2         3         4         5         6         7         8         9           Macrophytes | 1         2         3         4         5         6         7         8         9         10           Macrophytes |

Abundance: 0-4, (0=none 4=abundant)

L,

# Stream Habitat Assessment (Semi-Quantitative)

| Station #: | Stream:   | Date/Time: | Analyst: |
|------------|-----------|------------|----------|
|            | Location: |            |          |

#### 1. Reach Length Determination

| Parameter      | Meas | urement Nu | mber |   |         | Total Reach              | Sub-Reach                |
|----------------|------|------------|------|---|---------|--------------------------|--------------------------|
|                | 2    | 3          | 4    | 5 | Average | Length <sup>1</sup> (ft) | Length <sup>2</sup> (ft) |
| Bankfull Width | <br> |            |      |   |         |                          |                          |
| Bankfull Depth |      |            |      |   |         | na                       | na                       |

<sup>1</sup>Average width times 20

<sup>2</sup> Total Length divided by 10

#### 2. Riffle-Pool Sequence

| Morph.                | 1 |   |   | Re | each Num | iber - Le | ngth in Fe | et |   |    |       |
|-----------------------|---|---|---|----|----------|-----------|------------|----|---|----|-------|
| Туре:                 | 1 | 2 | 3 | 4  | 5        | 6         | 7          | 8  | 9 | 10 | Total |
| Riffle                |   |   |   |    |          |           |            |    |   |    |       |
| Run                   |   |   |   |    |          |           |            |    |   |    |       |
| Pool                  |   |   |   |    |          |           |            |    |   |    |       |
| Total                 |   |   |   |    |          |           |            |    |   |    |       |
| Sequence <sup>1</sup> |   |   |   | 1  |          |           |            |    |   |    |       |

<sup>1</sup>Riffle="xxx", Run="-----", Pool="~~~"

#### 3. Depth and Width Regime

| Morph.       |   |   |   |   |   |   | epth (ft) / |   |   |    |         |
|--------------|---|---|---|---|---|---|-------------|---|---|----|---------|
| Туре         | 1 | 2 | 3 | 4 | 5 | 6 | 7.5.5       | 8 | 9 | 10 | Average |
| Riffle Depth |   |   |   |   |   |   |             |   |   |    |         |
| Riffle Width |   |   |   |   |   |   |             |   |   |    |         |
| Pool Depth   |   |   |   |   |   |   |             |   |   |    |         |
| Pool Width   |   | : |   |   |   |   |             |   |   |    |         |

#### 4. Epifaunal Substrate, Percent Stable Habitat (for Macroinvertebrates)

| Section | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Average |
|---------|---|---|---|---|---|---|---|---|---|----|---------|
| % Area  |   |   |   |   |   |   |   |   |   |    |         |

#### 5. In-Stream Habitat, Percent Stable Habitat (Available Fish Cover in Wetted Perimeter)

|         |   |   |   | Reach N | o. — Avail | ability and | d Quality | of Fish Ha | abitat |    |         | 52562  |
|---------|---|---|---|---------|------------|-------------|-----------|------------|--------|----|---------|--------|
| Section | 1 | 2 | 3 | 4       | 5          | 6           | 7         | 8          | 9      | 10 | Average | 612028 |
| % Area  |   |   |   |         |            |             |           |            |        |    |         |        |

#### 6. Substrate Characterization (Dominant Substrate)

| Morph. |   |   |   |   | Reach N | o Domi | nant subs | trate |   |    |         |
|--------|---|---|---|---|---------|--------|-----------|-------|---|----|---------|
| Туре   | 1 | 2 | 3 | 4 | 5       | 6      | 7         | 8     | 9 | 10 | Average |
| Riffle |   |   |   |   |         |        |           |       |   |    |         |
| Pool   |   |   |   |   |         |        |           |       |   |    |         |

BR=Bedrock(7), BLD=Boulder(6), COB=Cobble(5), GC=Gravel Coarse(4), GF=Gravel Fine(3), S=Sand(2), SC=Silt/Clay(1)

#### 7. Embeddedness (Gravel, Cobble, Boulders Percent Embedded)

| Section    | 4 <b>1</b> 0-51-0 | 2 | 3 | 4 | 5 | 6 | 7 | 9 | 10 | 11 | 12 | Average |
|------------|-------------------|---|---|---|---|---|---|---|----|----|----|---------|
| % Embedded |                   |   |   |   |   |   |   |   |    |    |    |         |

#### 8. Sediment Deposition (Percent of Bottom Affected)

| Section 1 | 2 3 | 4 | 5 | 6 | - 7 | 8 | 9 | 10 | Average |
|-----------|-----|---|---|---|-----|---|---|----|---------|
| %         |     |   |   |   |     |   |   |    |         |

# Stream Habitat Assessment (Semi-Quantitative)

| Station #:                                     | Date/Time:                                       | Initials: |
|------------------------------------------------|--------------------------------------------------|-----------|
| 9. Aquatic Macrophytes and Periphyton<br>Morph | on (Percent Coverage)<br>Reach No. – Percent Cov |           |

| Туре   |             | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Average |
|--------|-------------|---|---|---|---|---|---|---|---|---|----|---------|
| Riffle | Macrophytes |   |   |   |   |   |   |   |   |   |    |         |
|        | Periphyton  |   |   |   |   |   |   |   |   |   |    |         |
| Pool   | Macrophytes |   |   |   |   |   |   |   |   |   |    |         |
|        | Periphyton  |   |   |   |   |   |   |   |   |   |    |         |

#### 10. Canopy Cover (Percent Stream Shading)

|           | Re  | ach No. – Percen | t (%) Shaded Withi | n Stream Channel |            |
|-----------|-----|------------------|--------------------|------------------|------------|
| Section 1 | 2 3 | 4 5              | 6 7                | 8 9              | 10 Average |
| Shading   |     |                  |                    |                  |            |

#### 11. Bank Stability (Score) and Slope (Degrees)

| LB                         | 1 | 2 | 3              | 4 | 5 | 6           | 7  | 8 | 9 | 10 | Average          |
|----------------------------|---|---|----------------|---|---|-------------|----|---|---|----|------------------|
| Section                    |   |   |                |   |   |             |    | 8 |   |    | Average<br>Score |
| Score                      |   |   |                |   |   |             |    |   |   |    |                  |
| Slope (°)<br>RB<br>Section |   |   |                |   |   |             |    |   |   |    |                  |
| RB                         | 1 | 2 | 3              | 4 | 5 | 6           | -7 | 8 | 9 | 10 | Average<br>Score |
| Section                    |   |   | and the second |   |   | Sector in a |    |   |   |    | Score            |
| Score                      |   |   |                |   |   |             |    |   |   |    |                  |
| Slope (°)                  |   |   |                |   |   |             |    |   |   |    |                  |

Score 9-10 = Stable, < 5% bank affected.

Score 3-5 = Moderately unstable, 30-59% bank eroding.

Score 6-8 = Moderately stable, 5-29% of bank eroding Score 1-2 = Unstable, 60-100% bank eroding.

#### 12. Vegetative Protection (Percent Banks Protected)

| LB<br>Section | 1 2 | 3   | 5 | 6 | 7 | 8 | 9 | 10 | Average |
|---------------|-----|-----|---|---|---|---|---|----|---------|
| %             |     |     |   |   |   |   |   |    |         |
| RB            | 1 2 | 3 4 | 5 | 6 | 7 | 8 | 9 | 10 | Average |
| %             |     |     |   |   |   |   |   |    |         |

#### 13. Riparian Vegetative Zone Width

| LB<br>Section | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Average<br>Score |
|---------------|---|---|---|---|---|---|---|---|---|----|------------------|
| Score         |   |   |   |   |   |   |   |   |   |    |                  |
| RB<br>Section | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Average<br>Score |
| Score         |   |   |   |   |   |   |   |   |   |    |                  |

Score 9-10 = Riparian Zone Width > 18 meters Score 3-5 = Riparian Zone Width 11 - 6 meters Score 6-8 = Riparian Zone Width 18 - 12 meters Score 1-2 = Riparian Zone Width < 6 meters

#### 14. Land-Use Stream Impacts

|                  |       |             |        |             | Reac        | h No. – In   | ipact Scc        | re    |       |            |         |
|------------------|-------|-------------|--------|-------------|-------------|--------------|------------------|-------|-------|------------|---------|
| Section          | 1     | 2           | 3      | 4           | 5           | 6            | 7                | 8     | 9     | 10         | Average |
| Impact           |       |             |        |             |             |              |                  |       |       |            |         |
| C = Cattle       | R = 1 | Row Crops   | U = Ur | ban Encroa  | l<br>chment | I = Industri | i<br>al Encroaci | nment | O = 0 | l<br>Other |         |
| Score $0 = none$ | e 1   | = minor afi | fect 2 | 2 = moderat | te affect   | 3 = major a  | ffect            |       |       |            |         |

#### Stream Habitat Assessment

#### **Reach Length Determination**

| Parameter |   | Meas | urement Nu | mber |   |         | Total Reach              | Sub-Reach                |  |
|-----------|---|------|------------|------|---|---------|--------------------------|--------------------------|--|
|           | 1 | 2    | 3          | 4    | 5 | Average | Length <sup>1</sup> (ft) | Length <sup>2</sup> (ft) |  |
| Bankfull  |   |      |            |      |   |         |                          |                          |  |
| Width     |   |      |            |      |   |         |                          |                          |  |
| Bankfull  |   |      |            |      |   |         | na                       | na                       |  |
| Depth     |   |      |            |      |   |         |                          |                          |  |

<sup>1</sup>Average width times 20 <sup>2</sup> Total Length divided by 10

#### **Riffle-Pool Sequence**

| Morph.<br>Type:<br>Riffle |      | Reach Number - Length in Feet |        |   |    |   |   |   |   |    |  |  |  |
|---------------------------|------|-------------------------------|--------|---|----|---|---|---|---|----|--|--|--|
| Type:                     | 1    | 2                             | 3      | 4 | 5  | 6 | 7 | 8 | 9 | 10 |  |  |  |
| Riffle                    |      |                               |        |   |    |   |   |   |   |    |  |  |  |
| Run                       |      |                               |        |   |    |   |   |   |   |    |  |  |  |
| Pool<br>Total             |      |                               |        |   |    |   |   |   |   |    |  |  |  |
| Total                     |      |                               |        |   |    |   |   |   |   |    |  |  |  |
| Sequence <sup>1</sup>     |      |                               |        |   |    |   |   |   |   |    |  |  |  |
| Diffio-"www"              | Dun- | " " Dool                      | -"000" |   | ·· |   |   |   |   | 1  |  |  |  |

'Riffle="xxx", Run="----", Pool="ooo'

#### Substrate Characterization

| Morph. |   | Reach No Dominant substrate |   |   |   |   |   |   |   |    |         |
|--------|---|-----------------------------|---|---|---|---|---|---|---|----|---------|
| Туре   | 1 | 2                           | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Average |
| Riffle |   |                             |   |   |   |   |   |   |   |    |         |
| Pool   |   |                             |   |   |   |   |   |   |   |    |         |

BR=Bedrock, BLD=Boulder, COB=Cobble, CG=Coarse Gravel, FG=Fine Gravel, S=Sand, SC=Silt/Clay

#### **Depth Regime**

| Morph. |   | Reach No Average Depth (ft) |   |   |   |   |   |   |   |    |         |  |
|--------|---|-----------------------------|---|---|---|---|---|---|---|----|---------|--|
| Туре   | 1 | 2                           | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Average |  |
| Riffle |   |                             |   |   |   | ł |   |   |   |    |         |  |
| Pool   |   |                             |   |   |   |   |   |   |   |    |         |  |

#### Canopy Cover (Stream Shading)

|         | Reach No Percent (%) Shaded Within Stream Channel |   |   |   |   |   |   |   |   |    |         |
|---------|---------------------------------------------------|---|---|---|---|---|---|---|---|----|---------|
|         | 1                                                 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Average |
| Shading |                                                   |   |   |   |   |   |   |   |   |    |         |

#### In-Stream Habitat (Available Fish Cover, bkf-bkf)

|       |   | Reach No Availability and Quality of Fish Habitat |   |   |   |   |   |   |   |    |         |  |
|-------|---|---------------------------------------------------|---|---|---|---|---|---|---|----|---------|--|
|       | 1 | 2                                                 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Average |  |
| Score |   |                                                   |   |   |   |   |   |   |   |    | ¥       |  |

Scoring: 20-16 Optimal, 15-11 Sub-optimal, 10-6 Marginal, 5-0 Poor

#### Aquatic Macrophytes and Periphyton

| Morph.         |             | Reach No Abundance |   |   |   |   |   |   |   |   |    |                                         |
|----------------|-------------|--------------------|---|---|---|---|---|---|---|---|----|-----------------------------------------|
| Type<br>Riffle |             | 1                  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Average                                 |
| Riffle         | Macrophytes |                    |   |   |   |   |   |   |   |   |    | × · · · · · · · · · · · · · · · · · · · |
|                | Periphyton  |                    |   |   |   |   |   |   |   |   |    |                                         |
| Pool           | Macrophytes |                    |   |   |   |   |   |   |   |   |    |                                         |
|                | Periphyton  |                    |   |   |   |   |   |   | - |   |    |                                         |

Abundance: 0-4, (0=none 4=abundant)

# Habitat Assessment Field Data Sheet (Low Gradient)

| Station I.D: | Client:            |
|--------------|--------------------|
| Stream name: | Date/Time:         |
| Location:    | Form Completed By: |

| Habitat                                           |                                                                                                                                                                                                                                      | CATEG                                                                                                                                                                                                                               | DRY                                                                                                                                                                                                       |                                                                                                                                                         |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter                                         |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                     |                                                                                                                                                                                                           |                                                                                                                                                         |
|                                                   | Optimal                                                                                                                                                                                                                              | Suboptimal                                                                                                                                                                                                                          | Marginal                                                                                                                                                                                                  | Poor                                                                                                                                                    |
| 1. Epifaunal<br>Substrate /<br>Available<br>Cover | Greater than 50% of<br>substrate favorable for<br>epifaunal colonization and<br>fish cover; mix of snags,<br>submerged logs, undercut<br>banks, cobble, or other<br>stable habitat; and at a<br>stage to allow full<br>colonization. | 30-50% mix of stable<br>habitat suited for<br>colonization; adequate<br>habitat for maintenance<br>of population; some<br>newfall may be present.                                                                                   | 10-30% mix of stable<br>habitat; habitat<br>availability less than<br>desirable; substrate<br>frequently disturbed.                                                                                       | Less than 10% stable<br>habitat; lack of<br>habitat obvious;<br>substrate lacking                                                                       |
| SCORE                                             | 20 19 18 17 16                                                                                                                                                                                                                       | 15 14 13 12 11                                                                                                                                                                                                                      | 10 9 8 7 6                                                                                                                                                                                                | 54321                                                                                                                                                   |
| 2. Pool Substrate<br>Characterization             | Mixture of substrate<br>materials, with gravel and<br>firm sand prevalent; root<br>mats and submerged<br>vegetation common.                                                                                                          | Mixture of soft sand,<br>mud, or clay; mud may<br>be dominant; some root<br>mats and submerged<br>vegetation present.                                                                                                               | All mud or clay to sand<br>bottom; little or no root<br>mat; no submerged<br>vegetation.                                                                                                                  | Hard-pan clay or<br>bedrock; no root or<br>vegetation.                                                                                                  |
| SCORE                                             | 20 19 18 17 16                                                                                                                                                                                                                       | 15 14 13 12 11                                                                                                                                                                                                                      | 10 9 8 7 6                                                                                                                                                                                                | 54321                                                                                                                                                   |
| 3. Pool Variability                               | Even mix of large-shallow,<br>large-deep small-shallow,<br>small deep pools present.                                                                                                                                                 | Majority of pools large deep; very few shallow.                                                                                                                                                                                     | Shallow pools much<br>more prevalent than<br>deep pools.                                                                                                                                                  | Majority of pools<br>small-shallow or<br>absent.                                                                                                        |
| SCORE                                             | 20 19 18 17 16                                                                                                                                                                                                                       | 15 14 13 12 11                                                                                                                                                                                                                      | 10 9 8 7 6                                                                                                                                                                                                | 54321                                                                                                                                                   |
| 4. Channel<br>Alteration                          | No channelization or<br>dredging present. Stream<br>channel normal.                                                                                                                                                                  | Some channelization<br>present, usually in areas<br>of bridge abutments;<br>evidence of past<br>channelization, i.e.<br>dredging, (greater than<br>past 20 yrs.) may be<br>present, but recent<br>channelization is not<br>present. | Embankments present<br>on both banks;<br>channelization may be<br>extensive, and 40%-<br>80% of steam reach<br>channelized and<br>disrupted.                                                              | Extensive<br>channelization;<br>shored with Gabon<br>cement; heavily<br>urbanized areas; in<br>steam habitat greatly<br>altered or removed<br>entirely. |
| SCORE                                             | 20 19 18 17 16                                                                                                                                                                                                                       | 15 14 13 12 11                                                                                                                                                                                                                      | 10 9 8 7 6                                                                                                                                                                                                | 54321                                                                                                                                                   |
| 5. Sediment<br>Deposition                         | Less than 20% of bottom<br>affected; minor<br>accumulation of fine and<br>coarse material at snags<br>and submerged<br>vegetation; little or no<br>enlargement of islands or<br>point bars.                                          | 20-50% affected; some<br>accumulation;<br>substantial sediment<br>movement only during<br>major storm even; some<br>new increase in bar<br>formation.                                                                               | 50-80% affected;<br>moderate deposition;<br>pools shallow,<br>moderately silted;<br>embankments may be<br>present on both banks;<br>frequent and substantial<br>sediment movement<br>during storm events. | Heavily silted; >80%<br>affected;<br>movement/shifting of<br>bottom occurs<br>frequently; pools<br>nearly absent due to<br>deposition.                  |
| SCORE                                             | 20 19 18 17 16                                                                                                                                                                                                                       | 15 14 13 12 11                                                                                                                                                                                                                      | 10 9 8 7 6                                                                                                                                                                                                | 54321                                                                                                                                                   |

( )

# Habitat Assessment Field Data Sheet (Low Gradient Cont.)

| Station I.D: | Date/Time:         |
|--------------|--------------------|
|              | Form Completed By: |

| Habitat<br>Parameter                     |                                                                                                                                                                                                                | CATEG                                                                                                                                                                                                 | GORY                                                                                                                                                                                                                                   |                                                                                                                                                                                                           |  |  |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                          | Optimal                                                                                                                                                                                                        | Suboptimal                                                                                                                                                                                            | Marginal                                                                                                                                                                                                                               | Poor                                                                                                                                                                                                      |  |  |
| 6. Channel Sinuosity                     | The bends in the<br>stream increase the<br>stream length 3 to 4<br>times longer than it if<br>was in a straight line.                                                                                          | The bends in the stream<br>increase the stream<br>length 2 to 3 times<br>longer than if it was in a<br>straight line.                                                                                 | The bends in the<br>stream increase the<br>stream length 1 to 2<br>times longer than if it<br>was in a straight line.                                                                                                                  | Channel straight;<br>waterway has been<br>channelized for a<br>distance.                                                                                                                                  |  |  |
| SCORE                                    | 20 19 18 17 16                                                                                                                                                                                                 | 15 14 13 12 11                                                                                                                                                                                        | 10 9 8 7 6                                                                                                                                                                                                                             | 54321                                                                                                                                                                                                     |  |  |
| 7. Channel Flow<br>Status                | Water reaches base of<br>both lower banks and<br>minimal amount of<br>channel substrate is<br>exposed.                                                                                                         | Water fills >75% of the<br>available channel; or <<br>25% of channel<br>substrate is exposed.                                                                                                         | Water fills 25-75% of<br>the available channel<br>and/or riffle substrates<br>are mostly exposed.                                                                                                                                      | Very little water in<br>channel and mostly<br>present as standing<br>pools.                                                                                                                               |  |  |
| SCORE                                    | 20 19 18 17 16                                                                                                                                                                                                 | 15 14 13 12 11                                                                                                                                                                                        | 10 9 8 7 6                                                                                                                                                                                                                             | 54321                                                                                                                                                                                                     |  |  |
| 8. Bank Stability                        | Banks stable; no<br>evidence of erosion or<br>bank failure. <5%<br>affected.                                                                                                                                   | Moderately stable;<br>infrequent, small areas<br>of erosion mostly healed<br>over. 5%-30% affected.                                                                                                   | Moderately unstable; up<br>to 30%-60% of banks in<br>reach show areas of<br>erosion. High erosion<br>potential during floods.                                                                                                          | Unstable; many<br>eroded areas; "raw"<br>areas frequent along<br>straight sections and<br>bends; 60-100% of<br>banks have erosion<br>scars.                                                               |  |  |
| SCORE LB                                 | Left Bank 10 9                                                                                                                                                                                                 | 876                                                                                                                                                                                                   | 5 4 3                                                                                                                                                                                                                                  | 2 1                                                                                                                                                                                                       |  |  |
| SCORE RB                                 | Right Bank 10 9                                                                                                                                                                                                | 8 7 6                                                                                                                                                                                                 | 5 4 3                                                                                                                                                                                                                                  | 2 1                                                                                                                                                                                                       |  |  |
| 9. Vegetative<br>Protection              | More than 90% of the<br>streambank surfaces<br>and immediate riparian<br>zone covered by<br>vegetation. Vegetation<br>disruption minimal or<br>not evident; almost all<br>plants allowed to grow<br>naturally. | 70-90% of the<br>streambank surfaces<br>covered by vegetation.<br>Disruption minimal or not<br>evident; one group of<br>plants likely not evident.<br>Almost all plants allowed<br>to grow naturally. | 50-70% of the<br>streambank surfaces<br>covered by vegetation.<br>Disruption obvious;<br>patches of bare soil or<br>closely cropped<br>vegetation common;<br>less than one-half of the<br>potential plant stubble<br>height remaining. | Less than 50% of<br>streambank surfaces<br>covered by vegetation.<br>Disruption of stream<br>bank vegetation very<br>high; vegetation has<br>been removed; 2<br>inches or less average<br>stubble height. |  |  |
| SCORE LB                                 | Left Bank 10 9                                                                                                                                                                                                 | 876                                                                                                                                                                                                   | 5 4 3                                                                                                                                                                                                                                  | 2 1                                                                                                                                                                                                       |  |  |
| SCORE RB                                 | Right Bank 10 9                                                                                                                                                                                                | 876                                                                                                                                                                                                   | 5 4 3                                                                                                                                                                                                                                  | 2 1                                                                                                                                                                                                       |  |  |
| 10. Riparian<br>Vegetative Zone<br>Width | Width of riparian zone<br>>18 meters; human<br>activities (i.e., parking<br>lots, roadbeds,<br>clearcuts, lawns or<br>crops) have not<br>impacted zone.                                                        | Width of riparian zone<br>12-18 meters; human<br>activities have impacted<br>zone only minimally.                                                                                                     | Width of riparian zone<br>6-12 meters; human<br>activities have impacted<br>a great deal.                                                                                                                                              | Width of riparian zone<br><6 meters; little<br>riparian vegetation to<br>human activities.                                                                                                                |  |  |
| SCORE LB                                 | Left Bank 10 9                                                                                                                                                                                                 | 8 7 6                                                                                                                                                                                                 | 5 4 3                                                                                                                                                                                                                                  | 2 1                                                                                                                                                                                                       |  |  |
| SCORE RB                                 | Right Bank 10 9                                                                                                                                                                                                | 8 7 6                                                                                                                                                                                                 | 5 4 3                                                                                                                                                                                                                                  | 2 1                                                                                                                                                                                                       |  |  |

# TOTAL SCORE: \_\_\_\_\_

Barbour, M.T. et.al., 1999. Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers.

#### Habitat Assessment Field Data Sheet (Low Gradient)

#### Floodplain Characterization<sup>1</sup>:

| Station I.D: | Date/Time:         |
|--------------|--------------------|
| Stream name: | Form Completed By: |

| Habitat<br>Parameter       |                                                                                                                           | CATEG                                                                                                                                                         | GORY                                                                                                                                                    |                                                                                                                                                                  |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | Optimal                                                                                                                   | Suboptimal                                                                                                                                                    | Marginal                                                                                                                                                | Poor                                                                                                                                                             |
| FLOODPLAIN<br>CONNECTION   | High flows (greater than<br>bankfull) able to enter<br>floodplain. Stream not<br>deeply entrenched.                       | High flows (greater than<br>bankfull) able to enter<br>flood plain. Stream not<br>deeply entrenched.                                                          | High flows (greater than<br>bankfull) not able to<br>enter flood plain.<br>Stream not deeply<br>entrenched.                                             | High flows (greater<br>than bankfull) not able<br>to enter flood plain.<br>Stream not deeply<br>entrenched.                                                      |
|                            | 20 19 18 17 16                                                                                                            | 15 14 13 12 11                                                                                                                                                | 109876                                                                                                                                                  | 54321                                                                                                                                                            |
| FLOODPLAIN<br>VEGETATION   | Predominant floodplain<br>vegetation type is mature<br>forest.                                                            | Predominant floodplain<br>vegetation type is<br>young forest.                                                                                                 | Predominant floodplain<br>vegetation type is shrub<br>or old field.                                                                                     | Predominant floodplain<br>vegetation type is turf<br>or crop land.                                                                                               |
|                            | 20 19 18 17 16                                                                                                            | 15 14 13 12 11                                                                                                                                                | 109876                                                                                                                                                  | 54321                                                                                                                                                            |
| FLOODPLAIN<br>HABITAT      | Even mix of wetland and<br>non-wetland habitats,<br>evidence of<br>standing/ponded water.                                 | Even mix of wetland<br>and non-wetland<br>habitats, no evidence of<br>standing/ponded water.                                                                  | Either all wetland or<br>non-wetland habitats,<br>evidence of<br>standing/ponded water.                                                                 | Either all wetland or<br>non-wetland habitats,<br>no evidence of<br>standing/ponded<br>water.                                                                    |
|                            | 20 19 18 17 16                                                                                                            | 15 14 13 12 11                                                                                                                                                | 10 9 8 7 6                                                                                                                                              | 54321                                                                                                                                                            |
| FLOODPLAIN<br>ENCROACHMENT | No evidence of floodplain<br>encroachment in the<br>form of fill material, land<br>development, or<br>manmade structures. | Minor floodplain<br>encroachment in the<br>form of fill material, land<br>development, or<br>manmade structures,<br>but not effecting<br>floodplain function. | Moderate floodplain<br>encroachment in the<br>form of filling, land<br>development, or<br>manmade structures,<br>some effect on<br>floodplain function. | Significant floodplain<br>encroachment (i.e., fill<br>material, land<br>development, or<br>manmade structures).<br>Significant effect on<br>floodplain function. |
|                            | 20 19 18 17 16                                                                                                            | 15 14 13 12 11                                                                                                                                                | 10 9 8 7 6                                                                                                                                              | 54321                                                                                                                                                            |

Floodplain Total Score:\_\_\_\_\_ Floodplain Average Score:\_\_\_\_\_

<sup>1</sup>Modified from *Unified Stream Assessment: A Users Manual*, (Kitchell & Schuller, 2004)



 $\bigcirc$ 

 $\overline{}$ 

219 Brown Ln. Bryant, AR 72022 (501) 847-7077 Fax (501) 847-7943

# **Chain of Custody**

| LENT NFORMATION              |                               |              | BILLING INFORMATION             | RMATION                    |                           | SPECIAL | SPECIAL INSTRUCTIONS/PRECAUTIONS: | RECAUTIONS: |
|------------------------------|-------------------------------|--------------|---------------------------------|----------------------------|---------------------------|---------|-----------------------------------|-------------|
| Company:                     |                               | Bill To:     |                                 |                            |                           |         |                                   |             |
| Project Name/No.:            |                               | Company:     |                                 |                            |                           |         |                                   |             |
| Send Report To:              |                               | Address:     |                                 |                            |                           |         |                                   |             |
| Address:                     |                               |              |                                 |                            |                           | Para    | Parameters for Analysis/Methods   | s/Methods   |
|                              |                               | Phone No.:   |                                 |                            |                           |         |                                   |             |
| Phone/Fax No.:               |                               | Fax No.:     |                                 |                            | 2                         |         |                                   |             |
| Sample ID Sample Description | Date                          | Time         | Matrix<br>S=Sed/Soil<br>W=Water | Number<br>of<br>Containers | Composite<br>or<br>Grab   |         |                                   |             |
|                              |                               |              |                                 |                            |                           |         |                                   |             |
|                              |                               |              |                                 |                            |                           |         |                                   |             |
|                              |                               |              |                                 |                            |                           |         |                                   |             |
|                              |                               |              |                                 |                            |                           |         |                                   |             |
|                              |                               |              |                                 |                            |                           |         |                                   |             |
|                              |                               |              |                                 |                            |                           |         |                                   |             |
|                              |                               |              |                                 |                            |                           |         |                                   |             |
| Preservative (Sulfuric a     | Sulfuric acid =S, Nitric acid | Ľ,           | NaOH =B, Ice =I)                | =)                         |                           |         |                                   |             |
| Sampler(s):                  | Shipment Method:              | sthod:       |                                 | Turnarou                   | Turnaround Time Required: | iired:  |                                   |             |
| COC Completed by:            | Date:                         | Ē            | Time:                           | COC Checked by:            | cked by:                  |         | Date:                             | Time:       |
| Relinquished by:             | Date:                         | Ë            | Time:                           | Received by:               | by:                       |         | Date:                             | Time:       |
| Relinquished by:             | Date:                         | Ţ            | Time:                           | Received                   | Received in lab by:       |         | Date:                             | Time:       |
| LABORATORY USE ONLY:         | Samples Received On Ice?:     | eived On Ice | ?: YES                          | or NO                      |                           | Sample  | Sample Temperature:               |             |

V1.2 04/15/05

#### FIELD DATA SHEETS - BENTHIC INVERTEBRATES

.

| Waterbody Name:        |
|------------------------|
| Client:                |
| Project no:            |
| Investigators:         |
| <u> </u>               |
| Date Sample Collected: |

Location: \_\_\_\_\_\_.

Weather: \_\_\_\_\_\_

Form Completed By: \_\_\_\_\_

Form Checked By: \_\_\_\_\_\_

Habitat Forms Completed: yes / no

Fish Sampling Completed: yes / no

| Collection              | n Site Observatio | ns                                                                                                              | Macroinverteb                         | rate Qualitative    | Sample List                           |
|-------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------|---------------------------------------|
|                         | Above Station     | Below Station                                                                                                   | Таха                                  | Above Station       | Below Station                         |
| Total Time Sampled:     |                   |                                                                                                                 | Annelida                              |                     |                                       |
|                         | ndance of Aquatic |                                                                                                                 | Decapoda                              |                     |                                       |
| Periphyton:             | 01234             | 01234                                                                                                           | Gastropoda                            |                     |                                       |
| Filamentous Algae:      | 01234             | 01234                                                                                                           | Pelecypoda                            |                     |                                       |
| Macrophytes:            | 01234             | 01234                                                                                                           | Hemiptera                             |                     |                                       |
| Slimes:                 | 01234             | 01234                                                                                                           | Coleoptera                            |                     |                                       |
| Macroinvertebrates:     | 01234             | 01234                                                                                                           | Lepidoptera                           |                     |                                       |
| Fish:                   | 01234             | 01234                                                                                                           | Odonata                               |                     |                                       |
| Other:                  | 01234             | 01234                                                                                                           | Megaloptera                           |                     |                                       |
|                         |                   |                                                                                                                 | Diptera                               |                     |                                       |
| 0=Not Observed, 1=Rare, | 2=Common, 3=Abund | ant, 4=Dominant                                                                                                 | Chironomidae                          |                     |                                       |
| Major Ha                | abitat Sampled (% |                                                                                                                 | Plecoptera                            |                     |                                       |
| Riffle/Run:             |                   |                                                                                                                 | Ephemeroptera                         |                     |                                       |
| Shallow Pool:           |                   |                                                                                                                 | Trichoptera                           |                     |                                       |
| Deep Pool:              |                   |                                                                                                                 | Amphipoda                             |                     |                                       |
| Backwaters:             |                   |                                                                                                                 | · · · · · · · · · · · · · · · · · · · |                     |                                       |
| Chanelized:             |                   |                                                                                                                 |                                       |                     |                                       |
| Microhal                | oitats Sampled (% | ) de la companya de l |                                       |                     | · · · · · · · · · · · · · · · · · · · |
| Woody Debris:           |                   |                                                                                                                 | R=Rare, C=Con                         | nmon, A=Abundant,   | D=Dominant                            |
| Emergent Vegatation:    |                   |                                                                                                                 |                                       | n 3-9, Abundant>10, |                                       |
| Submerged Vegetation:   |                   |                                                                                                                 |                                       | ption and Obse      |                                       |
| Depositional Area:      |                   |                                                                                                                 |                                       |                     |                                       |
| Overhanging Veg:        |                   |                                                                                                                 |                                       |                     |                                       |
| Root Wads;              |                   | ······                                                                                                          |                                       |                     |                                       |
| Undercut Banks:         |                   |                                                                                                                 |                                       |                     |                                       |
| Filamentous algae:      |                   |                                                                                                                 |                                       |                     |                                       |
| Leafy Debris:           |                   |                                                                                                                 |                                       |                     |                                       |
| Other :                 |                   |                                                                                                                 |                                       |                     |                                       |
| •                       |                   |                                                                                                                 |                                       |                     |                                       |

Revision 1.2 05/28/02 GBMc Assoc. Doc.2 Page 1 of 2

#### **Rapid Bioassessment Field Sheet**

| Point Source     |                                       |                                       |                 | Date                                     |                                        |
|------------------|---------------------------------------|---------------------------------------|-----------------|------------------------------------------|----------------------------------------|
| Collector        | Sam                                   | ple Technique                         | Sediment        |                                          |                                        |
| bitat Descrip    | otion: ABOVE _                        |                                       |                 |                                          | · · · · · · · · · · · · · · · · · · ·  |
|                  | BELOW                                 |                                       |                 |                                          |                                        |
| ·····            |                                       |                                       |                 |                                          |                                        |
|                  |                                       | MACROINVER                            | TEBRATE COMMUN  | NITY                                     |                                        |
| ABOVE Stati      |                                       |                                       | BELOW S         |                                          |                                        |
| Cnt.             | Taxa                                  | Taliy                                 | Cnt             | Таха                                     | Tally                                  |
| <u> </u>         |                                       |                                       |                 |                                          |                                        |
|                  |                                       |                                       |                 |                                          | · · · · · · · · · · · · · · · · · · ·  |
| ·                |                                       |                                       |                 |                                          |                                        |
|                  |                                       |                                       |                 |                                          |                                        |
|                  |                                       |                                       |                 |                                          |                                        |
|                  |                                       |                                       |                 |                                          |                                        |
|                  |                                       |                                       |                 |                                          |                                        |
| <u> </u>         |                                       |                                       |                 |                                          |                                        |
|                  |                                       |                                       |                 |                                          |                                        |
| <u> </u>         |                                       |                                       |                 |                                          |                                        |
|                  |                                       | · · · · · · · · · · · · · · · · · · · |                 |                                          | ·                                      |
|                  |                                       | ·                                     |                 |                                          |                                        |
|                  |                                       |                                       |                 |                                          |                                        |
|                  |                                       |                                       |                 |                                          |                                        |
|                  |                                       | •                                     |                 |                                          |                                        |
|                  |                                       |                                       |                 |                                          |                                        |
| <u> </u>         |                                       |                                       |                 | • // • · · · · · · · · · · · · · · · · · |                                        |
|                  |                                       |                                       |                 |                                          | ······································ |
|                  |                                       |                                       | · · · · ·       |                                          |                                        |
|                  |                                       |                                       |                 |                                          |                                        |
|                  | ·····                                 |                                       |                 |                                          |                                        |
|                  |                                       |                                       |                 |                                          |                                        |
|                  |                                       | ·····                                 |                 |                                          |                                        |
|                  |                                       |                                       |                 |                                          |                                        |
|                  |                                       |                                       |                 |                                          |                                        |
|                  |                                       |                                       |                 |                                          |                                        |
| []:]             | FOTAL:                                |                                       |                 | :TOTAL:                                  |                                        |
|                  | ABOVE                                 | <u>Comm</u><br>BELOW                  | unity Structure |                                          |                                        |
| % Ephem.         | ADOVE                                 | DELOVV                                | % Odon.         | ABOVE                                    | BELOW                                  |
| % Plecop.        | · · · · · · · · · · · · · · · · · · · |                                       | % Cole.         |                                          |                                        |
| % Trichop.       |                                       |                                       | % Crustacea     |                                          | ······································ |
| % EPT            |                                       |                                       |                 |                                          |                                        |
| % Chir.          |                                       |                                       | # of Taxa:      |                                          |                                        |
| <u>% Diptera</u> |                                       |                                       | Biotic Score:   |                                          |                                        |
| Jomments:        |                                       |                                       |                 |                                          |                                        |

#### **BIOMETRIC SCORE SHEET**

| Station:      | Above                                                                  | Below                                                          | NPDES Permit #                                                                 |                                       | _                      |
|---------------|------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------|------------------------|
| Habitat Samp  | led                                                                    | Date/Time                                                      |                                                                                |                                       | Biometric Score        |
| Biometric (1) |                                                                        | % Dominants E                                                  | Below % If DIC                                                                 |                                       |                        |
|               | 1<br>2                                                                 | 1                                                              | <u> </u>                                                                       | 4<br>3                                |                        |
|               | 3                                                                      | 3.                                                             | 2                                                                              | 2                                     |                        |
|               | 4                                                                      | 4                                                              | 0-1                                                                            | 1                                     |                        |
|               | 5                                                                      | 5                                                              |                                                                                |                                       |                        |
|               | Total % of Dom:                                                        |                                                                | om:                                                                            |                                       |                        |
| Biometric (2) | Common Taxa Inde                                                       |                                                                |                                                                                |                                       |                        |
|               | CTI: =                                                                 | _ [TIC/MAX (T <sub>a</sub> or T                                | b)] <u>If CTI Score</u><br>> .70 4<br>0.50-0.70 3                              | 0.3049                                | 2<br>1                 |
| Biometric (3) | Quantitative Similar                                                   |                                                                |                                                                                |                                       |                        |
|               | QSI: =                                                                 | _ [Σ min (pi <sub>a</sub> , pi <sub>b</sub> )]                 | <u>If QSI Score</u><br>> 65 4<br>56-65 3                                       | 45-55                                 | <u>Score</u><br>2<br>1 |
| Biometric (4) | Taxa Richness                                                          |                                                                |                                                                                |                                       |                        |
|               | # of Taxa Above =<br># of Taxa Below =<br>% difference =               | <u> </u>                                                       | <u>o Diff. Score lf</u><br>10% 4 3<br>-30% 3 >                                 | 1-45% 2                               | <u>re</u>              |
| Biometric (5) | Above            Below            IAI =            If IAI         Scor | <u>%CA</u> IAI = 0.5<br><br><u>e If IAI</u><br><br>0.50 - 0.64 | 50 [(%EPT <sub>b</sub> /%EPT <sub>a</sub> )<br>Score<br>2<br>1                 | + (%CA <sub>a</sub> /%CA <sub>t</sub> |                        |
| Biometric (6) | Missing EPT Gener                                                      |                                                                |                                                                                |                                       |                        |
|               | Comments <u>I</u>                                                      | <u>f Missing Scor</u><br><1 4                                  | e If Missing<br>2 from 2                                                       | <u>Score</u><br>2                     |                        |
|               |                                                                        | $\leq 1$ 4<br>2 3                                              | >2 from 2                                                                      | 1                                     |                        |
| Biometric (7) |                                                                        |                                                                | <sub>b</sub> , + % CO <sub>a</sub> , CO <sub>b</sub> , + %<br><u>If</u><br>> 8 | <u>% Sco</u><br>5 4                   |                        |
|               | % Collectors                                                           | ·····                                                          |                                                                                |                                       | 2                      |
|               | % Predators<br>FG % Similarity =                                       |                                                                | < 6                                                                            |                                       | _                      |
|               | . 0 // On monty –                                                      |                                                                | TOTAL BI                                                                       | OMETRIC SCO                           | ORE =                  |
|               |                                                                        |                                                                | MEAN BI                                                                        | OMETRIC SCO                           | ORE =                  |
|               |                                                                        | AQUA <sup>.</sup>                                              | TIC LIFE USE STAT                                                              | US                                    |                        |
|               |                                                                        |                                                                | NTIAL GENERIC CA                                                               |                                       |                        |
| V1.2 05/28/02 |                                                                        |                                                                |                                                                                | ~~~                                   |                        |

( )

Ì

#### FIELD DATA SHEETS - FISH

| Waterbody Name:        |          |
|------------------------|----------|
| Client:                | <u>.</u> |
| Project no:            | <u>.</u> |
| Investigators:         |          |
| . <u> </u>             | <u> </u> |
| Date Sample Collected: |          |
|                        |          |

Location:\_\_\_\_\_\_ Ecoregion:\_\_\_\_\_\_

Weather:

Habitat Forms Completed: yes / no

| Form Completed By: |  |
|--------------------|--|
| Form Checked By:   |  |

Fish Sampling Completed: yes / no

|                       | Collection Site Obser                    | vations       |               |
|-----------------------|------------------------------------------|---------------|---------------|
| Total Time Sampled    | Above Station                            | Below Station | Additional    |
|                       | Relative Abundance of Aquatic Blota      |               | Observations: |
| Periphyton:           | 0 1 2 3 4                                | 0 1 2 3 4     |               |
| Filamentous Algae:    | 0 1 2 3 4                                | 0 1 2 3 4     |               |
| Macrophytes:          | 0 1 2 3 4                                | 01234         |               |
| Slimes:               | 0 1 2 3 4                                | 01234         |               |
| Macroinvertebrates:   | 0 1 2 3 4                                | 0 1 2 3 4     |               |
| Fish:                 | 0 1 2 3 4                                | 0 1 2 3 4     |               |
| Other:                | 0 1 2 3 4                                | 0 1 2 3 4     |               |
|                       | served, 1=Rare, 2=Common, 3=Abundant, 4  |               |               |
|                       | Major Habitat Sampled (%)                |               |               |
| Riffle/Run:           |                                          |               |               |
| Shallow Pool:         |                                          | <u> </u>      |               |
| Deep Pool:            |                                          |               | _             |
| Backwaters:           |                                          |               | _             |
| Chanelized:           | Microhabitats Sampled (%)                |               |               |
| Woody debris:         | Wicionabilats Gal (pied (76)             |               |               |
| Emergent Vegatation:  |                                          |               |               |
| Submerged Vegetation: |                                          |               |               |
| Depositional Area:    |                                          |               |               |
| Overhanging Veg:      |                                          |               |               |
| Root Wads:            |                                          |               |               |
| Undercut Banks:       |                                          |               |               |
| Filamentous algae:    |                                          |               |               |
| Leafy debris:         |                                          | <u></u> ·     |               |
|                       | Substrate Type and Scoring               |               |               |
| Substrate             | Score Score                              | Adj. Score    |               |
| Bedrock:              | X 0.1                                    |               |               |
| Lg. Boulder:          | X 1.0                                    |               | -             |
| Boulders:             | × 1.0                                    |               |               |
| Rubble:               | X 1.0                                    |               |               |
| Gravel:               | X 0.5                                    |               | -             |
| Sand:                 | X 0.1                                    |               | $\neg$        |
| Mud/Silt:             | X 0.1                                    |               |               |
| Score:                | Abundant 11-15, Common 6-10, Sparce 1-5, | Absent 0      | -1            |

| Sampling Gear Type:       | Electrofishing                        | Seine          | Gill nets |  |
|---------------------------|---------------------------------------|----------------|-----------|--|
| Unit of Effort: Above:    |                                       | Below:         |           |  |
| Quantity of Available Fig | sh Cover:                             |                |           |  |
| Above Station: Very Abu   | ndant, Abundant, Mo                   | derate, Spars  | e, Absent |  |
| Below Station: Very Abun  | dant, Abundant, Moc                   | lerate, Sparse | e, Absent |  |
| Site Description & Notes: |                                       |                |           |  |
| Above Station:            | · · · · · · · · · · · · · · · · · · · |                |           |  |

Below Station:

#### **Fish Species Observed**

| Above Station #                        | Below Station #                       |  |
|----------------------------------------|---------------------------------------|--|
|                                        |                                       |  |
|                                        |                                       |  |
|                                        |                                       |  |
| ······································ |                                       |  |
|                                        |                                       |  |
|                                        |                                       |  |
|                                        |                                       |  |
|                                        |                                       |  |
|                                        |                                       |  |
|                                        |                                       |  |
|                                        |                                       |  |
| · · · · · · · · · · · · · · · · · · ·  |                                       |  |
|                                        |                                       |  |
|                                        |                                       |  |
| ······                                 | · · · · · · · · · · · · · · · · · · · |  |
|                                        |                                       |  |
|                                        |                                       |  |
|                                        |                                       |  |
|                                        |                                       |  |
|                                        |                                       |  |
|                                        |                                       |  |
|                                        |                                       |  |

Revision 1.2 05/28/02 GBM<sup>c</sup> & Assoc. Doc. 1 Page 2 of 2

#### **FISH COMMUNITY BIOCRITERIA**

#### Gulf Coastal-Typical Streams

|                                   |                    | Reference Cond                  | itions                            | Scores by Station ID |
|-----------------------------------|--------------------|---------------------------------|-----------------------------------|----------------------|
| METRIC                            | 4                  | 2                               | 0                                 |                      |
| % Sensitive<br>Individuals        | >1                 | 1-0.5                           | <0.5                              |                      |
| % Cyprinidae<br>(minnows)         | 5-35               | <5 or 36-45                     | >45                               |                      |
| % lctaluridae<br>(Catfishes)      | >11                | 0.5-1 <sup>1</sup>              | <0.5 or >8<br>bullheads           |                      |
| %<br>Centrarchidae<br>(Sunfishes) | 28-47 <sup>2</sup> | 18-28 or 47-<br>57 <sup>2</sup> | <18 or >57 or >8<br>Green sunfish |                      |
| % Percidae<br>(darters)           | >10                | 6-10                            | <6                                |                      |
| % Primary<br>Feeders              | <15                | 15-22                           | >22                               |                      |
| % "Key"<br>Individuals            | >19                | 13-19                           | <13                               |                      |
| Diversity                         | >3.89              | 3.89-3.65                       | <3.65                             |                      |
|                                   |                    |                                 |                                   |                      |
|                                   |                    |                                 | TOTAL                             |                      |
|                                   |                    |                                 | IMPAIRMENT<br>STATUS              |                      |

<sup>1</sup>no more than 8% bullheads <sup>2</sup>no more than 8% Green sunfish

Impairment StatusTotal Score:25-32Fully Supporting24-17Slightly Impaired16-9Moderately Impaired0-8Not Supporting

# Appendix B Agency documentation



### Arkansas Department of Health and Human Services



**Division of Health** 

Paul K. Halverson, DrPH, Director

Engineering Section - Environmental Health Branch - Center for Local Public Health

| Postal Address P. O. Box 1437, Slot |                                  | 1-501-661-2623        | TDD: 1-800-234-4399 |
|-------------------------------------|----------------------------------|-----------------------|---------------------|
| Physical Address for UPS or Fedex   | 4815 West Markham St., Slot H-37 | Little Rock, AR 72205 | Fax: 1-501-661-2032 |

December 6, 2005

Mr. Vince Blubaugh GBMc & Associates 219 Brown Lane Bryant, AR 72022

> Re: Domestic Water Supply Determination Unnamed Tributaries of Little Cornie Bayou and Bayou De Loutre Union County, AR

Dear Mr. Blubaugh,

In response to your letter of October 27, 2005 regarding the above streams, please be advised that these water bodies are not currently used as a source of supply for a public water system, nor are we aware of their being considered for such use.

We have no information regarding their use as a private or individual water supply. By copy of this letter, if the County Sanitarian is aware of such use, he/she is requested to respond to you in writing.

Should you have any questions in this regard, feel free to contact our office. We apologize for the delay in responding.

Sincerely,

Bob Makin, P.E., Assistant Director Engineering Section

Cc: Martin Maner, ADEQ Water Division Union County Sanitarian

> www.healthyarkansas.com Serving more than one million Arkansans each year



# Arkansas Natural Resources Commission



J. Randy Young, PE Executive Director 101 East Capitol, Suite 350 Little Rock, Arkansas 72201 http://www.anrc.arkansas.gov/ Phone: (501) 682-1611 Fax: (501) 682-3991 E-mail: anrc@arkansas.gov Mike Huckabee Governor

November 8, 2005

Mr. Vince Blubaugh Principal, CBM<sup>c</sup> & Associates 219 Brown Lane Bryant, Arkansas 72022

#### RE: Review and Comments Removal of Designated Domestic Water Supply Use from Loutre Creek

Dear Mr. Blubaugh:

Thank you for the opportunity to review and comment on the removal of the Designated Domestic Water Supply Use from Loutre Creek near El Dorado in Union County, Arkansas. The downstream most coordinates for the reach under review are Latitude 33°11'33.08" and Longitude 92°40'42.39".

The removal of the Designated Domestic Water Supply Use from this reach of Loutre Creek would not conflict with the Arkansas State Water Plan. If you need any further assistance, or have any questions, please contact Steve Loop at (501)-682-3959.

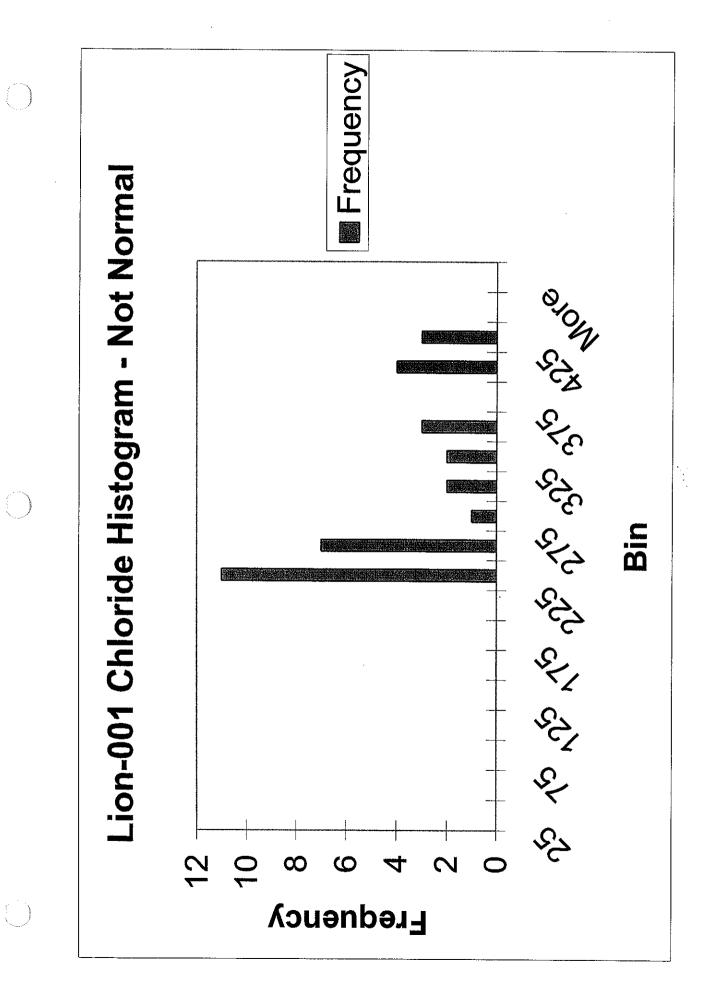
Sincerely Finder

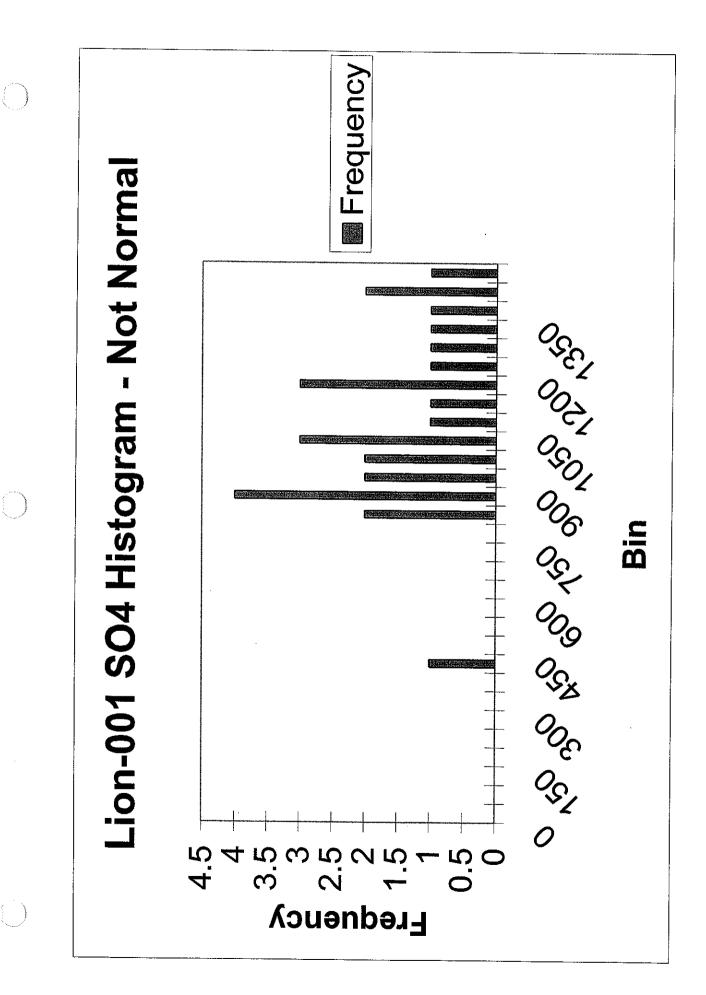
Earl T. Smith, P.E., Chief Water Resources Division

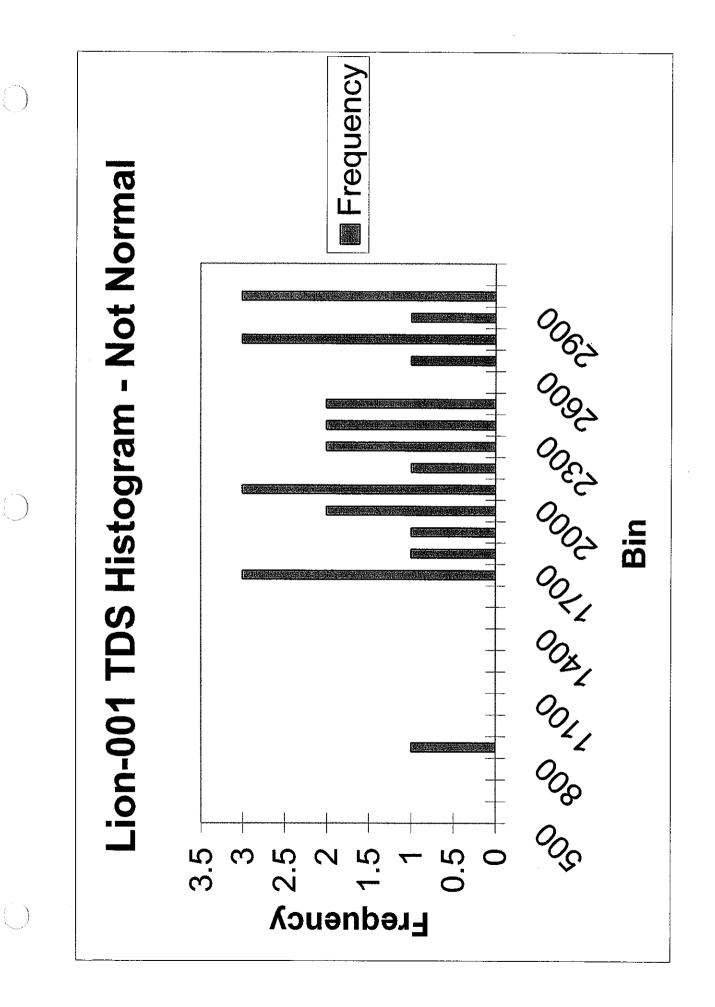
## Appendix C Facility and DMR Dissolved Mineral Data

Summary of Lion Oil's Outfall 001 values for Chloride, Sulfate, and TDS for Lion Oil.

| Location / Date | Chloride (mg/L)                       | Mo Average<br>Sulfate (mg/L) | Mo Average<br>TDS (mg/L) |
|-----------------|---------------------------------------|------------------------------|--------------------------|
| 3/12/1986       | 296                                   |                              |                          |
| 5/12/1986       | 420                                   |                              |                          |
| 6/16/1986       | 312                                   |                              |                          |
| 7/28/1986       | 250                                   |                              |                          |
| 8/15/1986       | 234                                   |                              |                          |
| Mar-04          |                                       | 372                          | 760                      |
| Apr-04          |                                       | 941                          | 1885                     |
| May-04          |                                       | 968                          | 1989                     |
| Jun-04          |                                       | 807                          | 1565                     |
| Jul-04          |                                       | 1121                         | 2141                     |
| Aug-04          |                                       | 1270                         | 2683                     |
| Sep-04          | · · · · · · · · · · · · · · · · · · · | 1386                         | 2667                     |
| Oct-04          |                                       | 1068                         | 2593                     |
| Nov-04          |                                       | 789                          | 1513                     |
| Dec-04          |                                       | 999                          | 1776                     |
| Jan-05          |                                       | 820                          | 1667                     |
| Feb-05          |                                       | 827                          | 1959                     |
| Mar-05          |                                       | 883                          | 2120                     |
| Apr-05          |                                       | 812                          | 1832                     |
| May-05          |                                       | 862                          | 2246                     |
| Jun-05          |                                       | 758                          | 2052                     |
| Jul-05          |                                       | 1107                         | 2303                     |
| Aug-05          |                                       | 924                          | 1913                     |
| Sep-05          |                                       | 1033                         | 1530                     |
| Oct-05          |                                       | 955                          | 2281                     |
| Nov-05          |                                       | 1149                         | 2393                     |
| Dec-05          |                                       | 1162                         | 2871                     |
| Jan-06          |                                       | 1775                         | 2800                     |
| Feb-06          |                                       | 1322                         | 2811                     |
| Mar-06          |                                       | 1383                         | 2653                     |
| Apr-06          |                                       | 1213                         | 2727                     |
| 4/29/2006       | 411.3                                 |                              |                          |
| 4/30/2006       | 329.6                                 |                              |                          |
| 5/1/2006        | 223.7                                 |                              |                          |
| 5/2/2006        | 249.6                                 |                              |                          |
| 5/3/2006        | 391.4                                 |                              |                          |
| 5/4/2006        | 341.3                                 |                              |                          |
| 5/5/2006        | 315.6                                 |                              |                          |
| 5/6/2006        | 282.4                                 |                              |                          |


| 5/7/2006  | 248.6 |                                        |  |
|-----------|-------|----------------------------------------|--|
| 5/8/2006  | 217.3 |                                        |  |
| 5/9/2006  | 220.1 |                                        |  |
| 5/10/2006 | 235.9 |                                        |  |
| 5/11/2006 | 218.9 |                                        |  |
| 5/12/2006 | 207.5 |                                        |  |
| 5/13/2006 | 213.6 |                                        |  |
| 5/14/2006 | 211   |                                        |  |
| 5/15/2006 | 213.2 |                                        |  |
| 5/16/2006 | 231.8 |                                        |  |
| 5/17/2006 | 234.3 |                                        |  |
| 5/18/2006 | 222.7 |                                        |  |
| 5/19/2006 | 222.7 |                                        |  |
| 5/20/2006 | 203.8 | ······································ |  |
| 5/21/2006 | 270   |                                        |  |
| 5/22/2006 | 387.7 |                                        |  |
| 5/23/2006 | 398.8 |                                        |  |
| 5/24/2006 | 406.2 |                                        |  |
| 5/25/2006 | 377   |                                        |  |
| 5/26/2006 | 326   | · · ·                                  |  |


()


 $\langle \rangle$ 

 $\left( \right)$ 

| Statistics              | Chloride<br>(mg/l)                                     | Sulfate<br>(mg/l)                                                                                               | TDS<br>(mg/i)                                                                                                   |
|-------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Data Characterization   |                                                        |                                                                                                                 | (                                                                                                               |
| 99th%tile               | e an a second second second                            |                                                                                                                 |                                                                                                                 |
| 95th%tile               |                                                        |                                                                                                                 |                                                                                                                 |
| average                 |                                                        |                                                                                                                 |                                                                                                                 |
| maximum                 | 12.05-22.000 (000-000-000-02.000-000-000-000-000-000-0 | and a state of the second s |                                                                                                                 |
| minimum                 | and the second state of the second of the second state |                                                                                                                 | 1990 - 1990 - 1990 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |
| median                  |                                                        | 200 BBA                                                                                                         |                                                                                                                 |
| count                   | 33                                                     | 26                                                                                                              | 26                                                                                                              |
| standard deviation      | 72                                                     | 272                                                                                                             | 512                                                                                                             |
| cv                      | 0.26                                                   | 0.27                                                                                                            | 0.24                                                                                                            |
| Pn                      | 0.87                                                   | 0.84                                                                                                            | 0.84                                                                                                            |
| 99%                     | 0.99                                                   | 0.99                                                                                                            | 0.99                                                                                                            |
| 95%                     | 0.95                                                   | 0.95                                                                                                            | 0.95                                                                                                            |
| Z for 99 % tile         | 2.33                                                   |                                                                                                                 |                                                                                                                 |
| Z for 95 % file         | 1.64                                                   | 1.64                                                                                                            | 1,64                                                                                                            |
|                         |                                                        |                                                                                                                 |                                                                                                                 |
| DSVAV-ING SAMPLE SAMPLE |                                                        | 0851 222 239                                                                                                    |                                                                                                                 |
|                         | ORDER STATS                                            | ORDER STATS                                                                                                     | ORDER STATS                                                                                                     |







#### Lion Oil's DMR Flow Summary 1/04 - 12/05

|         | Flow (MGD) | Flow (MGD) |
|---------|------------|------------|
| Date    | Mo Maximum | Mo Average |
| Jan-04  | 1.917      | 1.616      |
| Feb-04  | 2.871      | 2.379      |
| Mar-04  | 2.816      | 2.622      |
| Apr-04  | 2.901      | 2.447      |
| May-04  | 2.844      | 2.453      |
| Jun-04  | 2.784      | 2.566      |
| Jul-04  | 3.153      | 2.551      |
| Aug-04  | 3.005      | 2.262      |
| Sep-04  | 2.295      | 1.847      |
| Oct-04  | 2.542      | 1.880      |
| Nov-04  | 2.562      | 2.179      |
| Dec-04  | 2.615      | 2.193      |
| Jan-05  | 2.583      | 2.233      |
| Feb-05  | 2.352      | 2.139      |
| Mar-05  | 2.524      | 2.135      |
| Apr-05  | 2.659      | 2.380      |
| May-05  | 2.518      | 2.192      |
| Jun-05  | 2.569      | 2.206      |
| Jul-05  | 2.553      | 2.111      |
| Aug-05  | 2.424      | 2.037      |
| Sep-05  | 2.721      | 2.139      |
| Oct-05  | 2.489      | 1.610      |
| Nov-05  | 2.397      | 1.885      |
| Dec-05  | 2.438      | 2.029      |
|         |            |            |
| Average | 2.606      | 2.170      |
| Maximum | 3.153      | 2.622      |
| Minimum | 1.917      | 1.610      |
| Number  | 24         | 24         |

| Average | 4.031 | 3.358 |
|---------|-------|-------|
| Maximum | 4.878 |       |
| Minimum | 2.966 | 2.491 |

| Outfall 002 Flows |                 |                       |
|-------------------|-----------------|-----------------------|
| Date              | Daily Max (MGD) | Monthly Average (MGD) |
| 30-Nov-05         | 0.312           | 0.204                 |
| 31-Oct-05         | 0.704           | 0.704                 |
| 30-Sep-05         | 2.817           | 1.521                 |
| 31-Aug-05         | 1.585           | 0.504                 |
| 31-Jul-05         | 0.68            | 0.416                 |
| 30-Jun-05         | 0.264           | 0.264                 |
| 31-May-05         | 0.68            | 0.518                 |
| 30-Apr-05         | 2.986           | 1.041                 |
| 31-Mar-05         | 0.672           | 0.179                 |
| 28-Feb-05         | 0.832           | 0.153                 |
| 31-Jan-05         | 1.457           | 0.708                 |
| 31-Dec-04         | 1.385           | 0.789                 |
| 30-Nov-04         | 1.641           | 0.678                 |
| 31-Oct-04         | 2.577           | 1.157                 |
| 30-Sep-04         | 0.368           | 0.368                 |
| 31-Aug-04         | 0.648           | 0.472                 |
| 31-Jul-04         | 0.977           | 0.532                 |
| 30-Jun-04         | 1.281           | 0.433                 |
| 31-May-04         | 1.473           | 0.739                 |
| 30-Apr-04         | 1.041           | 0.516                 |
| 31-Mar-04         | 0.936           | 0.546                 |
| Average           | 1.21            | 0.59                  |
| Maximum           | 2.99            | 1.52                  |
| Number            | 21              | 21                    |

.

| <b>Highest M</b> | lonthly Avera | ge Flow                   |
|------------------|---------------|---------------------------|
| Site             | MGD           | cfs                       |
| 002              | 1.52          | 2.35                      |
| 003              | 1.39          | 2.15                      |
| 004              | 2.68          | 4.15                      |
| 005              | NO DISCHAI    | RGE                       |
| 006              | 2.22          | 3.43                      |
| 007              | 2.89          | 4.47                      |
| Average          | 2,14          | aleste <b>3,31</b> ,264-0 |

| Outfall 003 Flows |                 |                                                                                                                        |
|-------------------|-----------------|------------------------------------------------------------------------------------------------------------------------|
| Date              | Daily Max (MGD) | Monthly Average (MGD)                                                                                                  |
| 30-Nov-05         | 0.286           | 0.187                                                                                                                  |
| 31-Oct-05         | 0.645           | 0.645                                                                                                                  |
| 30-Sep-05         | 2.581           | 1.393                                                                                                                  |
| 31-Aug-05         | 1.452           | 0.462                                                                                                                  |
| 31-Jul-05         | 0.623           | 0.381                                                                                                                  |
| 30-Jun-05         | 0.242           | 0.242                                                                                                                  |
| 31-May-05         | 0.623           | 0.474                                                                                                                  |
| 30-Apr-05         | 2.735           | 0.953                                                                                                                  |
| 31-Mar-05         | 0.616           | 0.164                                                                                                                  |
| 28-Feb-05         | 0.762           | 0.141                                                                                                                  |
| 31-Jan-05         | 1.334           | 0.649                                                                                                                  |
| 31-Dec-04         | 1.268           | 0.723                                                                                                                  |
| 30-Nov-04         | 1.503           | 0.621                                                                                                                  |
| 31-Oct-04         | 2.361           | 1.06                                                                                                                   |
| 30-Sep-04         | 0.337           | 0.337                                                                                                                  |
| 31-Aug-04         | 0.594           | 0.433                                                                                                                  |
| 31-Jul-04         | 0.894           | 0,487                                                                                                                  |
| 30-Jun-04         | 1.173           | 0.396                                                                                                                  |
| 31-May-04         | 1.349           | 0.677                                                                                                                  |
| 30-Apr-04         | 0.953           | 0.473                                                                                                                  |
| 31-Mar-04         | 0.858           | 0.534                                                                                                                  |
| Average           | 1.10            | 0.54                                                                                                                   |
| Maximum           | 2.74            | 1991 - 199 <b>1 - 199</b> 1 - 1991 - 1991 - 1991 - 1991 - 1991 - 1991 - 1991 - 1991 - 1991 - 1991 - 1991 - 1991 - 1991 |
| Number            | 21              | 21                                                                                                                     |

 $\bigcirc$ 

| Outfall 004 Flows |                 |                       |
|-------------------|-----------------|-----------------------|
| Date              | Daily Max (MGD) | Monthly Average (MGD) |
| 30-Nov-05         | 0.551           | 0.36                  |
| 31-Oct-05         | 1.242           | 1.242                 |
| 30-Sep-05         | 4.97            | 2.683                 |
| 31-Aug-05         | 2.796           | 0.89                  |
| 31-Jul-05         | 1.2             | 0.734                 |
| 30-Jun-05         | 0.466           | 0.466                 |
| 31-May-05         | 1.2             | 0.913                 |
| 30-Apr-05         | 5.266           | 1.836                 |
| 31-Mar-05         | 1.186           | 0.315                 |
| 28-Feb-05         | 1.468           | 0.271                 |
| 31-Jan-05         | 2.57            | 1.25                  |
| 31-Dec-04         | 2.443           | 1.392                 |
| 30-Nov-04         | 2.894           | 1.196                 |
| 31-Oct-04         | 4.546           | 2.041                 |
| 30-Sep-04         | 0.649           | 0.649                 |
| 31-Aug-04         | 1.144           | 0.833                 |
| 31-Jul-04         | 1.723           | 0.938                 |
| 30-Jun-04         | 2.259           | 0.763                 |
| 31-May-04         | 2.598           | 1.304                 |
| 30-Apr-04         | 1.836           | 0.911                 |
| 31-Mar-04         | 1.652           | 1.028                 |
| Average           | 2.13            | 1.05                  |
| Maximum           | 5.27            | 2,68                  |
| Number            | 21              | 21                    |

**Outfall 005 Flows** Date Daily Max (MGD) Monthly Average (MGD) 30-Nov-05 NO DISCHARGE 31-Oct-05 **NO DISCHARGE** NO DISCHARGE NO DISCHARGE 30-Sep-05 31-Aug-05 31-Jul-05 NO DISCHARGE 30-Jun-05 NO DISCHARGE 31-May-05 NO DISCHARGE 30-Apr-05 NO DISCHARGE 31-Mar-05 NO DISCHARGE 28-Feb-05 NO DISCHARGE 31-Jan-05 NO DISCHARGE NO DISCHARGE 31-Dec-04 30-Nov-04 NO DISCHARGE 31-Oct-04 NO DISCHARGE 30-Sep-04 NO DISCHARGE 31-Aug-04 NO DISCHARGE 31-Jul-04 NO DISCHARGE 30-Jun-04 NO DISCHARGE 31-May-04 NO DISCHARGE 30-Apr-04 31-Mar-04 NO DISCHARGE NO DISCHARGE #DIV/01 Average #DIV/01 Maximum 0.00 0.00 0 Number Ô

| 005 | NO DISCHARGE | NO DISCHARGE |
|-----|--------------|--------------|
|-----|--------------|--------------|

| Outfall 006 Flows | <u> </u>        |                       |
|-------------------|-----------------|-----------------------|
| Date              | Daily Max (MGD) | Monthly Average (MGD) |
| 30-Nov-05         | NO DISCHARGE    | 1                     |
| 31-Oct-05         | NO DISCHARGE    |                       |
| 30-Sep-05         | NO DISCHARGE    |                       |
| 31-Aug-05         | NO DISCHARGE    |                       |
| 31-Jul-05         | NO DISCHARGE    |                       |
| 30-Jun-05         | NO DISCHARGE    |                       |
| 31-May-05         | NO DISCHARGE    |                       |
| 30-Apr-05         | 0.328           | 0.328                 |
| 31-Mar-05         | NO DISCHARGE    |                       |
| 28-Feb-05         | NO DISCHARGE    | <u> </u>              |
| 31-Jan-05         | NO DISCHARGE    |                       |
| 31-Dec-04         | NO DISCHARGE    |                       |
| 30-Nov-04         | NO DISCHARGE    |                       |
| 31-Oct-04         | 4.704           | 2.216                 |
| 30-Sep-04         | NO DISCHARGE    |                       |
| 31-Aug-04         | NO DISCHARGE    |                       |
| 31-Jui-04         | NO DISCHARGE    |                       |
| 30-Jun-04         | NO DISCHARGE    |                       |
| 31-May-04         | NO DISCHARGE    |                       |
| 30-Apr-04         | 0.041           | 0.04                  |
| 31-Mar-04         | 1.3             | 0.36                  |
| Average           | 1.59            | 0.74                  |
| Maximum           | 4.70            | 2,22                  |
| Number            | 4               | 4                     |

| Outfall 007 Flows |                 |                       |
|-------------------|-----------------|-----------------------|
| Date              | Daily Max (MGD) | Monthly Average (MGD) |
| 30-Nov-05         | NO DISCHARGE    |                       |
| 31-Oct-05         | NO DISCHARGE    |                       |
| 30-Sep-05         | NO DISCHARGE    |                       |
| 31-Aug-05         | 0.014           | 0.014                 |
| 31-Jul-05         | NO DISCHARGE    |                       |
| 30-Jun-05         | NO DISCHARGE    |                       |
| 31-May-05         | NO DISCHARGE    |                       |
| 30-Apr-05         | NO DISCHARGE    |                       |
| 31-Mar-05         | NO DISCHARGE    |                       |
| 28-Feb-05         | NO DISCHARGE    | 1                     |
| 31-Jan-05         | NO DISCHARGE    |                       |
| 31-Dec-04         | NO DISCHARGE    |                       |
| 30-Nov-04         | NO DISCHARGE    |                       |
| 31-Oct-04         | 2.88            | 2.88                  |
| 30-Sep-04         | NO DISCHARGE    |                       |
| 31-Aug-04         | NO DISCHARGE    |                       |
| 31-Jul-04         | NO DISCHARGE    |                       |
| 30-Jun-04         | NO DISCHARGE    |                       |
| 31-May-04         | NO DISCHARGE    |                       |
| 30-Apr-04         | 2.89            | 2.89                  |
| 31-Mar-04         | NO DISCHARGE    |                       |
| Average           | 1.93            | 1.93                  |
| Maximum           | 2.89            | 2.89                  |
| Number            | 3               | 3                     |

By Segment

.

IWC Calculations (10-1-06) - CHLORIDE by Segment

|                                                                                                   | Watershed         | Ľ             | Flow     | Conc | Load        | IWC |
|---------------------------------------------------------------------------------------------------|-------------------|---------------|----------|------|-------------|-----|
| Source                                                                                            | (mi²)             | cfs           | mgd      | mg/L | lb/day      |     |
| Loutre Creek above Lion Oil                                                                       | 4.78              | 4             | 2.584    | 5    | 107.7528    | 5   |
| Loutre Creek below Lion Oil - 0utfall 001                                                         | Point Source      | 4.06          | 2.62276  | 504  | 11024.40447 | 256 |
| GLCC - Outfall 002 via Bayou de Loutre                                                            | Point Source      | 0.24          | 0.15504  | 1029 | 1330.531574 |     |
| GLCC - Outfall 004 via Bayou de Loutre                                                            | Point Source      | 0.64          | 0.41344  | 1702 | 5868.648499 |     |
| B de L below Loutre Creek                                                                         | 4.13              | 4             | 2.584    | 5    | 107.7528    | 264 |
| B de L below City South - Outfall 001 <sup>1</sup>                                                | Point Source      | 7.43          | 4.79978  | 142  | 5684.283458 | 220 |
| GLCC South - 001 via Gum Creek <sup>2</sup>                                                       | Point Source      | 0.75          | 0.4845   | 181  | 731.37213   |     |
| Georgia Pacific - 004 via Gum Creek <sup>2</sup>                                                  | Point Source      | 0.56          | 0.36176  | 5    | 15.085392   |     |
| B de L Below Gum Creek                                                                            | 6.95              | 4             | 2.584    | 5    | 107.7528    | 181 |
| Teris - 009 via Boggy Creek <sup>2</sup>                                                          | Point Source      | 0.39          | 0.25194  | 228  | 479.0689488 |     |
| B de L Below Boggy Creek                                                                          | 22.17             | 4             | 2.584    | 5    | 107.7528    | 158 |
| B de L Below Hibank Creek                                                                         | 21.89             | 4             | 2.584    | 5    | 107.7528    | 140 |
| B de L Below Mill Creek                                                                           | 7.4               | 4             | 2.584    | 5    | 107.7528    | 126 |
| B de L Below Buckaloo Branch                                                                      | 5.4               | 4             | 2.584    | 5    | 107.7528    | 114 |
| B de L Below Bear Creek                                                                           | 12.1              | 4             | 2.584    | 5    | 107.7528    | 105 |
| B de L final segment composite (main stem<br>19.17mi2 =4 cfs & unnamed tribs 21.17 mi2 = 4        |                   |               |          |      |             |     |
| cfs )                                                                                             | 40.58             | 8             | 5.168    | 5    | 215.5056    | 90  |
| Totals                                                                                            | 125.4             | 54.07         | 34,92922 |      | 26210.92248 | 90  |
| <sup>1</sup> El Darado Water I Itilities North & South Plants NPDES Bermit Documentation /3/8/01) | DES Parmit Doruma | nfation (3/8) | 047      |      |             |     |

<sup>1</sup> El Darado Water Utilities North & South Plants NPDES Permit Documentation (3/8/01). <sup>2</sup> Flows and Chloride concentrations (GLCC - South & Teris) are LTA from facility data set

Page 1

 $\left( \right)$ 

By Segment

IWC Calculations (10-1-06) - SULFATE by Segment

|                                                                                                  | Watershed         |               | Flow     | Conc | Load        | WC  |
|--------------------------------------------------------------------------------------------------|-------------------|---------------|----------|------|-------------|-----|
| Source                                                                                           |                   | cfs           | mgd      | mg/L | lb/day      |     |
| Loutre Creek above Lion Oil                                                                      | 4.78              | 4             | 2.584    |      | 280.15728   | 13  |
| Loutre Creek below Lion Oil - 0utfall 001                                                        | Point Source      | 4.06          | 2.62276  | 1967 | 43025.80079 | 665 |
| GLCC - Outfall 002 via Bayou de Loutre                                                           | Point Source      | 0.24          | 0.15504  | 380  | 491.352768  |     |
| GLCC - Outfall 004 via Bayou de Loutre                                                           | Point Source      | 0.64          | 0.41344  | 63.7 | 219.6433075 |     |
| B de L below Loutre Creek                                                                        | 4.13              | 4             | 2.584    | 13   | 280.15728   | 635 |
| B de L below City South - Outfall 001 <sup>1</sup>                                               | Point Source      | 7.43          | 4.79978  | 76   | 3042.292555 | 431 |
| GLCC South - 001 via Gum Creek <sup>2</sup>                                                      | Point Source      | 0.75          | 0.4845   | 13   | 52.52949    |     |
| Georgia Pacific - 004 via Gum Creek <sup>2</sup>                                                 | Point Source      | 0.56          | 0.36176  | 13   | 39.2220192  |     |
| B de L Below Gum Creek                                                                           | 6.95              | 4             | 2.584    | 13   | 280.15728   | 345 |
| Teris - 009 via Boggy Creek <sup>2</sup>                                                         | Point Source      | 0.39          | 0.25194  | 13   | 27.3153348  |     |
| B de L Below Boggy Creek                                                                         | 22.17             | 4             | 2.584    | 13   | 280.15728   | 296 |
| B de L Below Hibank Creek                                                                        | 21.89             | 4             | 2.584    | 13   | 280.15728   | 263 |
| B de L Below Mill Creek                                                                          | 7.4               | 4             | 2.584    | 13   | 280.15728   | 237 |
| B de L Below Buckaloo Branch                                                                     | 5.4               | 4             | 2.584    | 13   | 280.15728   | 216 |
| B de L Below Bear Creek                                                                          | 12.1              | 4             | 2.584    | 13   | 280.15728   | 198 |
| B de L final segment composite (main stem<br>19.17mi2 =4 cfs & unnamed tribs 21.17 mi2 = 4       |                   |               |          |      |             |     |
| cfs )                                                                                            | 40.58             | 8             | 5.168    | 13   | 560.31456   | 171 |
| Totals                                                                                           | 125.4             | 54.07         | 34.92922 |      | 49699.72907 | 171 |
| <sup>1</sup> EI Darado Water Utilities North & South Plants NPDES Permit Documentation (3/8/01). | DES Permit Docume | entation (3/8 | (01).    |      |             |     |

<sup>1</sup> EI Darado Water Utilities North & South Plants NPDES Permit Documentation (3/8/01).
<sup>2</sup> Flows are LTA from facility data set

•

Page 2

 $\bigcirc$ 

By Segment

 $\left( \right)$ 

()

IWC Calculations (10-1-06) - TDS by Segment

|                                                                                                   | Watershed          | Ű.            | Flow     | Conc | Load        | IWC  |
|---------------------------------------------------------------------------------------------------|--------------------|---------------|----------|------|-------------|------|
| Source                                                                                            |                    | cfs           | mgd      | mg/L | lb/day      |      |
| Loutre Creek above Lion Oil                                                                       | 4.78               | 4             | 2.584    | 67   | 1443.88752  | 67   |
| Loutre Creek below Lion Oil - 0utfall 001                                                         | Point Source       | 4.06          | 2.62276  | 3420 | 74808.45893 | 1756 |
| GLCC - Outfall 002 via Bayou de Loutre                                                            | Point Source       | 0.24          | 0.15504  | 1376 | 1779.214234 |      |
| GLCC - Outfall 004 via Bayou de Loutre                                                            | Point Source       | 0.64          | 0.41344  | 1932 | 6661.709107 | -    |
| B de L beiow Loutre Creek                                                                         | 4.13               | 4             | 2.584    | 67   | 1443.88752  | 1236 |
| B de L below City South - Outfall 001 <sup>1</sup>                                                | Point Source       | 7.43          | 4.79978  | 497  | 19894.9921  | 996  |
| GLCC South - 001 via Gum Creek <sup>2</sup>                                                       | Point Source       | 0.75          | 0.4845   | 67   | 270.72891   |      |
| Georgia Pacific - 004 via Gum Creek <sup>2</sup>                                                  | Point Source       | 0.56          | 0.36176  | 67   | 202.1442528 |      |
| B de L Below Gum Creek                                                                            | 6.95               | 4             | 2.584    | 67   | 1443.88752  | 780  |
| Teris - 009 via Boggy Creek <sup>2</sup>                                                          | Point Source       | 0.39          | 0.25194  | 526  | 1105.22047  |      |
| B de L Below Boggy Creek                                                                          | 22.17              | 4             | 2.584    | 67   | 1443.88752  | 682  |
| B de I. Below Hibank Creek                                                                        | 21.89              | 4             | 2.584    | 67   | 1443.88752  | 610  |
| B de L Below Mill Creek                                                                           | 7.4                | 4             | 2.584    | 67   | 1443.88752  | 553  |
| B de L Beiow Buckaloo Branch                                                                      | 5.4                | 4             | 2.584    | 67   | 1443.88752  | 507  |
| B de L Below Bear Creek                                                                           | 12.1               | 4             | 2.584    | 67   | 1443.88752  | 468  |
| B de L final segment composite (main stem<br>19.17mi2 =4 cfs & unnamed tribs 21.17 mi2 = 4        |                    |               |          |      |             |      |
| cfs )                                                                                             | 40.58              | 8             | 5.168    | 67   | 2887.77504  | 409  |
| Totals                                                                                            | 125.4              | 54.07         | 34.92922 |      | 119161.3432 | 409  |
| <sup>1</sup> El Darado Water I Itilities North & South Diants NDDES Bormit Documentation /3/8/04) | DDES Darmit Docume | ontation (3/8 | (04)     |      |             |      |

<sup>1</sup> EI Darado Water Utilities North & South Plants NPDES Permit Documentation (3/8/01). <sup>2</sup> Flows and TDS concentration (Teris) are LTA from facility data set

Page 3

#### Mass Balance Calcs - Source Contributors to Bayou de Loutre down to Boggy Creek.

Chloride

|                            | Flow  |         | Conc | Load        | mixed conc |
|----------------------------|-------|---------|------|-------------|------------|
| Source                     | cfs   | mgd     | mg/L | lb/day      |            |
| GLCC Central - Outfall 002 | 0.24  |         |      | 1330.531574 |            |
| GLCC Central - Outfall 004 | 0.64  | 0.41344 | 1702 |             |            |
| Lion - Outfall 001         | 4.06  | 2.62276 |      | 11024.40447 |            |
| City of ElDo - South       | 7.43  | 4.79978 |      | 5684.283458 |            |
| GLCC South - 001*          | 0.75  | 0.4845  | 181  | 731.37213   |            |
| Georgia Pacific - 004*     | 0.56  | 0.36176 | 5    |             |            |
| Totals                     | 13.68 |         |      | 24654.32553 |            |

\* Flows and/or concentration are LTA form outfall data set

Sulfate

|                            | Flow  |         | Conc                                   | Load        | mixed conc |
|----------------------------|-------|---------|----------------------------------------|-------------|------------|
| Source                     | cfs   | mgd     | mg/L                                   | lb/day      |            |
| GLCC Central - Outfall 002 | 0.24  | 0.15504 | 380                                    | 491.352768  |            |
| GLCC Central - Outfall 004 | 0.64  | 0.41344 |                                        | 219.6433075 |            |
| Lion - Outfall 001         | 4.06  | 2.62276 | 1967                                   |             |            |
| City of ElDo - South       | 7.43  | 4.79978 | 76                                     |             |            |
| GLCC South - 001*          | 0.75  | 0.4845  | Simple Addition of the 12              | 52.52949    |            |
| Georgia Pacific - 004*     | 0.56  | 0.36176 | 3                                      | 39.2220192  |            |
| Totals                     | 13.68 | 8.83728 | 10000000000000000000000000000000000000 | 46870.84093 |            |

Flows are LTA form outfall data set

TDS

|                            | Flow  |         | Conc                      | Load        | mixed conc |
|----------------------------|-------|---------|---------------------------|-------------|------------|
| Source                     | cfs   | mgd     | mg/L                      | lb/day      |            |
| GLCC Central - Outfall 002 | 0.24  | 0.15504 | 1376                      | 1779.214234 |            |
| GLCC Central - Outfall 004 | 0.64  | 0.41344 |                           |             |            |
| Lion - Outfall 001         | 4.06  | 2.62276 | 3420                      |             |            |
| City of ElDo - South       | 7.43  | 4.79978 | 497                       | 19894.9921  |            |
| GLCC South - 001*          | 0.75  | 0.4845  |                           | 270.72891   |            |
| Georgia Pacific - 004*     | 0.56  | 0.36176 | <b>1996 - 1997 - 1997</b> | 202.1442528 |            |
| Totals                     | 13.68 | 8.83728 |                           | 103617.2475 |            |
|                            |       |         |                           |             | ·          |

\* Flows and/or concentration are LTA form outfall data set

Mass Balance Calcs - Source Contributors to Bayou de Loutre down to AR/LA State Line

#### Chloride

|                            | Flow  |         | Conc | Load        | mixed conc                             |
|----------------------------|-------|---------|------|-------------|----------------------------------------|
| Source                     | cfs   | mgd     | mg/L | lb/day      |                                        |
| GLCC Central - Outfall 002 | 0.24  | 0.15504 | 1029 | 1330.531574 |                                        |
| GLCC Central - Outfall 004 | 0.64  | 0.41344 | 1702 |             |                                        |
| Lion - Outfall 001         | 4.06  | 2.62276 | 504  | 11024.40447 |                                        |
| City of EIDo - South       | 7.43  | 4.79978 | 142  | 5684.283458 |                                        |
| GLCC South - 001*          | 0.75  | 0.4845  | 181  | 731.37213   | ······································ |
| Georgia Pacific - 004*     | 0.56  | 0.36176 | 5    | 15.085392   |                                        |
| Taris - 009*               | 0.39  |         |      | 479.3421021 |                                        |
| Totals                     | 14.07 | 9.08922 |      | 25133.66763 |                                        |

\* Flows and/or concentration are LTA form outfall data set

#### Sulfate

|                            | Flow  |         | Conc | Load        | mixed conc |
|----------------------------|-------|---------|------|-------------|------------|
| Source                     | cfs   | mgd     | mg/L | lb/day      |            |
| GLCC Central - Outfall 002 | 0.24  | 0.15504 | 380  | 491.352768  |            |
| GLCC Central - Outfall 004 | 0.64  | 0.41344 | 63.7 | 219.6433075 |            |
| Lion - Outfall 001         | 4.06  | 2.62276 | 1967 | 43025.80079 |            |
| City of EIDo - South       | 7.43  | 4.79978 | 76   |             |            |
| GLCC South - 001*          | 0.75  | 0.4845  |      | 52.52949    | ·          |
| Georgia Pacific - 004*     | 0.56  | 0.36176 | 13   | 39.2220192  |            |
| Taris - 009*               | 0.39  | 0.25194 | 13   | 27.3153348  |            |
| Totals                     | 14.07 |         |      | 46898.15627 |            |

\* Flows are LTA form outfall data set

TDS

|                            | Flow  |         | Conc | Load        | mixed conc |
|----------------------------|-------|---------|------|-------------|------------|
| Source                     | cfs   | mgd     | mg/L | lb/day      |            |
| GLCC Central - Outfall 002 | 0.24  | 0.15504 | 1376 | 1779,214234 |            |
| GLCC Central - Outfall 004 | 0.64  | 0.41344 | 1932 | 6661.709107 |            |
| Lion - Outfall 001         | 4.06  | 2.62276 | 3420 |             |            |
| City of ElDo - South       | 7.43  | 4.79978 | 497  | 19894.9921  |            |
| GLCC South - 001*          | 0.75  | 0.4845  | 67   | 270.72891   |            |
| Georgia Pacific - 004*     | 0.56  | 0.36176 | 67   |             |            |
| Taris - 009*               | 0.39  | 0.25194 |      |             |            |
| Totals                     | 14.07 | 9.08922 |      | 104722.468  |            |

\* Flows and/or concentration are LTA form outfall data set

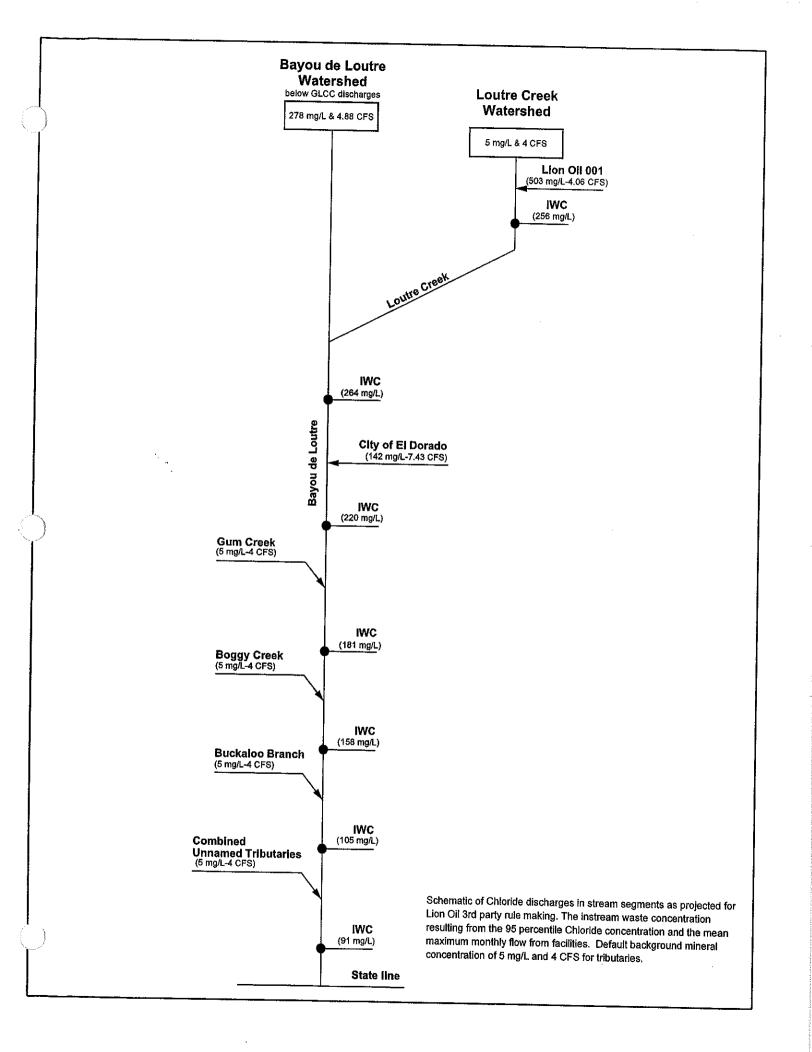
| Minerals IWC Calculations for Loutre Creek (Below Lion Oil) - 6/20/06<br>20% increase over historical 95%<br>95th Percentile + 20% - w/ Outfall 001 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------------------------------------|

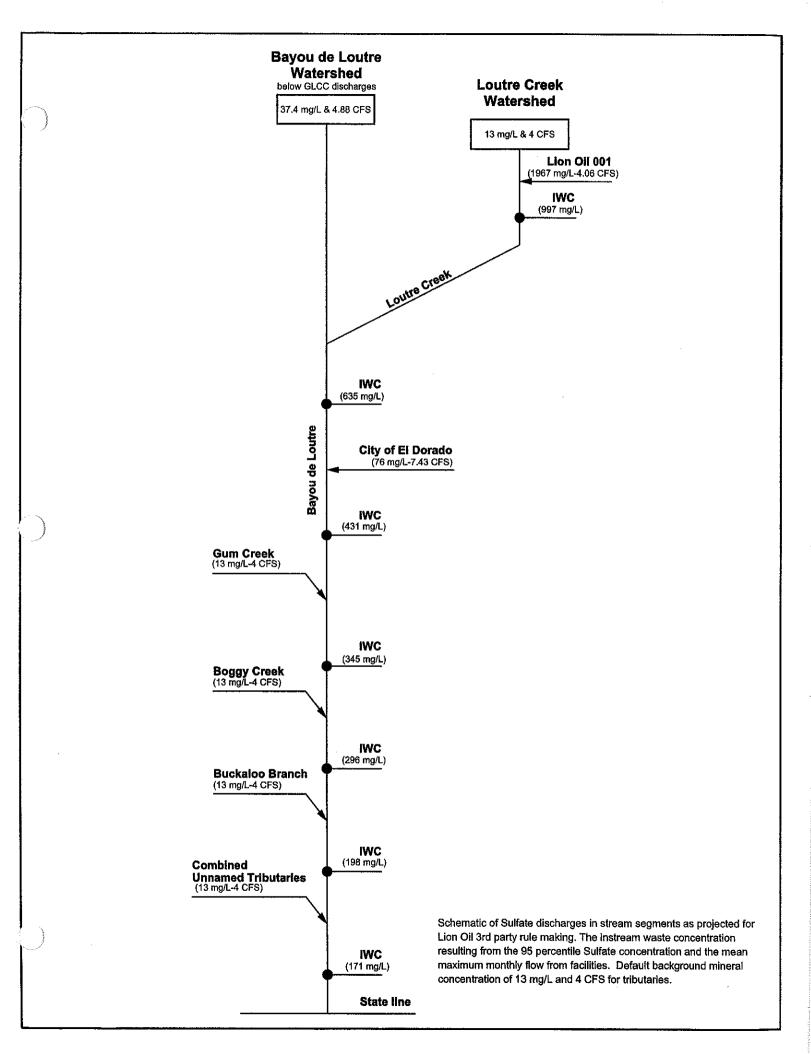
| Chloride - 95th Percentile Value - Outfall 001<br>((4 cfs * 5 mg/L) + (4.06 cfs * 503)) / (4 cfs + 4.06 cfs)<br>20 20 2042 8 06 | 502.8        | <b>tate</b> - 95th Percentite Value - Outfall 001<br>cfs * 13 mg/L) + (4.06 cfs * 1967)) / (4 cfs + 4.06 cfs) | 1967         |  |
|---------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------|--------------|--|
| <b>alue-(</b><br>503)) /<br>0.05                                                                                                | 0.00         | <b>hie - O</b> (<br>* 1967))                                                                                  | 8.06         |  |
| th Percentile V<br>/L) + (4.06 cfs *<br>2042                                                                                    | 8.06         | Rercentile Va<br>g/L) + (4.06 cfs                                                                             | 7986<br>8.06 |  |
| <b>Chlonde - 95</b><br>((4 cfs * 5 mg                                                                                           | 2062<br>2062 | <b>Sulfate - 951</b><br>((4 cfs * 13 m                                                                        | 52<br>8038   |  |

|                       | ~                                                             |
|-----------------------|---------------------------------------------------------------|
|                       | .0                                                            |
|                       | ų                                                             |
|                       | ۰,                                                            |
|                       | .,                                                            |
|                       | 2                                                             |
|                       | C                                                             |
|                       | _                                                             |
|                       | 7                                                             |
|                       |                                                               |
| N2 KPAX               | 7                                                             |
| 1. 20                 |                                                               |
|                       | ųř.                                                           |
| 100                   | ċ                                                             |
| 10.00                 |                                                               |
| 6. E.A                | 7                                                             |
|                       | -                                                             |
|                       | -                                                             |
| CONTRACT OF           | 1                                                             |
|                       | 2                                                             |
|                       | 2                                                             |
|                       | 2                                                             |
| (1.17a )              | C                                                             |
| 1.05                  | 7                                                             |
| 1912 (S               | ñ                                                             |
|                       | ۰.                                                            |
| 0.13493               | *                                                             |
| œ٩,                   | ٠.                                                            |
|                       | y                                                             |
|                       | *                                                             |
| 1000                  | ~                                                             |
| 1.00                  |                                                               |
| 50°                   | 2                                                             |
| 1.1                   | 9                                                             |
| 0                     | _                                                             |
| 199 C                 | N                                                             |
| 105                   | <u> </u>                                                      |
|                       | 1                                                             |
|                       | -                                                             |
|                       | ~                                                             |
| - O -                 |                                                               |
| 120                   | Ϊ                                                             |
| Percentile Value - On | C                                                             |
|                       | ĉ                                                             |
|                       | 2                                                             |
| 110000                |                                                               |
| 1.111                 | r                                                             |
|                       | c                                                             |
|                       |                                                               |
| 956                   |                                                               |
| 8888 I                |                                                               |
| RUB.                  |                                                               |
| 1                     | 7                                                             |
| 1.20                  | -                                                             |
| C 2013                |                                                               |
|                       | 1                                                             |
|                       | 4                                                             |
|                       | 45                                                            |
| SOL                   | /(4 cfs * 67 mg/l ) + (4 06 cfs * 3420)) / (4 cfs + 4 06 cfs) |

|       | 3420  |      |
|-------|-------|------|
| 8.06  |       |      |
| 13885 | 8.06  |      |
| 268   | 14153 | 1756 |

| mg/L)    |                    |      |             |              |
|----------|--------------------|------|-------------|--------------|
| <u> </u> |                    |      | 8.06        | 8055         |
|          |                    | 8.06 | •           | 268          |
|          | (4 cfs + 4.06 cfs) |      | mg/L) + (4. | ((4 cfs * 67 |


# $IWC = [(Qb \times Cb) + (Qe \times Ce)] / (Qb + Qe)$


Where:

- The background flow of the receiving stream The background concentration of chloride, sulfate or TDS in the မ ရ ဗ ရ
  - receiving stream The discharge flow of the effluent The effluent concentration of chloride, sulfate or TDS
    - е е Се е С

| _                | _    |       |
|------------------|------|-------|
| ly Average Flow  | cfs  | 4.06  |
| Monthly Ave      | MGD  | 2.622 |
| <b>Highest M</b> | Site | 001   |
|                  |      |       |

| [            |      |      | r-   | ļ    |              | <u> </u> | j    |         |
|--------------|------|------|------|------|--------------|----------|------|---------|
| Average Flow | cfs  | 2.35 | 2.15 | 4.15 | ARGE         | 3.43     | 4.47 | 0.31 ×  |
| Monthly Ave  | MGD  | 1.52 | 1.39 | 2.68 | NO DISCHARGE | 2.22     | 2.89 | 2.14    |
| Highest M    | Site | 002  | 003  | 004  | 005          | 900      | 007  | Average |





# Appendix D Summary of Toxicity Testing Data

# Appendix D-1 Chronic Summary

| Outfall 001 Li     |                  |              | aphnia du        |                |            | city testy i   |                  |                 | les promela      | ıs (Fatheac    | i Minnow      |             | Ţ      |          |
|--------------------|------------------|--------------|------------------|----------------|------------|----------------|------------------|-----------------|------------------|----------------|---------------|-------------|--------|----------|
| Date Test Initated | Survival<br>CNTL | Survival 96% | Survival<br>NOEL | Repro.<br>CNTL | Repro. 72% | Repro.<br>NOEL | Survival<br>CNTL | Survival<br>96% | Survival<br>NOEL | Growth<br>CNTL | Growth<br>72% | Growth NOEL | TRC    | Hardness |
| 1/4/2000           | 100              | 100          | 96               | 18.4           | 19,7       | 96             | 87.5             | 85              | 96               | 0.355          | 0.293         | 96          | 0.01   | 79       |
| 6/20/2000          | 100              | 100          | 96               | 17             | 24.3       | 96             | 100              | 97.5            | 96               | 0.683          | 0.395         | 0           | 0.01   | 128      |
| 0/48/2022          | 100              | 90           | 96               | 18.4           | 14.7       | 0              | 97.5             | 97.5            | 96               | 0.663          | 0.44          | 41          | 0.01   | 104      |
| 9/18/2000          | 100              | 100          | 96               | 17.4           | 15         | 96             | 100              | 100             | 96               | 0.617          | 0.538         | 72          | 0.01   | 72       |
| 3/31/2001          | 100              | 100          | 96               | 19.9           | 19         | 96             | 90               | 87.5            | 96               | 0.446          | 0.292         | 72          | 0.01   | 84       |
| 9/17/2001          | 90               | 100          | 96               | 22.8           | 12.5       | 54             | 97.5             | 100             | 96               | 0.658          | 0.489         | -41         | 0.01   | 92       |
| 12/4/2001          | 100              | 90           | 96               | 20.5           | 0          | 0              | 97.5             | 55              | 41               | 0.728          | 0.403         | 0           | 0.01   | 96       |
| 3/26/2002          | 90               | 100          | 96               | 19.8           | 18.4       | 96             | 100              | 62.5            | 72               | 0.632          | 0.36          | 72          | 0.01   | 120      |
| 6/25/2002          | 80               | 100          | 96               | 26.6           | 16.1       | 96             | 92.5             | 92.5            | 96               | 0.453          | 0.505         | 96          | 0.01   | 64       |
| 7/6/2002           | na               | na           | na               | na             | na         | па             | 100              | 90              | 96               | 0.783          | 0.5           | -41         | 0.1    | 68       |
| 9/23/2002          | 100              | 100          | 96               | 18             | 7.1        | 0              | па               | na              | na               | ла             | na            | na          |        |          |
| 12/16/2002         | 100              | 100          | 96               | 22.1           | 11.4       | 30             | 87.5             | 100             | 96               | 0.81           | 0.848         | 96          | 0.01   | 52       |
| 2/4/2003           | 100              | 90           | 96               | 17             | 22.9       | 72             | 100              | 60              | 96               | 0.633          | 0.328         | 96          | < 0.1  | 156      |
| 6/17/2003          | 100              | 100          | 96               | 23             | 22.9       | 72             | 82               | 96              | 96               | 0.932          | 1             | 96          | < 0.01 | 112      |
| 9/9/2003           | 100              | 100          | 96               | 17.5           | 17.5       | 96             | 92.5             | 97.5            | 96               | 0.49           | 0.45          | 96          | < 0.01 | 60       |
| 12/9/2003          | 80               | 80           | 96               | 16.4           | 17         | 72             | 100              | 90              | 96               | 0.405          | 0.415         | 72          | < 0.01 | 156      |
| 1/20/2004          | 100              | 100          | 96               | 26.6           | 21.9       | 0              | 97.5             | 92.5            | 96               | 0.495          | 0.418         | 96          | < 0.01 | 112      |
| 5/4/2004           | 100              | 100          | 96.              | 28.9           | 14.7       | 30             | 92.5             | 97.5            | 96               | 0.44           | 0.585         | 96          | < 0.01 | 80       |
| 8/16/2004          | 100              | 90           | 96               | 24.6           | 14.9       | 54             | na               | na              | na               | na             | na            | na          | < 0.01 | 84       |
| 9/14/2004          |                  |              |                  |                |            |                | 97.5             | 100             | 96               | 0.588          | 0.793         | 96          | < 0.1  | 76       |
| 12/7/2004          | 100              | 100          | 96               | 25.2           | 24.1       | 96             | 97.5             | 97.5            | 96               | 0.845          | 0.853         | 96          | < 0.1  | 92       |
| 2/28/2005          | 90               | 100          | 96               | 33.6           | 25.3       | 0              | 100              | 100             | 96               | 0.555          | 0.53          | 96          | < 0.01 | 72 _     |
| 5/17/2005          | 100              | 70           | 96               | 26             | 17.7       | 0              | 87.5             | 90              | 96               | 0.46           | 0.41          | 96          | < 0.01 | 156      |
| 9/12/2005          | 100              | 100          | 96               | 24.5           | 16.9       | 41             | 97.5             | 92.5            | 96               | 0.793          | 0.605         | 30          | < 0.01 | 92       |
| 11/7/2005          | 100              | 100          | 96               | 23.7           | 14.8       | 54             | 95               | 82.5            | 96               | 0.87           | 0.62          | 72          | < 0.01 | 92       |

#### Outfall 001 Lion Facility Toxicity Summary (7-day chronic toxicity test) POR 1/4/2000 through 2005

= Note worthy data

 $\bigcirc$ 

# Appendix D-2 Microtox Summary

MICROTOX1999

| Page 1 |  |
|--------|--|
|--------|--|

| Odminary of | 1999 Microt | ox Data. |
|-------------|-------------|----------|
| DATE        | % EFFECT    | % EFFECT |
| <u></u>     | 5 MIN       | 15 MIN   |
| 7/14/1999   | 22.95       | 27.32    |
| 7/15/1999   | 36.69       |          |
| 7/16/1999   |             |          |
|             | 71.08       | 81.96    |
| 7/19/1999   | 20.35       | 18.91    |
| 7/20/1999   | 4.62        | 6.262    |
| 7/21/1999   | 7.39        |          |
| 7/22/1999   | 6.72        | 9.93     |
| 7/23/1999   | 3,44        | 0.8      |
| 7/26/1999   | 21.92       |          |
| 7/28/1999   | 4.44        | 6.76     |
| 7/29/1999   | 2.36        | 5.86     |
| 7/30/1999   | 21.36       | 27.89    |
| 7/31/1999   | 17.75       | 16.47    |
| 8/1/1999    | 15.25       | 13.53    |
| 8/2/1999    | 5.9         | 4.86     |
| 8/3/1999    | 10.4        | 7.6      |
| 8/4/1999    | 67.57       | 78.53    |
| 8/5/1999    | 70.37       | 79.9     |
| 8/6/1999    | 46.7        | 61.64    |
| 8/7/1999    | 9.04        | 0.16     |
| 8/8/1999    | -10.72      | 0.10     |
| 8/9/1999    | 2.77        | 9.89     |
|             |             |          |
| 8/10/1999   | 2.44        | 1.44     |
| 8/11/1999   | 0.95        | 0.09     |
| 8/12/1999   | 7.46        | 6.85     |
| 8/13/1999   | 13.2        | 12.6     |
| 8/14/1999   | 9.26        | 5.57     |
| 8/15/1999   | 6.61        | 3.56     |
| 8/16/1999   | -2.34       | -5.75    |
| 8/17/1999   | 3.55        | -0.28    |
| 8/18/1999   | 4.16        | 2.82     |
| 8/19/1999   | 4.21        | 0.63     |
| 8/20/1999   | 9.4         | 9.43     |
| 8/21/1999   | 12.67       | 10.96    |
| 8/22/1999   | 15.46       | 15.15    |
| 8/23/1999   | 15.78       | 9.6      |
| 8/24/1999   | 2.12        | 3.11     |
| 8/25/1999   | 27,38       | 29.54    |
| 8/26/1999   | 11.4        |          |
| 8/27/1999   | 17.54       | 13.19    |
| 8/28/1999   | 16.44       | 16.17    |
| 8/29/1999   | 16.08       |          |
| 8/30/1999   | 4.48        |          |
| 8/31/1999   | 3.45        |          |
| 9/1/1999    | <u> </u>    | 14.3     |
|             |             |          |
| 9/2/1999    | -12.9       | -16.34   |
| 9/3/1999    | -8.24       | -15.42   |
| 9/4/1999    | 8.8         | 1.22     |
| 9/5/1999    |             | 24.11    |
| 9/6/1999    | 8.81        | 4.3      |
| 9/7/1999    | 6.57        | 1.53     |
| 9/8/1999    | -10.91      | -15.6    |
| 9/9/1999    | 8.66        | 2.45     |
| 9/10/1999   | 4.29        |          |
| 9/11/1999   | 0.91        | 1.56     |
| 9/12/1999   |             | -8.04    |
| 9/13/1999   |             |          |
| 9/14/1999   |             |          |
| 9/15/1999   |             |          |
|             | - Z.50      | 1 1.95   |

))

| 9/16/1999                | 1.09          | 0.37   |
|--------------------------|---------------|--------|
| 9/17/1999                | 6.4           | 3.88   |
| 9/18/1999                | 2.49          | 0.9    |
| 9/19/1999                | 42.7          | 41.6   |
|                          |               |        |
| 9/20/1999                | 12.56         | 11.7   |
| 9/21/1999                | 2.66          | 3.2    |
| 9/22/1999                | 3.6           | 4.1    |
| 9/23/1999                | -21.9         | -25.09 |
| 9/24/1999                | -16.05        | -19.89 |
| 9/25/1999                | 4.8           | 0.77   |
|                          |               |        |
| 9/26/1999                | -3.27         | -11.68 |
| 9/27/1999                | -13.06        | ~18.05 |
| 9/28/1999                | -5.98         | -10.88 |
| 9/29/1999                | -9.2          | -12.19 |
| 9/30/1999                | 0.024         | -1.66  |
| 10/1/1999                | 10.14         | 8.13   |
| 10/2/1999                | 55.25         | 68.15  |
| 10/3/1999                | 47.25         | 50.79  |
|                          |               |        |
| 10/4/1999                | 14            | 16.24  |
| 10/5/1999                | 21.01         | 31.8   |
| 10/6/1999                | 8.08          | 6.7    |
| 10/7/1999                | 1.13          | -4.65  |
| 10/8/1999                | 5.2           | 1,4    |
| 10/9/1999                | 6.4           | 5.3    |
| 10/10/1999               | 7.7           | 5.2    |
| 10/11/1999               | 1.5           | 0.8    |
|                          |               |        |
| 10/12/1999               | -1.41         | 1.15   |
| 10/13/1999               | 3.26          |        |
| 10/14/1999               |               | 0.02   |
| 10/15/1999               | 1.7           | -6.02  |
| 10/16/1999               | 34.91         | 33.15  |
| 10/17/1999               | 2.67          | 0.7    |
| 10/18/1999               | -5.4          | -4.2   |
| 10/19/1999               | 5.2           | -2.9   |
| 10/20/1999               | -0.02         | 0.5    |
|                          |               | -8.4   |
| 10/21/1999               | -3.18         | -8.4   |
| 10/22/1999               | -6.02         |        |
| 10/23/1999               | -7.36         | -14    |
| 10/24/1999               | 41.25         | 35.07  |
| 10/25/1999               | 39.06         | 30.3   |
| 10/26/1999               | -1.8          | -7.08  |
| 10/27/1999               | -2.56         | -6.77  |
| 10/28/1999               | -6.02         | -5.66  |
| 10/00/1000               |               |        |
| 10/29/1999               | 0.27          | -3.49  |
| 10/30/1999               | -1.02         | -9.43  |
| 10/31/1999               | 9.06          | 11.44  |
| 11/1/1999                | -0.88         | -12.26 |
| 11/2/1999                | 2.51          | -0.97  |
| 11/3/1999                | 6.62          | 0.36   |
| 11/4/1999                | 11.95         | 7.23   |
| 11/5/1999                | 6.73          |        |
| 11/6/1999                | 0.10<br>20 47 |        |
|                          | 52.47         | 46.3   |
| 11/7/1999                | 38.5          | 24.21  |
| 11/8/1999                | -8.1          |        |
| 11/9/1999                | 13.6          | 7.71   |
| 11/10/1999               | -9.66         |        |
| 11/11/1999               | -10.89        |        |
| 11/12/1999               | -7.6          |        |
|                          |               |        |
| 11/13/1999               | 3.03          |        |
| 11/14/1999               | 8.09          |        |
|                          | 8.56          | -1.5   |
| 11/15/1999               |               | 1.0    |
| 11/15/1999<br>11/16/1999 |               | 5.89   |
|                          |               | 5.89   |

P:\2160-05-070\4(g)report draft\Appendix D Tox data\MICROTOX1999001 PE

#### MICROTOX1999

| 11/18/1999                                     | 3.17   | 0.11                                 |
|------------------------------------------------|--------|--------------------------------------|
| 11/19/1999                                     | 27.22  | 23.63                                |
| 11/20/1999                                     | 30.11  | 30.11                                |
| 11/21/1999                                     | 9,31   | 4.07                                 |
| 11/22/1999                                     | 1.75   | 0.68                                 |
|                                                |        |                                      |
|                                                |        | alijad Alistaviji<br>Size z Sale s d |
|                                                |        |                                      |
| CARLES STATE                                   |        |                                      |
| ·《月六日》 [2] [2] [2] [2] [2] [2] [2] [2] [2] [2] |        |                                      |
|                                                |        |                                      |
|                                                |        |                                      |
| 12/3/1999                                      | -21.62 | -4.08                                |
| 12/4/1999                                      | 10.34  | 24.39                                |
| 12/5/1999                                      | 16.7   | 30.55                                |
| 12/6/1999                                      | -2.82  | 7.33                                 |
| 12/7/1999                                      | -14.4  | -12.95                               |
| 12/8/1999                                      | 2.81   | 5.55                                 |
| 12/9/1999                                      | 2.81   | 5.56                                 |
| 12/10/1999                                     | -9.986 | -7.81                                |
| 12/11/1999                                     | -6.896 | -9.22                                |
| 12/12/1999                                     | -13.13 | -11.65                               |
| 12/13/1999                                     | -15.59 | -10.92                               |
| 12/14/1999                                     | 1.744  | -6.14                                |
| 12/15/1999                                     | 1.74   | -4.37                                |
| 12/16/1999                                     | 0.019  | -0.075                               |
| 12/17/1999                                     | -6.06  | -9.16                                |
| 12/18/1999                                     | -3.6   | 0.7                                  |
| 12/19/1999                                     | -5.79  | -1.77                                |
| 12/20/1999                                     | -5     | 14.95                                |
| 12/21/1999                                     |        |                                      |
| 12/22/1999                                     | -1.03  |                                      |
| 12/23/1999                                     | -7.24  |                                      |
| 12/24/1999                                     | -1.97  | 1.99                                 |
| 12/25/1999                                     | 1.27   | 4.11                                 |
| 12/26/1999                                     | -0.46  | -3.22                                |
| 12/27/1999                                     | 1.68   |                                      |
| 12/28/1999                                     | 0.79   |                                      |
| 12/29/1999                                     |        |                                      |
| 12/30/1999                                     | -7.9   |                                      |
| 12/31/1999                                     | 2.07   | -0.79                                |

-

Microtox 2000 Summary

| DATE      | % EFFECT<br>5 MIN | % EFFECT<br>15 MIN |
|-----------|-------------------|--------------------|
| 1/1/2000  | -5.53             | 5.49               |
| 1/2/2000  | -3.75             | 9                  |
| 1/3/2000  | -6.13             | 4,44               |
| 1/4/2000  | -3.19             | -3.38              |
| 1/5/2000  | -4.01             | -4.07              |
| 1/6/2000  | -0.21             | -3.45              |
| 1/7/2000  | 1.2               | 1.26               |
| 1/8/2000  | -5.67             | -6.5               |
| 1/9/2000  | -11.74            | -9.77              |
| 1/10/2000 | -10.17            | -4.12              |
| 1/11/2000 | 1.85              | 1.43               |
| 1/12/2000 | 7.75              | 5.73               |
| 1/13/2000 | -0.07             | -1.57              |
| 1/14/2000 | 4.32              | 3.46               |
| 1/15/2000 | -2.46             | -13.46             |
| 1/16/2000 | -9.8              | -16.62             |
| 1/17/2000 | 24.23             | 30.03              |
| 1/18/2000 | 67.12             | 72.93              |
| 1/19/2000 | 60.55             | 69.32              |
| 1/20/2000 | 12.43             | 16.43              |
| 1/21/2000 | -2.7              | -11.4              |
| 1/22/2000 | 11.01             | 7.81               |
| 1/23/2000 | -0.035            | 3.66               |
| 1/24/2000 | -24.3             | -22.9              |
| 1/25/2000 | -14.56            | -23.74             |
| 1/26/2000 | -14.49            | -30.8              |
| 1/27/2000 | -8.35             | -22.39             |
| 1/28/2000 | -17.53            | -35.8              |
| 1/29/2000 | -1.02             | -1.95              |
| 1/30/2000 | -4.84             | -12.6              |
| 1/31/2000 | -8.95             | <b>-17.9</b> 9     |
| 2/1/2000  | -3.96             | -4.91              |
| 2/2/2000  | 10. <b>8</b> 6    | 16.02              |
| 2/3/2000  | -0.3              | 3.7                |
| 2/4/2000  | 3.44              | 6.78               |
| 2/5/2000  | 2.49              | 3.84               |
| 2/6/2000  | 6.64              | 9.12               |
| 2/7/2000  | 4.45              | 7.46               |
| 2/8/2000  | -2.48             | -8.75              |
| 2/9/2000  | 4.93              | 11.56              |
| 2/10/2000 | -2.31             | 2.14               |
| 2/11/2000 | -3.42             | 1.49               |
| 2/12/2000 | 6.99              | 8.83               |
| 2/13/2000 | 3.19              | 0.24               |
| 2/14/2000 | -3.6              | -9.58              |
| 2/15/2000 | 7.53              | 21.83              |
| 2/16/2000 | -12.27            | 0.52               |
| 2/17/2000 | -20.36            | -11.39             |
|           |                   |                    |

P:\2160-05-070\4(g)report draft\Appendix D Tox data\MICROTOX2000MICROTOX2000Sheet1

| 2/18/2000         | -18.27                    | -12.61         |
|-------------------|---------------------------|----------------|
| 2/19/2000         | -10.13                    | -14.33         |
|                   |                           |                |
| 2/20/2000         | -7.31                     | -8.05          |
| 2/21/2000         | -5.46                     | -0.88          |
| 2/22/2000         | -0.4                      | 4.72           |
| 2/23/2000         | -3.7                      | 5              |
| 2/24/2000         | -0.64                     | 11.19          |
| 2/25/2000         | -0.0 <del>4</del><br>8.34 |                |
|                   |                           | 22.57          |
| 2/26/2000         | 10.27                     | 17.96          |
| 2/27/2000         | -0.22                     | 4.11           |
| <b>2/28/20</b> 00 | -2.67                     | 0.06           |
| 2/29/2000         | 0.51                      | 1.56           |
| 3/1/2000          | -3.9                      | -4.3           |
| 3/2/2000          | -4.47                     | -4.86          |
|                   |                           | -4.01          |
| 3/3/2000          | -5.67                     |                |
| 3/4/2000          | -0.62                     | -9.8           |
| 3/ <b>5/20</b> 00 | -0.58                     | -3.61          |
| 3/6/2000          | -0.23                     | -2.67          |
| 3/7/2000          | -3.56                     | -5.8           |
| 3/8/2000          | -4.62                     | -3.2           |
| 3/9/2000          | -4.89                     | -4.2           |
| 3/11/2000         | 1.22                      | 3.847          |
| 3/12/2000         | 6.34                      | 9.033          |
| 3/13/2000         | 14.69                     | 9.033<br>17.48 |
|                   |                           |                |
| 3/14/2000         | 10.44                     | 13.5           |
| 3/15/2000         | 7.428                     | 10.85          |
| 3/16/2000         | 4.625                     | 7.688          |
| 3/17/2000         | 4.647                     | 7.753          |
| 3/18/2000         | 5.752                     | 5.834          |
| 3/19/2000         | 14.51                     | 11.88          |
| 3/20/2000         | 14.22                     | 7.918          |
| 3/21/2000         | 9.154                     | 9.004          |
| 3/22/2000         | 6,492                     | 6.09           |
| 3/23/2000         | 2.045                     | 4.309          |
|                   |                           | -0.4529        |
| 3/24/2000         | -2.862                    |                |
| 3/25/2000         | 7.945                     | 8.589          |
| 3/26/2000         | 6.406                     | 5.577          |
| 3/27/2000         | 6.325                     | 10.78          |
| 3/28/2000         | 4.976                     | 6.469          |
| 3/29/2000         | 11.49                     | 21.61          |
| 3/30/2000         | 4.991                     | 15.51          |
| 3/31/2000         | -0.0086                   | 11.77          |
| 4/1/2000          | 8.688                     | 12.63          |
| 4/2/2000          | 9.546                     | 8.636          |
|                   |                           |                |
| 4/3/2000          | 7.057                     | 6.839          |
| 4/4/2000          | 1.683                     | -8.735         |
| <b>4/5/20</b> 00  | 0.2339                    | 0.0046         |
| 4/6/2000          | 1.009                     | 4.501          |
| 4/7/2000          | -4.816                    | -5.443         |
| 4/8/2000          | -19.82                    | -27.37         |
| 4/9/2000          | -20.12                    | -25.85         |
| 4/10/2000         | -11.41                    | -14.49         |
| 4/10/2000         | -11.41                    | -14.49         |

P:\2160-05-070\4(g)report draft\Appendix D Tox data\MICROTOX2000MICROTOX2000Sheet1

| 4/11/2000 | 0.8855  | 0.5442  |
|-----------|---------|---------|
| 4/12/2000 | 4.027   | 6.159   |
| 4/13/2000 | 7.419   | 13.33   |
|           |         |         |
| 4/14/2000 | -1.265  | 5.422   |
| 4/15/2000 | -8.359  | -5.896  |
| 4/16/2000 | -7.653  | -0.9644 |
| 4/17/2000 | -10.72  | -2.684  |
| 4/18/2000 | 10.81   | 7.424   |
| 4/19/2000 | 16.08   | 13.62   |
|           |         |         |
| 4/20/2000 | 16.76   | 15.14   |
| 4/21/2000 | 19      | 16.52   |
| 4/22/2000 | 14.86   | 16.24   |
| 4/23/2000 | 16.34   | 20.11   |
| 4/24/2000 | 12.01   | 16.32   |
| 4/25/2000 | 13.75   | 18.11   |
| 4/26/2000 | 14.89   | 18.43   |
| 4/28/2000 | 15.64   | 18.41   |
|           |         |         |
| 4/29/2000 | 16.69   | 17.12   |
| 4/30/2000 | 10.15   | 11.86   |
| 5/1/2000  | 5.78    | 9.573   |
| 5/2/2000  | 13.79   | 18.21   |
| 5/3/2000  | 18.17   | 23.23   |
| 5/4/2000  | 15.44   | 19.59   |
| 5/5/2000  | 13.19   | 14.66   |
| 5/6/2000  | 12.22   | 10.67   |
| 5/7/2000  | 8.08    | 8.423   |
| 5/8/2000  | 7.578   |         |
|           |         | 6.318   |
| 5/9/2000  | 10.36   | 9.793   |
| 5/10/2000 | 7.291   | 10.64   |
| 5/12/2000 | 6.075   | 7.047   |
| 5/13/2000 | 4.725   | 5.775   |
| 5/14/2000 | 1.085   | -0.165  |
| 5/15/2000 | -0.1973 | 0.7301  |
| 5/16/2000 | 5.3     | 9.8     |
| 5/17/2000 | 1.77    | 9.61    |
| 5/18/2000 | 11.54   | 11.53   |
| 5/19/2000 | 8.517   | 7.439   |
| 5/20/2000 | 12.2    | 12.86   |
|           |         |         |
| 5/21/2000 | 5.529   | 7.187   |
| 5/22/2000 | 4.947   | 8.502   |
| 5/24/2000 | 4.979   | 7.305   |
| 5/25/2000 | 3.25    | 5.811   |
| 5/26/2000 | 3.893   | 6.873   |
| 5/27/2000 | 3.724   | 8.726   |
| 5/28/2000 | 2.803   | 6.58    |
| 5/29/2000 | -0.1431 | 4.73    |
| 5/30/2000 | 4.063   | 11.29   |
| 5/31/2000 |         |         |
|           | 4.176   | 6.487   |
| 6/1/2000  | 1.941   | 2.632   |
| 6/2/2000  | -3.321  | -1.515  |
| 6/3/2000  | 4.531   | 4.328   |
| 6/4/2000  | 4.153   | 5.517   |
|           |         |         |

| 6/5/2000         | 3.216          | 3.087   |
|------------------|----------------|---------|
| <b>6</b> /6/2000 | -2.332         | -2.6    |
| 6/7/2000         | -4.217         | -2.523  |
| 6/8/2000         | 4.567          | 7.073   |
| 6/9/2000         | 8.63           | 6.194   |
| 6/10/2000        | 8.986          | 8.774   |
| 6/11/2000        | 10.76          | 12.26   |
| 6/12/2000        | 4.772          | 9.631   |
|                  | -1.244         |         |
| 6/13/2000        |                | -0.467  |
| 6/14/2000        | 2.527          | 3.596   |
| 6/15/2000        | -0.6572        | 0.8189  |
| 6/16/2000        | 3.228          | 8.695   |
| 6/17/2000        | -0.9489        | 0.9144  |
| 6/18/2000        | -2.717         | 3.898   |
| 6/19/2000        | -3.471         | 3.967   |
| 6/20/2000        | 7.263          | 6.076   |
| 6/21/2000        | 8.145          | 6.83    |
| 6/22/2000        | 9.169          | 9.198   |
| 6/23/2000        | 7.894          | 8.993   |
| 6/24/2000        | 6.381          | 8.537   |
| 6/25/2000        | 2.172          | 4.657   |
| 6/26/2000        | 3.214          | 5.585   |
| 6/27/2000        | 6.41           | 7.878   |
| 6/28/2000        | 5.184          | 6.339   |
| 6/29/2000        | 4.427          | 7.32    |
| 6/30/2000        | -1.672         | 1.845   |
| 7/1/2000         | 3.491          | 4.697   |
| 7/2/2000         | 7.487          | 5.972   |
| 7/3/2000         | 7.972          | 6.427   |
| 7/4/2000         | -1.34          | 1.21    |
| 7/5/2000         | 0.0064         | 1.351   |
| 7/6/2000         | -2.343         | 0.1314  |
| 7/7/2000         | 7.949          | 11.98   |
| 7/8/2000         | 4.987          | 10.57   |
| 7/9/2000         | 4.907<br>5.573 | 8.599   |
| 7/10/2000        |                |         |
|                  | 9.463          | 8.965   |
| 7/12/2000        | 6.019          | 5.888   |
| 7/13/2000        | 6.218          | 6.498   |
| 7/14/2000        | -0.5927        | 1.449   |
| 7/15/2000        | 4.58           | 5.517   |
| 7/16/2000        | 8.799          | 7.12    |
| 7/17/2000        | 6.349          | 4.356   |
| 7/18/2000        | 6.881          | 13.48   |
| 7/19/2000        | 4.342          | 11.77   |
| 7/20/2000        | 3.611          | 12.11   |
| 7/21/2000        | 1.639          | 9.134   |
| 7/24/2000        | 8.402          | 12.36   |
| 7/25/2000        | 0.9149         | 2.149   |
| 7/26/2000        | -3.4           | 1.596   |
| 7/27/2000        | -5.129         | -0.9551 |
| 7/28/2000        | -7.006         | -1.338  |
| 7/29/2000        | 2.147          | 3.675   |
| 112012000        | £,14/          | 0.010   |

| 7/30/2000         | -1.571 | 0.9958 |
|-------------------|--------|--------|
| 7/31/2000         | -4.774 | 0.6202 |
| 8/1/2000          | 4.607  | 8.227  |
| 8/2/2000          | 7.012  | 10.72  |
| 8/4/2000          |        |        |
|                   | 2.434  | 7.264  |
| 8/5/2000          | 10.74  | 13.83  |
| 8/6/2000          | 11.44  | 18.44  |
| 8/7/2000          | 8.972  | 17.19  |
| 8/9/2000          | 2.298  | 3.513  |
| 8/10/2000         | 8.542  | 11.89  |
| 8/11/2000         | 7.412  | 12.61  |
| 8/12/2000         | 10.29  | 8.389  |
| 8/13/2000         | 6.137  | 6.298  |
| 8/14/2000         | 4.354  | 7,247  |
| 8/15/2000         | 3.827  | 3.957  |
| 8/16/2000         | -2.546 | 5.273  |
| 8/17/2000         | -4.311 | 6.561  |
| 8/18/2000         | -3.749 | 6.933  |
| 8/19/2000         |        |        |
|                   | 8.556  | 8.316  |
| 8/20/2000         | 13.23  | 10.64  |
| 8/21/2000         | 7.378  | 4.689  |
| 8/22/2000         | 3.1    | 4.977  |
| 8/25/2000         | 5.901  | 7.762  |
| 8/26/2000         | 13.1   | 13.35  |
| 8/27/2000         | 8.656  | 6.536  |
| 8/28/2000         | 6.035  | 5.882  |
| 8/29/2000         | 3.323  | 6.404  |
| <b>8/30/200</b> 0 | 4.327  | 7.999  |
| 8/31/2000         | 3.264  | 13.44  |
| 9/1/2000          | 6.288  | 15.54  |
| 9/2 <b>/200</b> 0 | 14.39  | 18.49  |
| 9/3/2000          | 16.68  | 21.47  |
| 9/4/2000          | 11.9   | 16.38  |
| 9/5/2000          | 3.029  | 7,954  |
| 9/6/2000          | 2.497  | 3.818  |
| 9/7/2000          | 2.791  | 8.664  |
| 9/8/2000          | 8.343  | 12.38  |
| 9/9/2000          | 3.667  | 3.257  |
| 9/10/2000         | 5.949  | 13.34  |
|                   |        | -      |
| 9/11/2000         | 4.061  | 14.57  |
| 9/12/2000         | 24.65  | 32.19  |
| 9/13/2000         | 23.1   | 33.77  |
| 9/14/2000         | 14.7   | 24.1   |
| 9/15/2000         | 4.653  | 13.08  |
| 9/16/2000         | 9.316  | 13.24  |
| <b>9</b> /17/2000 | 6.309  | 8.457  |
| 9/18/2000         | -1.572 | 2.33   |
| <b>9</b> /19/2000 | 5.8    | 7.047  |
| 9/20/2000         | 7.808  | 5.423  |
| 9/21/2000         | 7.366  | 6.103  |
| 9/22/2000         | 5.554  | 1.838  |
| 9/23/2000         | 1.337  |        |
| 312JI 2000        | 1.337  | 8.929  |

| 9/24/2000           | -2.699  | 6.447      |
|---------------------|---------|------------|
| 9/25/2000           | -6.521  | 3.65       |
|                     |         |            |
| 9/26/2000           | 4.185   | 7.175      |
| 9/28/2000           | 10.76   | 14.96      |
| 9/29/2000           | 11.25   | 17.67      |
| 9/30/2000           | 13.56   | 15.71      |
| 10/1/2000           | 10.84   | 13.09      |
| 10/2/2000           | 10.83   | 12.99      |
| 10/3/2000           | 12.14   | 11.34      |
| 10/4/2000           | 11.07   | 11.9       |
| 10/5/2000           |         |            |
|                     | 5.652   | 7.685      |
| 10/6/2000           | 0.8074  | 6.643      |
| 10/7/2000           | 8.732   | 13.21      |
| 10/8/2000           | 2.252   | 1.288      |
| 10/9/2000           | -0.6422 | -1.356     |
| 10/10/2000          | 7.425   | 11.88      |
| 10/11/2000          | 2.41    | 5.296      |
| 10/12/2000          | 2.557   | 6.004      |
| 10/13/2000          | -1.073  | 1.939      |
| 10/14/2000          | 9.625   | 15.15      |
| 10/15/2000          | -0.9224 | 2.842      |
| 10/16/2000          | -2.231  | 1.515      |
|                     | -       |            |
| 10/17/2000          | 7.045   | 8.658      |
| 10/18/2000          | 2.674   | 4.17       |
| 10/19/2000          | -4.992  | -6.673     |
| 10/20/2000          | -3.405  | 1.742      |
| 10/21/2000          | -1.324  | 4.196      |
| 10/22/2000          | -6.11   | -4.485     |
| 10/23/2000          | -12.08  | -6.524     |
| 10/24/2000          | 4.388   | 3.8        |
| 10/25/2000          | 9.662   | 10.8       |
| 10/26/2000          | 6.731   | 8.903      |
| 10/27/2000          | 6.984   | 11.35      |
| 10/28/2000          | 8.544   | 11.78      |
| 10/29/2000          | 9.3     |            |
|                     |         | <b>1</b> 1 |
| 10/30/2000          | -0.1682 | -0.6373    |
| 10/31/2000          | 8.428   | 11.36      |
| 11/1/2000           | 7.176   | 5.032      |
| 11/2/2000           | 4.138   | 5.264      |
| 11/3/2000           | -2.084  | 1.534      |
| 11/4/2000           | 8.579   | 11.94      |
| 11/5/2000           | 6.569   | 5.572      |
| 11/6/2000           | 6.584   | 10.77      |
| 11/7/2000           | 6.969   | 9.189      |
| 11/8/2000           | 9.464   | 8.573      |
| 11/9/2000           | 8.502   | 10.94      |
| 1 1/10/2000         | 4.447   |            |
|                     |         | 7.891      |
| 11/11/2000          | 9.829   | 12.21      |
| 1 1/12/2000         | 5.379   | 5.343      |
| 1 1/13/2000         | -0.7618 | -1.834     |
| <b>1 1/14/200</b> 0 | 4.186   | 6.239      |
| <b>1</b> 1/15/2000  | -0.6936 | -6.863     |
|                     |         |            |

)

| 11/16/2000         | -3.057 | -7.548  |
|--------------------|--------|---------|
| 11/17/2000         | -7.789 | -13.99  |
| 11/18/2000         | 1.493  | -0.4657 |
| 11/19/2000         | 3.703  | -1.447  |
| 11/20/2000         | -4.523 | -4.98   |
| 11/21/2000         | -4.339 | -3.836  |
| 11/22/2000         | -2.011 | 0.3722  |
| 11/23/2000         | 6.873  | 6.882   |
| 11/24/2000         | 7.866  | 6.189   |
| 11/25/2000         | 2.931  | 1.292   |
| 11/26/2000         | 2.301  | 0.5492  |
| 11/27/2000         | 25.13  | 35.85   |
| 11/28/2000         | 3.755  | 4.842   |
| 11/29/2000         |        |         |
|                    | 3.643  | 5.349   |
| 11/30/2000         | 3.276  | 5.677   |
| 12/1/2000          | -1.641 | 3.034   |
| 12/2/2000          | 3.504  | 7.954   |
| 12/3/2000          | 9.043  | 8.131   |
| 12/4/2000          | 2.222  | 5.578   |
| 12/5/2000          | 1.458  | 0.0683  |
| 12/6/2000          | -7.731 | -2.527  |
| 12/7/2000          | -9.476 | -4.253  |
| 12/9/2000          | 7.28   | 7.51    |
| 12/10/2000         | 11.09  | 8.11    |
| 12/11/2000         | 13.05  | 10.3    |
| 12/12/2000         | 7.632  | 5.7     |
| 12/13/2000         | 5.207  | 5.516   |
| 12/14/2000         | 5.375  | 9.763   |
| 12/15/2000         | 7.63   | 10.73   |
| 12/16/2000         | 5.18   | 11.43   |
| <b>12/17/200</b> 0 | 4.557  | 7.488   |
| <b>12/18/200</b> 0 | 4.097  | 10.87   |
| 12/20/2000         | 10.69  | 12.75   |
| 12/21/2000         | 6.846  | 9.386   |
| 12/22/2000         | 35.79  | 39,99   |
| 12/23/2000         | 5.038  | 7.409   |
| 12/24/2000         | -1.135 | 4.01    |
| 12/25/2000         | 0.2561 | -0.3672 |
| 12/26/2000         | -2.998 | -1.717  |
| 12/27/2000         | -0.67  | 5.312   |
| 12/28/2000         | 4.69   | 7.056   |
| 12/29/2000         | 9.509  | 11.17   |
| 12/30/2000         | 0.34   | 5.1     |
| 12/31/2000         | 2.6    | 7.02    |
|                    |        |         |

Microtox Summary 2001

| 1/1/2001  | 6.96            | 10.69            |
|-----------|-----------------|------------------|
| 1/2/2001  | -0.75           | 1.47             |
| 1/3/2001  | 8.62            | 3.95             |
| 1/4/2001  | 9.42            | 0.32             |
| 1/5/2001  | 0.1378          | -0.0469          |
| 1/6/2001  | -4.007          | -2.355           |
| 1/7/2001  | -9.379          |                  |
| 1/8/2001  |                 | -8.386           |
|           | -11.84          | -10.83           |
| 1/9/2001  | -3.892          | -0.7014          |
| 1/10/2001 | -2.481          | -3.232           |
| 1/11/2001 | -6.899          | -3.565           |
| 1/12/2001 | -8.733          | -5.312           |
| 1/13/2001 | 7.28            | 3.55             |
| 1/14/2001 | 15.28           | 10.44            |
| 1/15/2001 | 16.4            | 9.7              |
| 1/16/2001 | 9.62            | 5.19             |
| 1/17/2001 | 12.81           | 10.09            |
| 1/18/2001 | 12.93           | 10.36            |
| 1/19/2001 | 10.35           | 10.69            |
| 1/20/2001 | 6.07            | 3.68             |
| 1/21/2001 | 6.29            |                  |
| 1/22/2001 | 8.5             |                  |
| 1/23/2001 | -6.1            | -9.41            |
| 1/24/2001 | -2.949          | -8.085           |
| 1/25/2001 | 1.56            | -3               |
| 1/26/2001 | -1.4            | -6.222           |
| 1/27/2001 | 2.19            | 0.33             |
| 1/28/2001 | 16.26           | 19.99            |
| 1/29/2001 | 11.71           | 11.42            |
| 1/30/2001 | 6.86            | 5.75             |
| 1/31/2001 | -2.6            | -5.7             |
| 2/1/2001  | 1.45            | -1.4             |
| 2/2/2001  | -0.34           | -4.1             |
| 2/3/2001  | 0.93            | -2.96            |
| 2/4/2001  | 4.76            | 2.78             |
| 2/5/2001  | 5.96            | 3.45             |
| 2/6/2001  | 1.63            | -0.31            |
| 2/8/2001  | 4.08            | 4.98             |
| 2/10/2001 | 2.8             | 0.6              |
| 2/11/2001 | 6               | 2.99             |
| 2/12/2001 | 2.09            | 3.09             |
| 2/13/2001 | 15.31           | 9.08             |
| 2/17/2001 | -4.94           | -10.52           |
| 2/18/2001 | 24.98           | 15.89            |
| 2/19/2001 | 3.68            | -2.94            |
| 2/21/2001 | 3.62            | -2.12            |
| 2/22/2001 | -8.3            | -12.32           |
| 2/23/2001 | -9.88           | -12.32           |
| 2/24/2001 | -12.59          | -17.93           |
| 2/25/2001 | -12.59<br>-7.33 | -19.72<br>-15.01 |
| 212012001 | -1.33           | -10.01           |

| 2/26/2001 | -5.33            | -11.89        |
|-----------|------------------|---------------|
| 3/2/2001  | -5.55<br>2.6     |               |
| 3/3/2001  | 2.0              | -0.4          |
| 3/4/2001  | 2.11             | 5.04          |
| 3/5/2001  | 2.11             | 4.5           |
| 3/6/2001  |                  | 2.09          |
| 3/8/2001  | 3.78             | 4.82          |
| 3/9/2001  | 3.53             | -0.82         |
| 3/12/2001 | 3.89             | -2.7          |
| 3/14/2001 | -5.39            | -9.62         |
| 3/16/2001 | 7.06             | 3.15          |
| 3/17/2001 | 6.85             | 1.77          |
| 3/18/2001 | 2.61<br>4.43     | -2.99         |
| 3/23/2001 |                  | -1.45         |
| 3/24/2001 | 6<br>3.71        | 4.25          |
| 3/25/2001 | 3.71<br>4.24     | 1.21          |
| 3/26/2001 |                  | -0.66         |
| 3/27/2001 | -0.015<br>-11.07 | -3.73         |
| 3/28/2001 | 0.06             | -14.54        |
| 3/29/2001 | 10.22            | 0.16          |
| 3/30/2001 | 4.9              | 12.08         |
| 3/31/2001 | 4.9<br>7.09      | 6.64          |
| 4/1/2001  | 13.03            | 6.03<br>12.93 |
| 4/2/2001  | 14.26            | 12.95         |
| 4/3/2001  | 14.20            | 14.21         |
| 4/4/2001  | 12.84            | 14.21         |
| 4/11/2001 | 12.04            | 12.2          |
| 4/12/2001 | 21.25            | 18.41         |
| 4/13/2001 | 13.71            | 11.17         |
| 4/14/2001 | 10.78            | 9.4           |
| 4/15/2001 | 12.97            | 12.47         |
| 4/20/2001 | 4.76             | 2.3           |
| 4/21/2001 | 19.05            | 14.83         |
| 4/22/2001 | 20.05            | 16.87         |
| 4/23/2001 | 20.63            | 17.76         |
| 4/24/2001 | 22.21            | 19.54         |
| 4/26/2001 | 10.24            | 1             |
| 4/27/2001 | 10.26            | -31.4         |
| 4/28/2001 | 6.03             | -39.52        |
| 4/29/2001 | 3.17             | -43.13        |
| 4/30/2001 | 4.74             | -38.87        |
| 5/2/2001  | 14.12            | 9.89          |
| 5/3/2001  | 16.13            | 14.46         |
| 5/4/2001  | 16.69            | 13.84         |
| 5/5/2001  | 8.04             | 2.49          |
| 5/6/2001  | 14.66            | 11.35         |
| 5/12/2001 | -8.75            | -6.25         |
| 5/13/2001 | -4.45            | -1.21         |
| 5/14/2001 | -6.19            | -0.01         |
| 5/15/2001 | -9.05            | -1.96         |
| 5/16/2001 | -4.23            | 3.69          |
| 5/21/2001 | 14.85            | 12.01         |
|           |                  |               |

| 5/22/2001         | 12.54  | 11.41          |
|-------------------|--------|----------------|
| 5/23/2001         | 9.36   | 6.35           |
| 5/24/2001         | 6.45   | 4.05           |
| 5/25/2001         | 7.6    | 6.46           |
| 5/26/2001         | -8.78  |                |
|                   |        | -8.43          |
| 5/27/2001         | 8.43   | 9.86           |
| 5/29/2001         | 4.55   | 7.09           |
| 5/30/2001         | 5.01   | 5.62           |
| 5/31/2001         | 6.44   | 5.76           |
| 6/3/2001          | -31.68 | -31.76         |
| 6/5/2001          | -27.18 | -18.94         |
| 6/6/2001          | -26.48 | -19.77         |
| 6/7/2001          | -24.65 |                |
| 6/8/2001          |        | -15.99         |
|                   | -27.69 | -19            |
| 6/9/2001          | -38.34 | -37.4          |
| · 6/10/2001       | -36.98 | -37.74         |
| 6/11/2001         | -44.48 | -46.66         |
| 6/12/2001         | -43.2  | -49.29         |
| 6/13/2001         | -40.42 | -42.64         |
| 6/14/2001         | -2.26  | -5.54          |
| 6/16/2001         | -1.75  | -5.94          |
| 5/17/2001         | -3.82  | -6.68          |
| 6/18/2001         | 36.32  | ~0.00<br>33.76 |
| 6/19/2001         |        |                |
|                   | -6.11  | -8.33          |
| 6/20/2001         | -8.82  |                |
| 6/21/2001         | -8.18  | -11.91         |
| 6/22/2001         | -2.98  | -5.02          |
| 6/29/2001         | -4.18  | -5.47          |
| 6/30/2001         | 4.54   | 1.92           |
| 7/1/2001          | 9.31   | 8.53           |
| 7/2/2001          | 22.65  | 22.3           |
| 7/3/2001          | 9.79   | 7.35           |
| 7/8/2001          | -3.14  | 9.53           |
| 7/9/2001          | 26.19  | 35.52          |
| 7/10/2001         |        |                |
|                   | -25.51 | -21.61         |
| 7/11/2001         | -0.7   | 13.91          |
| 7/12/2001         | -16.89 | -13.85         |
| 7/13/2001         | -1.85  | 0.4            |
| 7/14/2001         | -5.49  | -2.99          |
| 7/15/2001         | -6.04  | -1.89          |
| 7/16/2001         | 1.91   | 2.95           |
| 7/19/2001         | -15.42 | -9.96          |
| 7/20/2001         | -15.1  | -4.68          |
| 7/21/2001         | -11.88 | -2.9           |
| 7/22/2001         |        |                |
|                   | -18.45 | -13.23         |
| 7/23/2001         | -11.3  | -0.55          |
| 8/5/2001          | -42.97 | -48.35         |
| 8/6/2001          | -36.95 | -49.25         |
| 8/7/2001          | -30.1  | -41.88         |
| 8/ <b>8/20</b> 01 | -38.65 | -53.53         |
| 8/9/2001          | -40.28 | -53.87         |
| 8/13/2001         | -40.29 | -40.64         |
|                   |        | -70,04         |

| ···~ |  |  |
|------|--|--|
|      |  |  |
| 1    |  |  |
| £    |  |  |

Ú,

| 8/14/2001<br>8/15/2001<br>8/16/2001<br>8/20/2001<br>8/20/2001<br>8/22/2001<br>8/23/2001<br>8/23/2001<br>8/24/2001<br>8/28/2001<br>8/29/2001<br>8/30/2001<br>9/4/2001<br>9/5/2001<br>9/5/2001<br>9/10/2001<br>9/10/2001<br>9/11/2001<br>9/12/2001<br>9/15/2001 | -28.86<br>-29.11<br>-32.99<br>-29.76<br>-30.29<br>-1.4<br>-5.54<br>-12.45<br>-14.62<br>-63.91<br>-57.93<br>-69.51<br>-53.48<br>-59.07<br>-38.68<br>-34.47<br>-18.13<br>-22.01<br>-53.12<br>-38.17<br>-40.47<br>-46.82<br>-31.56 | -28.82<br>-32.46<br>-36.12<br>-30.15<br>-3.47<br>-6.95<br>-14.07<br>-15.02<br>-66.19<br>-49.74<br>-55.29<br>-56.3<br>-52.55<br>-32.43<br>-23.87<br>-17.93<br>-16.05<br>-68.84<br>-45.24<br>-51.33<br>-57.35<br>-41.29 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9/16/2001<br>9/17/2001                                                                                                                                                                                                                                        | -19.4<br>-31.22                                                                                                                                                                                                                 | -26.71<br>-47.84                                                                                                                                                                                                      |
| 9/18/2001                                                                                                                                                                                                                                                     | -7.69                                                                                                                                                                                                                           | -10.82                                                                                                                                                                                                                |
| 9/19/2001                                                                                                                                                                                                                                                     | -8.64                                                                                                                                                                                                                           | -8.71                                                                                                                                                                                                                 |
| 9/20/2001                                                                                                                                                                                                                                                     | -10.22                                                                                                                                                                                                                          | -11.99                                                                                                                                                                                                                |
| 9/21/2001                                                                                                                                                                                                                                                     | -15.49                                                                                                                                                                                                                          | -14.75                                                                                                                                                                                                                |
| 10/1/2001                                                                                                                                                                                                                                                     | -21.04                                                                                                                                                                                                                          | -18.65                                                                                                                                                                                                                |
| 10/2/2001                                                                                                                                                                                                                                                     | -14.24                                                                                                                                                                                                                          | -21.82                                                                                                                                                                                                                |
| 10/3/2001                                                                                                                                                                                                                                                     | -19.26                                                                                                                                                                                                                          | -24.04                                                                                                                                                                                                                |
| 10/4/2001                                                                                                                                                                                                                                                     | -22.15                                                                                                                                                                                                                          | -27.35                                                                                                                                                                                                                |
| 10/5/2001                                                                                                                                                                                                                                                     | -16.22                                                                                                                                                                                                                          | -17.61                                                                                                                                                                                                                |
| 10/15/2001<br>10/16/2001                                                                                                                                                                                                                                      | -36.46                                                                                                                                                                                                                          | -29.32                                                                                                                                                                                                                |
| 10/16/2001                                                                                                                                                                                                                                                    | -20.05                                                                                                                                                                                                                          | -19.4                                                                                                                                                                                                                 |
| 10/18/2001                                                                                                                                                                                                                                                    | -22.01<br>-22.84                                                                                                                                                                                                                | -20.76<br>-24.33                                                                                                                                                                                                      |
| 10/19/2001                                                                                                                                                                                                                                                    | -27.11                                                                                                                                                                                                                          | -24.33<br>-26.38                                                                                                                                                                                                      |
| 10/22/2001                                                                                                                                                                                                                                                    | -38.22                                                                                                                                                                                                                          | -36.21                                                                                                                                                                                                                |
| 10/23/2001                                                                                                                                                                                                                                                    | -36.33                                                                                                                                                                                                                          | -37.05                                                                                                                                                                                                                |
| 10/24/2001                                                                                                                                                                                                                                                    | -28.96                                                                                                                                                                                                                          | -32.54                                                                                                                                                                                                                |
| 10/25/2001                                                                                                                                                                                                                                                    | -39.88                                                                                                                                                                                                                          | -39.4                                                                                                                                                                                                                 |
| 10/26/2001                                                                                                                                                                                                                                                    | -30.8                                                                                                                                                                                                                           | -36.71                                                                                                                                                                                                                |
| <b>11/19/20</b> 01                                                                                                                                                                                                                                            | -9.63                                                                                                                                                                                                                           | -10.67                                                                                                                                                                                                                |
| 11/20/2001                                                                                                                                                                                                                                                    | 0.75                                                                                                                                                                                                                            | -0.86                                                                                                                                                                                                                 |
| 11/27/2001                                                                                                                                                                                                                                                    | -21                                                                                                                                                                                                                             | -22.45                                                                                                                                                                                                                |
| 11/28/2001                                                                                                                                                                                                                                                    | -2.78                                                                                                                                                                                                                           | -21.69                                                                                                                                                                                                                |
| 11/29/2001                                                                                                                                                                                                                                                    | -30                                                                                                                                                                                                                             | -27.65                                                                                                                                                                                                                |
| 11/30/2001                                                                                                                                                                                                                                                    | -0.52                                                                                                                                                                                                                           | 2.25                                                                                                                                                                                                                  |
| 12/3/2001<br>12/4/2001                                                                                                                                                                                                                                        | -13.01                                                                                                                                                                                                                          | -10.61                                                                                                                                                                                                                |
| 12/4/2001                                                                                                                                                                                                                                                     | 0.13                                                                                                                                                                                                                            | 3.71                                                                                                                                                                                                                  |

Page 4

## MICROTOX2001

MICROTOX2001

|                    | •      |        |
|--------------------|--------|--------|
| 12/5/2001          | 21.6   | 21.5   |
| 12/6/2001          | 7.48   | 10.82  |
| 12/7/2001          | 10.28  | 10.45  |
| 12/10/2001         | -1.96  | 3.01   |
| 12/11/2001         | -10.94 | -5.11  |
| 12/12/2001         | -19.11 | -14.11 |
| 12/13/2001         | -16.76 | -9.92  |
| 12/14/2001         | -19.59 | -13.46 |
| 12/17/2001         | -1.37  | -1.96  |
| 12/18/2001         | 3.72   | 3.14   |
| 12/19/2001         | -15.78 | -21.51 |
| 12/20/2001         | -18.66 | -25.73 |
| 12/21/2001         | -14.45 | -21.65 |
| <b>12/26/20</b> 01 | -23.64 | -27.43 |
| 12/27/2001         | -42.27 | -48.35 |
| 12/28/2001         | -44.01 | -50.08 |
| 12/31/2001         | -9.45  | -19.22 |

MICROTOX2002

Page 1

Microtox 2002 Summary

|           | 5 MIN           | 15 MIN | 30 MIN |
|-----------|-----------------|--------|--------|
| 1/1/2002  | -14.44          | -30.4  |        |
| 1/2/2002  |                 | -32.07 |        |
| 1/3/2002  | -15.1           | -30.36 |        |
| 1/4/2002  | -17.77          |        |        |
| 1/4/2002  |                 | -34.77 |        |
| 1/8/2002  | -15.47          | -16.44 |        |
| -         | -11.96          | -12.18 |        |
| 1/9/2002  | -16.61          | -14.74 |        |
| 1/10/2002 | -18.4           |        |        |
| 1/11/2002 | -15.57          | -15.78 |        |
| 1/14/2002 | -23.95          | -21.6  |        |
| 1/15/2002 | -11.75          | -9.79  |        |
| 1/16/2002 | -11.43          | -10.43 |        |
| 1/17/2002 | -10.67          | -11.52 |        |
| 1/18/2002 | -26.84          | -23.57 |        |
| 1/21/2002 | <b>-4.8</b> 5   | -6.38  |        |
| 1/22/2002 | -5.88           | -5.53  |        |
| 1/23/2002 | -1.26           | -0.57  |        |
| 1/24/2002 | 3.87            | 5.14   |        |
| 1/25/2002 | -17.69          | -25.8  |        |
| 1/28/2002 | -15.06          | -13.4  |        |
| 1/29/2002 | -27.53          | -32.34 |        |
| 1/30/2002 | -36.66          | -42    |        |
| 1/31/2002 | -11.41          | -19.18 |        |
| 2/1/2002  | -4.41           | -8.14  |        |
| 2/4/2002  | -10. <b>6</b> 6 | -9.49  |        |
| 2/5/2002  | -24.13          | -25.22 |        |
| 2/6/2002  | -21.22          | -22.08 |        |
| 2/7/2002  | -26.37          | -28.6  |        |
| 2/8/2002  | -23.27          | -23.84 |        |
| 2/11/2002 | -16.18          | -7.39  |        |
| 2/12/2002 | -21.22          | -17.74 |        |
| 2/13/2002 | -20.54          | -15.1  |        |
| 2/14/2002 | -23.32          | -15.34 |        |
| 2/15/2002 | -16.41          | -10.15 |        |
| 2/16/2002 | -12.14          | -10.38 |        |
| 2/17/2002 | -13.65          | -13.84 |        |
| 2/18/2002 | -17.46          | -17.67 |        |
| 2/19/2002 | -16.67          | -18.82 |        |
| 2/20/2002 | -17.09          | -21.73 |        |
| 2/21/2002 | -10.07          | -2.07  |        |
| 2/22/2002 | -14.45          | -14.32 |        |
| 2/25/2002 | -2.45           | -2.64  |        |
| 2/26/2002 | 0.86            | 6.1    |        |
| 2/27/2002 | -3.21           | 1.74   |        |
| 2/28/2002 | -4.24           | -0.41  |        |
| 3/1/2002  | -3              | -0.6   |        |
| 3/4/2002  | -21.71          | -15.85 |        |
| 3/5/2002  | -27.83          | -19.41 |        |
| 3/6/2002  | -24.6           | -17.92 |        |
| -         |                 |        |        |

....

| 3/7/2002               | -26.83        | -21.3          |               |
|------------------------|---------------|----------------|---------------|
| 3/8/2002               | -22.6         | -20.14         |               |
| 3/11/2002              | -11.47        | -0.99          |               |
| 3/12/2002              | 8.13          | 22.72          |               |
| 3/13/2002              | 13.63         | 29.02          |               |
| 3/14/2002              | 18.79         | 35.04          |               |
| 3/15/2002              | 46            | 53.83          |               |
| 3/16/2002              | 54.8          | 62.2           |               |
| 3/17/2002              | 54.69         | 60.67          |               |
| 3/18/2002              | 37.7          | 44.72          |               |
| 3/19/2002              | 9,47          | 19.57          |               |
| 3/20/2002              | 15.27         | 17.65          |               |
| 3/21/2002              | 10.49         | 13.08          |               |
| 3/22/2002              | -0.77         | 5.6            |               |
| 3/23/2002              | 0.74          | 2.38           |               |
| 3/24/2002              | 3.08          | 1.46           |               |
| 3/25/2002              | -13.44        | -14,49         |               |
| 3/26/2002              | 7.72          | 13.55          |               |
| 3/27/2002              | 11.13         | 14.43          |               |
| 3/28/2002              | 13.47         | 17.11          |               |
| 3/29/2002              | -1.37         | 8.76           |               |
| 3/30/2002              | 16.86         | 24.08          |               |
| 3/31/2002              | 15.13         | 22.23          |               |
| 4/1/2002               | -1.99         | 6.3            |               |
| 4/2/2002               | -4.16         | 2.03           |               |
| 4/3/2002               | 0.97          | 6.15           |               |
| 4/6/2002               | 3.89          | 7.7            |               |
| 4/7/2002               | 17.83         | 22.22          |               |
| 4/8/2002               | -3.45         | 5.37           |               |
| 4/9/2002               | -1.18         | 0.1            |               |
| 4/10/2002<br>4/11/2002 | -2.44         | -1.35          |               |
| 4/11/2002              | -0.51         | 0.02           |               |
| 4/12/2002              | -0.47         | 1.55           |               |
| 4/15/2002              | 18.28<br>24.4 | 22.24          |               |
| 4/16/2002              | 24.4<br>12.36 | 33.62          |               |
| 4/17/2002              | 12.50         | 17.39<br>25.46 |               |
| 4/18/2002              | 23.41         | 25.40<br>29.09 |               |
| 4/18/2002              | 17.66         | 29.09          |               |
| 4/19/2002              | 6.14          | 12.71          |               |
| 4/19/2002              | 7.58          | 11.22          |               |
| 4/20/2002              | -10.43        | -7.17          |               |
| 4/21/2002              | -24.44        | -21.66         |               |
| 4/22/2002              | -34.12        | -31.23         |               |
| 4/23/2002              | -13.27        | -8.481         |               |
| 4/24/2002              | -8.48         | 2.55           |               |
| 4/25/2002              | -14.64        | -7.87          |               |
| 4/26/2002              | -14.64        | -4.62          |               |
| 4/27/2002              | -6.19         | 0.31           | 9.42          |
| 4/28/2002              | 10.68         | 19.38          | 9.42<br>26.11 |
| 4/29/2002              | 4.61          | 13.58          | 20.13         |
| 1/20/2002              | 4.01<br>E 0   | 46.00          | A 04 04       |

4/30/2002

5.8

15.99

21.21

P:\2160-05-070\4(g)report draft\Appendix D Tox data\MICROTOX2002MICROTOX2002Sheet1

| 5/1/2002  | 4.58   | 14,84          | 19.83 |
|-----------|--------|----------------|-------|
| 5/2/2002  | 19.34  | 19.06          | 20.85 |
| 5/3/2002  | -14.38 | -5.93          |       |
| 5/4/2002  |        |                | 4.14  |
|           | 1.36   | 5.35           | 12.1  |
| 5/5/2002  | 11.51  | 10.31          | 19.21 |
| 5/6/2002  | 16.7   | 16.05          | 17.83 |
| 5/7/2002  | -0.47  | 2.41           | 7.02  |
| 5/8/2002  | 0.4    | 11.8           | 19.8  |
| 5/9/2002  | -1.32  | 8.17           | 17.58 |
| 5/10/2002 | -7.17  |                |       |
| 5/11/2002 |        | -1.99          | 8.58  |
|           | 3.92   | 10.44          | 19.04 |
| 5/12/2002 | 3.7    | 7.1            | 17    |
| 5/14/2002 | -5.81  | 0.5            | 9.5   |
| 5/15/2002 | 18.13  | 25.86          | 30.77 |
| 5/16/2002 | -13.02 | -2.78          | 8.97  |
| 5/20/2002 | 49.03  | 64.4           | 73.31 |
| 5/21/2002 | 46.23  | 61.08          | 70.23 |
| 5/22/2002 | 25.52  | 44.4           | 57.38 |
| 5/23/2002 | -1.18  | 15.63          | 26.87 |
| 5/25/2002 | 6.57   | 10.9           |       |
| 5/26/2002 | 16.95  |                | 19.86 |
| 5/27/2002 |        | 21.98          | 34.15 |
|           | 16.84  | 24.85          | 35.12 |
| 5/28/2002 | 9.29   | 15.08          | 23.87 |
| 5/29/2002 | 9.47   | 17.3           | 25.83 |
| 5/30/2002 | 11.29  | 19.64          | 26.74 |
| 5/31/2002 | 19.84  | 31.49          | 39.17 |
| 6/1/2002  | 7.78   | 19.29          | 23.31 |
| 6/2/2002  | 8.39   | 14.07          | 18.11 |
| 6/3/2002  | 10.31  | 18.87          | 23.28 |
| 6/4/2002  | 14.37  | 24.47          | 32.25 |
| 6/5/2002  | 1.75   | 6.54           | 10    |
| 6/6/2002  | 6.74   | 11.1           | 10.6  |
| 6/7/2002  | -2.34  | 1.96           | -1.2  |
| 6/8/2002  | -3.96  |                |       |
| 6/9/2002  | -3.80  | 4.94           | 11.29 |
| 6/10/2002 |        | 6.64           | 16.12 |
|           | -3.73  | 5.43           | 15.3  |
| 6/11/2002 | -1.2   | 5.21           | 16.92 |
| 6/12/2002 | -4.38  | 3.48           | 9.57  |
| 6/13/2002 | 8.36   | 8.54           | 5.87  |
| 6/14/2002 | 14.59  | 14 <b>.17</b>  | 12.18 |
| 6/15/2002 | 4.56   | 12.98          | 14.49 |
| 6/16/2002 | 12.84  | 19.82          | 19.85 |
| 6/17/2002 | 10.86  | 19. <b>9</b> 9 | 17.78 |
| 6/18/2002 | 13.63  | 19.72          | 17.38 |
| 6/19/2002 | 10.74  | 17.7           | 15.6  |
| 6/20/2002 | 10.26  | 13.48          |       |
| 6/21/2002 |        |                | 15.96 |
| 6/22/2002 | -1.25  | 9.37           | 14.7  |
|           | 4.58   | 12.74          | 18.33 |
| 6/24/2002 | 7.57   | 17.03          | 21.2  |
| 6/25/2002 | -2.89  | 4.3            | 6.28  |
| 6/26/2002 | 8.56   | 13.02          | 16.55 |
| 6/27/2002 | 8.41   | 11.88          | 14.3  |
|           |        |                |       |

| 0/20/2002 | -7.0   | -10.45 | -6.17  |
|-----------|--------|--------|--------|
| 6/29/2002 | -12.56 | -12.98 | -3.11  |
| 6/30/2002 | -18.7  | -15.53 | -4.06  |
| 7/1/2002  | -19.96 | -11.11 | -4.86  |
| 7/2/2002  | -19.79 | -15.99 | -4.15  |
| 7/3/2002  | 16.67  | 15.63  | 12.94  |
| 7/4/2002  | 15.58  | 18.74  | 22.8   |
| 7/5/2002  | 15.58  | 18.74  | 22.8   |
| 7/6/2002  | -7.5   | 0.94   | 4.55   |
| 7/7/2002  | 14.6   | 20.94  | 23.1   |
| 7/8/2002  | 12.31  | 20.90  |        |
| 7/9/2002  | -7.09  | -10.31 | 21.53  |
| 7/10/2002 | -1.96  |        |        |
| 7/11/2002 |        | -9.98  | 7.40   |
|           | -9.5   | 0.28   | 7.13   |
| 7/12/2002 | -9.29  | 0.29   | 7.34   |
| 7/13/2002 | 1.84   | 1.26   | -3.22  |
| 7/14/2002 | -17.6  | -0.9   | -2.57  |
| 7/15/2002 | -15.72 | -1.14  | -5.72  |
| 7/16/2002 | -13.34 | -2.61  | -4.9   |
| 7/17/2002 | -16.96 | -3.15  | -1.15  |
| 7/18/2002 | -10.23 | -5.56  | -2.64  |
| 7/19/2002 | -2.51  | 7.17   | 9.5    |
| 7/20/2002 | 0.62   | 0.15   | 1.44   |
| 7/21/2002 | 11.36  | 6.77   | 11.1   |
| 7/22/2002 | 9.04   | 2.33   | 5.89   |
| 7/24/2002 | 9.18   | 1.64   | 3.38   |
| 7/25/2002 | 8.43   | -1.11  | -0.5   |
| 7/26/2002 | -4.92  | -7.39  | -5.18  |
| 7/27/2002 | 8.68   | 7.47   | 3.66   |
| 7/28/2002 | 9.87   | 10.55  | 6.45   |
| 7/29/2002 | 5.58   | 4.94   | -0.73  |
| 7/30/2002 | 9.79   | 10.44  | 4.1    |
| 7/31/2002 | 9.72   | 8.89   | 1.26   |
| 8/1/2002  | -8.24  | -4.08  | -5.42  |
| 8/2/2002  | -8.89  | -5.54  | -7.12  |
| 8/3/2002  | 5.66   | 2.57   | -0.35  |
| 8/4/2002  | 10.81  | 5.22   | 4.6    |
| 8/5/2002  | 10.81  | 7.39   | 3.4    |
| 8/6/2002  | 17.65  | 13.82  | 9.25   |
| 8/7/2002  | 13.44  | 8.64   | 5.6    |
| 8/8/2002  | -0.83  | -5.04  | -8.9   |
| 8/9/2002  | 5.03   | 1.11   | -5     |
| 8/10/2002 | -1.43  | -8.15  | -13.2  |
| 8/11/2002 | 5.6    | -4.04  | -12.87 |
| 8/12/2002 | -0.73  | -7.38  | -10.33 |
| 8/13/2002 | 7.37   | 3.25   | -0.69  |
| 8/14/2002 | 12.77  | 7.48   | 1.9    |
| 8/15/2002 | -4.61  | -7.23  | -8.56  |
| 8/16/2002 | 7.42   | 3.85   | 3.29   |
| 8/17/2002 | 0.27   | 1.52   | 0.00   |
| 8/18/2002 | 6.55   | 10.6   |        |
| 8/19/2002 | 13.61  | 18.63  |        |
|           | 10.01  | 10.00  |        |

6/28/2002

-7.6

-10.45

-6.17

P:\2160-05-070\4(g)report draft\Appendix D Tox data\MICROTOX2002MICROTOX2002Sheet1

.4

| 8/21/2002  | 25.2         | 32.86 |        |
|------------|--------------|-------|--------|
| 8/22/2002  | 11.72        | 17.77 |        |
| 8/24/2002  |              |       | 47.00  |
|            | 19.67        | 19.44 | 17.92  |
| 8/25/2002  | 23.49        | 28.73 | 34.82  |
| 8/26/2002  | 18.63        | 29.37 | 31.24  |
| 8/27/2002  | 22.58        | 33    | 34.46  |
| 8/28/2002  | 25.64        | 35.18 | 35.61  |
| 8/29/2002  | 10.16        | 10.89 | 6.23   |
| 8/30/2002  | 17.07        | 14.91 | 10.92  |
| 8/31/2002  | 2.04         | -3.9  |        |
| 9/1/2002   | -2.57        |       | -2.45  |
|            |              | -3.93 | -6.51  |
| 9/2/2002   | -4.43        | -6.56 | -11.71 |
| 9/3/2002   | -2.85        | -7    | -10.33 |
| 9/4/2002   | 3.9          | -4.23 | -9.54  |
| 9/5/2002   | 1.06         | 0.24  | -1.23  |
| 9/6/2002   | 2.87         | 6.3   | 2.08   |
| 9/7/2002   | 15.63        | 3.78  | -2.71  |
| 9/8/2002   | 21.06        | -2.47 | -7.35  |
| 9/9/2002   | 20.83        | -2.96 | -8.23  |
| 9/10/2002  | 26.1         | 6.73  | -4.1   |
| 9/11/2002  | 29.99        | 3.51  | -5.86  |
| 9/12/2002  | -6.73        | -3.32 | -7.49  |
| 9/13/2002  | 8.78         | 19.22 | 20.34  |
| 9/14/2002  | 9.9          | -4.05 | -2.12  |
| 9/15/2002  | 19.22        | -1.03 | 3.81   |
| 9/16/2002  | 19.89        | -4.01 | -2.15  |
| 9/17/2002  | 23.88        | 2.7   | 0.2    |
| 9/18/2002  | 34.7         | 17.1  | 19.11  |
| 9/19/2002  | 2.21         | 7.29  | 10.08  |
| 9/20/2002  | 32.41        | 31.91 | 38.68  |
| 9/21/2002  | 37.44        | 39.91 |        |
| 9/22/2002  | 36.76        | 39.2  | 45.69  |
| 9/23/2002  |              |       | 42.1   |
| 9/24/2002  | 36.3         | 34.28 | 32.04  |
| 9/25/2002  | 6.5<br>11.28 | 10.06 | 14.5   |
|            |              | 16.11 | 17.12  |
| 9/26/2002  | 12.39        | 16.4  | 19.21  |
| 9/27/2002  | 11.96        | 14.17 | 18.04  |
| 9/28/2002  | 8.73         | 4.91  | 11.06  |
| 9/29/2002  | 18.79        | 3.95  | 13.13  |
| 9/30/2002  | 20.87        | 6.47  | 14.74  |
| 10/1/2002  | 22.01        | 7.78  | 16.78  |
| 10/2/2002  | 25.11        | 3.67  | 10.9   |
| 10/4/2002  | 13.39        | 12.33 | 18.52  |
| 10/5/2002  | 9.16         | 9.54  | 19.74  |
| 10/6/2002  | 9.16         | 6.67  | 12.42  |
| 10/7/2002  | 7.81         | 4.55  | 12.19  |
| 10/8/2002  | 13.07        | 4.22  | 10.47  |
| 10/9/2002  | 0.76         | -2.27 | 0.59   |
| 10/10/2002 | -8.22        | -5.69 | -0.74  |
| 10/11/2002 | 8.96         | 6.59  | 5.04   |
| 10/12/2002 | 17           | 15.42 | 9.04   |
| 10/13/2002 | 18.68        | 15.99 | 9.51   |
| OF LUCZ    | ,0.00        | 10.00 | 8.01   |

| 10/14/2002 | 19.37  | 19.19  | 13.87  |
|------------|--------|--------|--------|
| 10/15/2002 | 18.73  | 16.45  | 10.7   |
| 10/16/2002 | -12.59 |        |        |
|            |        | -5.21  | -2.57  |
| 10/17/2002 | 10.23  | 8.5    | 5.69   |
| 10/18/2002 | 27.1   | 28.73  | 28.38  |
| 10/19/2002 | 19.45  | 19.49  | 16.6   |
| 10/20/2002 | 19.03  | 21.11  | 18.24  |
| 10/21/2002 | 21.7   | 24.52  | 22.09  |
| 10/22/2002 | 0.11   | 1.42   |        |
| 10/23/2002 |        |        | 2.98   |
|            | 19.26  | 24.99  | 29.68  |
| 10/24/2002 | 5.13   | -0.38  | -3.04  |
| 10/25/2002 | 1.62   | -4.99  | -9.01  |
| 10/26/2002 | 3.78   | -0.96  | -5.4   |
| 10/27/2002 | 2.98   | -1.66  | -6.44  |
| 10/28/2002 | 4.11   | 0.03   | -6.5   |
| 10/29/2002 | 2.23   | 1.2    | 0.33   |
| 10/30/2002 | -2.68  | -6.36  |        |
| 10/31/2002 |        |        | -7.81  |
| 11/1/2002  | 9.84   | 4.14   | -1.62  |
|            | 14.87  | 10.79  | 5.43   |
| 11/2/2002  | 12     | 6.44   | 1.74   |
| 11/3/2002  | 15     | 11.41  | 5.05   |
| 11/4/2002  | 18.01  | 14.19  | 7.15   |
| 11/5/2002  | -0.94  | 2.4    | 3.92   |
| 11/6/2002  | -7.62  | -3.29  | -0.34  |
| 11/7/2002  | -16.19 | -14.25 | -15.1  |
| 11/8/2002  | -5.54  | -1.55  | 2.17   |
| 11/9/2002  | 8.97   | 7.36   | 4.72   |
| 11/10/2002 | 28.24  | 28.07  | 25.11  |
| 11/11/2002 | 26.38  | 26.48  | 26.69  |
| 11/12/2002 | 25.96  | 26.12  |        |
| 11/13/2002 |        |        | 24.77  |
| 11/14/2002 | 24.46  | 22.22  | 17.86  |
|            | 6.88   | 8.15   | 9.66   |
| 11/15/2002 | 17.05  | 20.17  | 20.34  |
| 11/16/2002 | 15.55  | 16.64  | 15.06  |
| 11/17/2002 | 16.82  | 17.21  | 16.36  |
| 11/18/2002 | 16.42  | 18.7   | 16.61  |
| 11/19/2002 | -3.22  | -2.66  | -1.53  |
| 11/20/2002 | 12.09  | 12.22  | 9.49   |
| 11/21/2002 | -5.24  | -12.42 | -14.97 |
| 11/22/2002 | 8.36   | 2.06   | 0.43   |
| 11/24/2002 | 7.03   | -0.96  | -5.15  |
| 11/25/2002 | 5.51   | -1.86  |        |
| 11/26/2002 | 5.06   |        | -5.82  |
|            |        | -1.83  | -7.93  |
| 11/27/2002 | 1.05   | 4.17   | 6.88   |
| 11/28/2002 | 0.41   | -2.51  | -8.11  |
| 11/29/2002 | 1.54   | -1.3   | -5.09  |
| 11/30/2002 | -0.97  | -4.99  | -7.52  |
| 12/1/2002  | 3.28   | -1.28  | -5.87  |
| 12/2/2002  | 1.31   | -3.63  | -9.63  |
| 12/4/2002  | 2.14   | 1.66   | 11.72  |
| 12/5/2002  | 7.13   | 0.27   | -3.71  |
| 12/6/2002  | 19.88  | 16.61  |        |
|            | 13.00  | 10.01  | 10.56  |

| Page | 7 |
|------|---|
|      |   |

| 12/8/2002  | 21.41             | 13.31  | 0.85   |
|------------|-------------------|--------|--------|
| 12/9/2002  | 19.19             | 15.52  | 7.62   |
| 12/10/2002 | 16.29             | 13.47  | 4.62   |
| 12/11/2002 | 19.97             | 15.65  | 19.56  |
| 12/12/2002 | 3.21              | -4.23  | -5.62  |
| 12/13/2002 | 1.95              | -4.33  | -6.34  |
| 12/14/2002 | 8.72              | 6.6    | 5.99   |
| 12/15/2002 | 6.82              | 3.2    | 0.98   |
| 12/16/2002 | 5.16              | 3.87   | 3.39   |
| 12/17/2002 | 0.08              | -1.83  | -4.69  |
| 12/18/2002 | 1.71              | -0.3   | 17.11  |
| 12/19/2002 | 0.4               | -11.15 | -16.63 |
| 12/20/2002 | 7. <del>9</del> 1 | -2.13  | -1.5   |
| 12/21/2002 | 2.81              | 1.79   | 2      |
| 12/22/2002 | 17.76             | 12.73  | 5.12   |
| 12/23/2002 | 11.02             | 6.05   | -3.78  |
| 12/24/2002 | 11.94             | 5.88   | -3.77  |
| 12/25/2002 | 14.37             | 8.38   | -0.53  |
| 12/26/2002 | -7.04             | -6.36  | -2.71  |
| 12/27/2002 | -11.96            | -10.13 | -4.96  |
| 12/28/2002 | -16.07            | -25.99 | -29.52 |
| 12/29/2002 | -2.09             | -13.09 | -20.32 |
| 12/30/2002 | -6.6              | -18.72 | -26.3  |
| 12/31/2002 | -6.72             | -17.63 | -25.68 |

Summary or Microtox for 2003

|            | 5 MIN  | 15 MIN        | 30 MIN |
|------------|--------|---------------|--------|
| 11/1/2002  | 14.87  | 10.79         | 5.43   |
| 11/2/2002  | 12     | 6.44          | 1.74   |
| 11/3/2002  | 15     | 11.41         |        |
| 11/4/2002  |        |               | 5.05   |
|            | 18.01  | 14.19         | 7.15   |
| 11/5/2002  | -0.94  | 2.4           | 3.92   |
| 11/6/2002  | -7.62  | -3.29         | -0.34  |
| 11/7/2002  | -16.19 | -14.25        | -15.1  |
| 11/8/2002  | -5.54  | -1.55         | 2.17   |
| 11/9/2002  | 8.97   | 7.36          | 4.72   |
| 11/10/2002 | 28.24  | 28.07         | 25.11  |
| 11/11/2002 | 26.38  | 26.48         | 26.69  |
| 11/12/2002 | 25.96  | 26.12         | 24.77  |
| 11/13/2002 | 24.46  | 22.22         | 17.86  |
| 11/14/2002 | 6.88   | 8.15          | 9.66   |
| 11/15/2002 | 17.05  | 20.17         | 20.34  |
| 11/16/2002 | 15.55  | 16.64         | 15.06  |
| 11/17/2002 | 16.82  | 17.21         | 16.36  |
| 11/18/2002 | 16.42  | 18.7          | 16.61  |
| 11/19/2002 | -3.22  | -2.66         | -1.53  |
| 11/20/2002 | 12.09  | 12.22         | 9.49   |
| 11/21/2002 | -5.24  | -12.42        | -14.97 |
| 11/22/2002 | 8.36   | 2.06          | 0.43   |
| 11/24/2002 | 7.03   | -0.96         | -5.15  |
| 11/25/2002 | 5.51   | -1.86         | -5.82  |
| 11/26/2002 | 5.06   | -1.83         | -7.93  |
| 11/27/2002 | 1.05   | 4.17          | 6.88   |
| 11/28/2002 | 0.41   | -2.51         | -8.11  |
| 11/29/2002 | 1.54   | -1.3          | -5.09  |
| 11/30/2002 | -0.97  | -4.99         | -7.52  |
| 12/1/2002  | 3.28   | -1.28         | -5.87  |
| 12/2/2002  | 1.31   | -3.63         | -9.63  |
| 12/4/2002  | 2.14   | 1.66          | 11.72  |
| 12/5/2002  | 7.13   | 0.27          | -3.71  |
| 12/6/2002  | 19.88  | 16 <b>.61</b> | 10.56  |
| 12/8/2002  | 21.41  | 13.31         | 0.85   |
| 12/9/2002  | 19.19  | 15.52         | 7.62   |
| 12/10/2002 | 16.29  | 13.47         | 4.62   |
| 12/11/2002 | 19.97  | 15.65         | 19.56  |
| 12/12/2002 | 3.21   | -4.23         | -5.62  |
| 12/13/2002 | 1.95   | -4.33         | -6.34  |
| 12/14/2002 | 8.72   | 6.6           | 5.99   |
| 12/15/2002 | 6.82   | 3.2           | 0.98   |
| 12/16/2002 | 5.16   | 3.87          | 3.39   |
| 12/17/2002 | 0.08   | -1.83         | -4.69  |
| 12/18/2002 | 1.71   | -0.3          | 17.11  |
| 12/19/2002 | 0.4    | -11.15        | -16.63 |
| 12/20/2002 | 7.91   | -2.13         | -1.5   |
| 12/21/2002 | 2.81   | 1.79          | 2      |
|            |        |               |        |

| 12/22/2002 | 17.76          | 12.73  | 5.12   |
|------------|----------------|--------|--------|
| 12/23/2002 | 11.02          | 6.05   | -3.78  |
| 12/24/2002 | 11.94          | 5.88   |        |
| 12/25/2002 |                | -      | -3.77  |
|            | 14.37          | 8.38   | -0.53  |
| 12/26/2002 | -7.04          | -6.36  | -2.71  |
| 12/27/2002 | -11.96         | -10.13 | -4.96  |
| 12/28/2002 | -16.07         | -25.99 | -29.52 |
| 12/29/2002 | -2.09          | -13.09 | -20.32 |
| 12/30/2002 | -6.6           | -18.72 | -26.3  |
| 12/31/2002 | -6.72          | -17.63 | -25.68 |
| 1/1/2003   | -0.03          | -11.61 | -20.56 |
| 1/2/2003   | -9.01          | -27.87 | -20.00 |
| 1/3/2003   | -4.92          | -19.64 |        |
| 1/4/2003   | -2.48          |        | -24.64 |
| 1/5/2003   |                | -14.89 | -22.25 |
|            | -2.96          | -15.72 | -23.28 |
| 1/6/2003   | -3.91          | -19.83 | -27.48 |
| 1/7/2003   | -2.96          | -3.65  | -6.48  |
| 1/8/2003   | 8.39           | -1.23  | -2.94  |
| 1/9/2003   | -3.04          | -7.91  | -6.47  |
| 1/10/2003  | -4             | -9.83  | -14.8  |
| 1/11/2003  | -1.5           | -8.87  | -15.75 |
| 1/13/2003  | 0.93           | -5.82  | -12.8  |
| 1/14/2003  | 0.93           | -6.7   | -14.38 |
| 1/15/2003  | 4.7            | -6.31  | -10.43 |
| 1/16/2003  | 11.47          | -1.09  | -10.44 |
| 1/17/2003  | 8.8            | -2.17  | -7.66  |
| 1/18/2003  | -0.49          | -10.69 | -15.23 |
| 1/20/2003  | 8.4            | -3.11  | -12.87 |
| 1/21/2003  | -12.61         | -14.19 | -15.04 |
| 1/22/2003  | -3.88          | -2.76  | 1.24   |
| 1/23/2003  | -1.5           | -5.27  | -5.93  |
| 1/24/2003  | 10.9           | 8.01   | 6.46   |
| 1/27/2003  | 12.65          | 8.46   | 6.51   |
| 1/28/2003  | 9.33           | 5.16   | 2.86   |
| 1/29/2003  | 12.62          | 8.73   | 6.84   |
| 1/30/2003  | -1.21          | -7.81  | -10.78 |
| 1/31/2003  | 4.01           | -7.56  | -8.95  |
| 2/1/2003   | -0.63          | -2.37  |        |
| 2/2/2003   | -0.03<br>13.65 |        | -2.82  |
| 2/3/2003   |                | 8.29   | 10.96  |
|            | 16.06          | 8.38   | 7.09   |
| 2/4/2003   | -4.9           | -15.06 | -17.37 |
| 2/5/2003   | 0.94           | -2.94  | -1.62  |
| 2/6/2003   | -14.2          | -20.55 | -22.44 |
| 2/7/2003   | -14.23         | -4.13  | -2.36  |
| 2/8/2003   | -9.74          | -15.95 | -17.47 |
| 2/9/2003   | 1.44           | -8.5   | -7.04  |
| 2/10/2003  | 2.07           | -9.43  | -8.93  |
| 2/11/2003  | 5.86           | -1.65  | -4.41  |
| 2/12/2003  | -4.32          | -4.63  | -5.76  |
| 2/13/2003  | 5.74           | -4.05  | -4.73  |
| 2/14/2003  | -3.76          | 0.1    | 9.8    |
| 2/15/2003  | 18.47          | 19.1   | 26.49  |
|            |                | 10.1   | ~V.73  |

P:\2160-05-070\4(g)report draft\Appendix D Tox data\MICROTOX2003MICROTOX2003Sheet1

| 2/16/2003  | 19.67 | 21.44         | 29.68 |
|------------|-------|---------------|-------|
| 2/17/2003  | 19.41 | 20.68         | 30.07 |
| 2/18/2003  | 20.48 | 24.19         | 31.31 |
| 2/19/2003  | 12.89 | 16.9          | 26.11 |
| 2/20/2003  | 12.65 | 23.7          | 30.06 |
| 2/21/2003  | 14.57 | 24.15         | 31.74 |
| 2/22/2003  | 14.37 | 26.2          | 34.41 |
| 2/23/2003  | 11.04 | 25.4          | 34.4  |
| 2/24/2003  | 14.4  | 16.09         | 20.48 |
| 2/25/2003  | 14.96 | 18.93         | 25.07 |
| 2/26/2003  | 14.64 | 10.35         | 23.07 |
| 2/27/2003  | 10.54 | 3.92          | 0.95  |
| 2/28/2003  | 22.2  | 5.92<br>15.04 | 10.35 |
| 3/3/2003   | 18.37 | 10.04         | 4.75  |
| 3/8/2003   | 8.95  | 6             |       |
| 3/9/2003   | 10.76 |               | 2.68  |
| 3/10/2003  | 14.64 | 9.53          | 5.6   |
| 3/11/2003  | 14.04 | 11.53         | 5.94  |
| 3/11/2003  | 12.31 | 9.68          | 3.64  |
| 3/13/2003  |       | 13.43         | 8.25  |
|            | 4.37  | 8.18          | 8.82  |
| 3/14/2003  | 11.8  | 14.96         | 16.73 |
| 3/15/2003  | 12.61 | 11.83         | 9.72  |
| 3/16/2003  | 21.83 | 19.98         | 14.63 |
| 3/17/2003  | 22.46 | 20.78         | 14.27 |
| 3/18/2003  | 17.94 | 16.72         | 11.5  |
| 3/19/2003  | 14.88 | 14.85         | 10.25 |
| 3/20/2003  | 11.91 | 17.46         | 25.58 |
| 3/21/2003  | 1.68  | -0.97         |       |
| 3/22/2003  | 9.48  | 4.37          |       |
| 3/23/2003  | 16.04 | 9.48          |       |
| 3/24/2003  | 16.61 | 11.24         |       |
| 3/25/2003  | 15.2  | 11.54         |       |
| 3/27/2003  | 12.24 | 12.28         | 13.85 |
| 3/28/2003  | 22.56 | 22.93         | 20.6  |
| 3/29/2003  | 23.93 | 23.34         | 20.24 |
| 3/30/2003  | 22.16 | 22.52         | 20.42 |
| 3/31/2003  | 22.49 | 22.54         | 18.28 |
| 4/1/2003   | 5.33  | 4.85          | 5.68  |
| 4/2/2003   | 13.29 | 14.56         | 13.3  |
| 4/3/2003   | 0.79  | 0.8           | -0.03 |
| 4/4/2003   | 3.79  | 2.84          | 5.5   |
| 4/5/2003   | 4.67  | 5.04          | 6.8   |
| 4/6/2003   | 3     | 4.9           | 6.96  |
| 4/7/2003   | 7.12  | 9.78          | 13.06 |
| 4/8/2003   | -1.64 | 5.1           | 9.99  |
| 4/9/2003   | -3.16 | 3.56          | 10.15 |
| 4/10/2003  | 8.16  | 4,8           | 2.24  |
| 4/11/2003  | 19.09 | 15.83         | 11.27 |
| 4/12/2003  | 21.94 | 18.71         | 13.25 |
| 4/1 3/2003 | 21.37 | 17.77         | 12.54 |
| 4/14/2003  | 21.73 | 18.9          | 12.64 |
| 4/1 5/2003 | -6.19 | -5.81         | -1.43 |
|            |       | -             |       |

| 4/16/2003 | -1.78 | 0.36  | 2.21   |
|-----------|-------|-------|--------|
| 4/17/2003 | -3.95 | -2.85 | -1.7   |
| 4/18/2003 | -1.21 | -5.13 | -5,68  |
| 4/19/2003 | 8.25  | 5.78  | 5.1    |
| 4/20/2003 | 6.76  |       |        |
|           |       | 4.67  | 2.87   |
| 4/21/2003 | 7.59  | 5.45  | 2.49   |
| 4/22/2003 | 3.69  | 1.03  | -3.78  |
| 4/23/2003 | 11.3  | 4.39  | -0.21  |
| 4/24/2003 | 28.15 | 25.15 | 20.16  |
| 4/25/2003 | 33.11 | 32.47 | 29.38  |
| 4/26/2003 | 34.73 | 34.14 | 29.17  |
| 4/27/2003 | 43.3  | 47.52 | 48.7   |
| 4/28/2003 | 26.3  | 35.63 | 44.89  |
| 4/29/2003 |       |       |        |
|           | 22.61 | 31.02 | 41.91  |
| 4/30/2003 | 15.26 | 20.07 | 23.32  |
| 5/1/2003  | 19.97 | 19.37 | 14.57  |
| 5/2/2003  | 5.87  | 3.2   | -1.91  |
| 5/3/2003  | 5.61  | 1.09  | -2.88  |
| 5/4/2003  | 8.32  | 3.64  | 0.07   |
| 5/5/2003  | 5.59  | 2.99  | -2.19  |
| 5/6/2003  | 8.65  | 7.89  | 7.03   |
| 5/7/2003  | 35.3  | 35.7  | 38.6   |
| 5/8/2003  | 32.6  | 31.9  |        |
| 5/9/2003  |       |       | 33.8   |
|           | 34.1  | 32.6  | 33.7   |
| 5/10/2003 | 20.37 | 24.95 | 27.61  |
| 5/11/2003 | 20.68 | 26.14 | 29.6   |
| 5/12/2003 | 9.38  | 12.21 | 12.37  |
| 5/13/2003 | 8.44  | 12.74 | 12.74  |
| 5/14/2003 | 15.37 | 18.7  | 20.59  |
| 5/15/2003 | 8.58  | 10.23 | 11.46  |
| 5/16/2003 | 19.37 | 12.31 | 16.74  |
| 5/17/2003 | 21.5  | 2.2   | 2.64   |
| 5/18/2003 | 22.97 | 3.54  | 2.96   |
| 5/19/2003 | 21.18 | -1.67 |        |
| 5/20/2003 |       |       | -0.63  |
|           | 22.36 | 3.86  | 2.19   |
| 5/21/2003 | -8.68 | -4.4  | -2.7   |
| 5/22/2003 | 1.41  | -4.62 | -8.91  |
| 5/23/2003 | 6.15  | 0.78  | -2.46  |
| 5/24/2003 | 4.28  | -1.66 | -4.3   |
| 5/25/2003 | 5.88  | 0.91  | -4.13  |
| 5/26/2003 | 16.96 | 16.82 | 15.64  |
| 5/27/2003 | -5.39 | -9.1  | -10.54 |
| 5/28/2003 | -2.86 | -3.07 | -3.57  |
| 5/29/2003 | 2.11  | 0.08  | -4.22  |
| 5/30/2003 |       |       |        |
|           | 8.98  | 8.09  | 4.42   |
| 5/31/2003 | 10.43 | 10.07 | 6.65   |
| 6/1/2003  | 10.61 | 11.55 | 7.06   |
| 6/2/2003  | 8.72  | 9.13  | 4.71   |
| 6/3/2003  | -3.93 | -4.37 | -7.77  |
| 6/4/2003  | 0.23  | 0.72  | -2.02  |
| 6/5/2003  | -1.26 | 0.19  | -2.55  |
| 6/6/2003  | -5.12 | -6.38 | -5.37  |
| 0,0,2000  | -0.12 | -0.00 | -0.07  |

| 011/2000  | -2.10         | -0.70  | -0.10          |
|-----------|---------------|--------|----------------|
| 6/8/2003  | -4.38         | -9.55  | -9.25          |
| 6/9/2003  | -3.65         | -10.24 | -11.73         |
| 6/10/2003 | -3,54         | -4.93  | -8.44          |
| 6/11/2003 | 5.17          | 2.16   | 1.25           |
| 6/12/2003 | 2.41          | -1.4   | -1.4           |
| 6/13/2003 | 4.17          | 0.9    | 0.47           |
| 6/14/2003 | -7.58         | -9.69  | -6.85          |
| 6/15/2003 | -6.58         | -10.23 | -0.85<br>-7.61 |
| 6/16/2003 | -4.24         | -10.23 | -7.81          |
| 6/17/2003 | 7.46          | -0.25  |                |
| 6/18/2003 | 27.04         |        | -4.6           |
| 6/19/2003 | -0.94         | 14.36  | 12.06          |
| 6/20/2003 | -0.94<br>5.31 | -4.22  | -7.73          |
| 6/21/2003 |               | -3.42  | 2.9            |
| 6/22/2003 | 9.76          | 3.63   | 3.52           |
| 6/23/2003 | 19.23         | 5.67   | 0.23           |
|           | 18.65         | 6.42   | -1.13          |
| 6/24/2003 | 23.36         | 11.94  | 4.62           |
| 6/25/2003 | 28.27         | 16.15  | 5.27           |
| 6/26/2003 | -7.47         | -12.15 | -25.57         |
| 6/27/2003 | -3.86         | -1.82  | -6.67          |
| 6/28/2003 | -15.69        | -15.06 |                |
| 6/29/2003 | -11.57        | -10.32 |                |
| 6/30/2003 | -15.09        | -14.27 |                |
| 7/1/2003  | -11.81        | -6.72  |                |
| 7/2/2003  | -5.05         | -6.71  |                |
| 7/3/2003  | 8.26          | 1.58   | -1.62          |
| 7/4/2003  | 1.31          | -3.63  | -9.15          |
| 7/5/2003  | 6.34          | 0.56   | -3.86          |
| 7/6/2003  | 7.56          | 3.59   | -3.62          |
| 7/7/2003  | 4.68          | 4.35   | -6.24          |
| 7/8/2003  | -3.89         | -6.25  | -6.62          |
| 7/9/2003  | -5.26         | -6.3   | -0.44          |
| 7/10/2003 | -3.43         | -1.77  | 0.91           |
| 7/12/2003 | 11.22         | 4.1    | -11.08         |
| 7/13/2003 | 12.6          | 6.46   | -9.99          |
| 7/14/2003 | 10.84         | 5.86   | -14.28         |
| 7/15/2003 | 12.18         | 8      | -12.6          |
| 7/16/2003 | 4             | 1.92   | 0.99           |
| 7/17/2003 | 9.07          | 6.88   | 6.69           |
| 7/18/2003 | 6.67          | 4.25   | 4.62           |
| 7/19/2003 | -9.34         | -15.67 | -10.1          |
| 7/20/2003 | -3.47         | -18.54 | -16.51         |
| 7/21/2003 | -7.14         | -22.42 | -14.11         |
| 7/22/2003 | -3.34         | -16.54 | -11.73         |
| 7/23/2003 | -0.51         | -11.62 | -0.2           |
| 7/24/2003 | 1.34          | 1.04   | -1.28          |
| 7/25/2003 | 2.26          | 0.3    | -1.19          |
| 7/26/2003 | 3.4           | 5.02   | 1.91           |
| 7/27/2003 | 7.39          | 9.82   | 8.61           |
| 7/28/2003 | 2.25          | 9.02   | 0.01           |

6/7/2003

7/28/2003

7/29/2003

2.25

-11.54

3.38

-8.46

-2.78

-8.76

-8.16

5.34

-6.54

| 7/30/2003 | -5.45         | -2.54  | 5.28   |
|-----------|---------------|--------|--------|
| 7/31/2003 | -9.47         | -6.24  | 0.11   |
| 8/1/2003  | 3.47          |        |        |
|           |               | -1.42  | -2.5   |
| 8/2/2003  | 22.48         | 17.58  | 14.5   |
| 8/3/2003  | 20.95         | 16.17  | 14.66  |
| 8/4/2003  | 20.44         | 15.39  | 16.31  |
| 8/5/2003  | 20.53         | 15.42  | 12.53  |
| 8/6/2003  | -2.37         | -8.71  | -12.36 |
| 8/7/2003  | 1.95          | -3.33  | -3.89  |
| 8/8/2003  | 18.97         |        |        |
|           |               | 14.98  | 4.47   |
| 8/9/2003  | 21.69         | 18.39  | 8.01   |
| 8/10/2003 | 22.62         | 18.16  | 5.53   |
| 8/11/2003 | 21.54         | 16.7   | 1.37   |
| 8/12/2003 | -4.14         | -6.56  | -7.14  |
| 8/13/2003 | 1.04          | 0.06   | -3.15  |
| 8/14/2003 | -5.86         | -6.95  | -13.31 |
| 8/15/2003 | -3.76         | -5.14  | -12.24 |
| 8/16/2003 | -6.08         | -4.69  | -12.16 |
| 8/17/2003 | -8.13         | -7.74  | -14.73 |
| 8/18/2003 | -9.12         | -5.77  | -11.36 |
| 8/19/2003 | -16.16        | -14.72 | -14.74 |
| 8/20/2003 | -12.63        | -13.17 | -14.74 |
| 8/21/2003 | 3.08          |        |        |
| 8/22/2003 |               | -3.97  | -3.64  |
|           | 1.31          | -8.03  | 0.24   |
| 8/23/2003 | 2.13          | -5.49  | 2.19   |
| 8/24/2003 | 0.09          | -7.19  | -0.03  |
| 8/25/2003 | 6.87          | -0.25  | 4.82   |
| 8/26/2003 | -7.21         | -12.55 | -12.01 |
| 8/27/2003 | 1.68          | -3.1   | -1.82  |
| 8/28/2003 | -1.42         | -7.89  | -24.02 |
| 8/29/2003 | 7.07          | -15.83 | -22.08 |
| 8/30/2003 | 11.5          | -13.36 | -19.21 |
| 8/31/2003 | 13.82         | -13.93 | -19.68 |
| 9/1/2003  | 17.34         | -8.21  | -9     |
| 9/2/2003  | -5.55         | -6.79  | -12.18 |
| 9/3/2003  | -21.27        | -8.98  | -3.24  |
| 9/4/2003  | -21.79        | -6.78  |        |
| 9/5/2003  | 6.2           |        | -3.35  |
| 9/6/2003  |               | 2.82   | -0.39  |
| 9/7/2003  | -0.08         | -3.32  | -2.12  |
|           | 5.52          | 5.11   | 2.94   |
| 9/8/2003  | 7.12          | 3.44   | 2.86   |
| 9/9/2003  | 9.43          | 6.16   | 3.62   |
| 9/10/2003 | 15.15         | 8.96   | 4.43   |
| 9/11/2003 | 23.17         | 24.95  | 25.91  |
| 9/12/2003 | 5.12          | 9.26   |        |
| 9/13/2003 | 10.56         | 8.53   |        |
| 9/14/2003 | 7.45          | 9,48   |        |
| 9/15/2003 | 6.31          | 7.64   |        |
| 9/16/2003 | 6.38          | 1.82   | -1.01  |
| 9/17/2003 | -0.68         | -3.02  |        |
| 9/18/2003 | -0.08<br>6.61 |        | -3.95  |
| 9/19/2003 | 4.08          | 4.05   | 2.27   |
| 01012000  | 4.VO          | 0.29   | -1.96  |

| 9/20/2003  | 0.24          | E 22          | 4 70         |
|------------|---------------|---------------|--------------|
| 9/21/2003  | 10.58         | -5.33         | -4.72        |
| 9/22/2003  | 11.73         | 2.75          | 2.38         |
| 9/23/2003  |               | 3.36          | 3.72         |
| 9/24/2003  | 14.47         | 10.93         | 11.08        |
|            | 14.64         | 6.2           | 5.87         |
| 9/25/2003  | 0.138         | 1.05          | 4.21         |
| 9/26/2003  | 1.94          | 1.42          | 7.28         |
| 9/27/2003  | -1.45         | -3.01         | 2.58         |
| 9/28/2003  | -3.28         | -4.96         | 0.94         |
| 9/29/2003  | -3.96         | -6.05         | -0.74        |
| 9/30/2003  | -1.2          | 1.86          | 5.97         |
| 10/1/2003  | 0.53          | 0.89          | 5.69         |
| 10/2/2003  | 0.93          | 2.59          | -0.21        |
| 10/3/2003  | 11.12         | 11.09         | 5.2          |
| 10/4/2003  | 8.69          | 13.98         | 8.67         |
| 10/5/2003  | 7. <b>7</b> 1 | 12.31         | 7.97         |
| 10/6/2003  | 4.88          | 9.66          | 5.1          |
| 10/8/2003  | 0.57          | -1.43         | -1.97        |
| 10/9/2003  | 1.6           | -1.06         | 0.13         |
| 10/10/2003 | 0.96          | -1.72         | 0.14         |
| 10/11/2003 | -1.94         | -1.82         | -1.58        |
| 10/12/2003 | -4.05         | -4.46         | -3.34        |
| 10/13/2003 | -8.66         | -8.68         | -8.2         |
| 10/14/2003 | -11.3         | -9.88         | -9.72        |
| 10/15/2003 | -3.53         | 0.91          | -0.89        |
| 10/16/2003 | 9.17          | 8.83          | 7.99         |
| 10/17/2003 | 5.54          | 6.98          | 3.65         |
| 10/18/2003 | 5.22          | 5.58          | 2.5          |
| 10/19/2003 | -1.33         | 4.2           | -6.3         |
| 10/20/2003 | -0.62         | 5.22          | -0.76        |
| 10/21/2003 | -0.27         | 2.64          | -5.46        |
| 10/22/2003 | 4.62          | 3.35          | -0.64        |
| 10/23/2003 | 1.83          | 2.73          | -4.13        |
| 10/24/2003 | 4.97          | 6             | -2.45        |
| 10/25/2003 | 3.49          | 5.34          | -3.7         |
| 10/26/2003 | 13.78         | 22.59         | 20.61        |
| 10/27/2003 | 4.22          | 4.23          | 9.39         |
| 10/28/2003 | 1.94          | -5.39         | -8.42        |
| 10/29/2003 | -0.55         | -4.46         | -4.83        |
| 10/30/2003 | 1.42          | -4.33         | -4.36        |
| 10/31/2003 | 1.05          | -4.34         | -2.56        |
| 11/1/2003  | -4.75         | -11.81        | -9.26        |
| 11/2/2003  | -3.71         | -13.02        | -12.98       |
| 11/3/2003  | -9.62         | -9.2          | -12.1        |
| 11/4/2003  | 0.29          | -3.1          | -6.04        |
| 11/5/2003  | -1.93         | -6.4          | -9.61        |
| 11/6/2003  | 6.89          | 3.11          | -0.84        |
| 11/7/2003  | 7.92          | 3.05          | -0.84        |
| 11/8/2003  | 7.43          | 5.81          | 2.49         |
| 11/9/2003  | 10.54         | 7.73          | 2.49<br>2.55 |
| 11/10/2003 | -3.96         | -7.57         | 2.55<br>-6.7 |
| 11/11/2003 | -0.85         | -7.57<br>-1.9 |              |
|            | -0.00         | -1.9          | -1.88        |

| 11/12/2003 | 6.94  | 2.86           | -1.08  |
|------------|-------|----------------|--------|
| 11/13/2003 | 7.47  | 8.11           | 7.43   |
| 11/14/2003 | 4.2   | 4.61           | 2.18   |
| 11/15/2003 | 5.17  | 5.73           | 3.6    |
| 11/16/2003 | 5.58  |                |        |
| 11/17/2003 |       | 6.39           | 1.85   |
|            | -8.14 | -8.26          | -8.88  |
| 11/18/2003 | 5.28  | -1.34          | -3.69  |
| 11/19/2003 | -3.34 | -11.07         | -9.85  |
| 11/20/2003 | -3.25 | -9.34          | -8.11  |
| 11/21/2003 | -4    | -6.8           | -5.33  |
| 11/22/2003 | -1.83 | -6.51          | -7.73  |
| 11/23/2003 | -4.12 | -5.96          | -5.73  |
| 11/24/2003 | -2.54 | -6.18          |        |
| 11/25/2003 | -0.82 | -0.18<br>-1.78 | -2.27  |
| 11/26/2003 |       |                | 3.1    |
|            | 3.24  | -0.48          | -3.75  |
| 11/27/2003 | 8.06  | 3.19           | -2.38  |
| 11/28/2003 | 7.24  | 0.93           | -4.5   |
| 11/29/2003 | 9.08  | 4.02           | -0.73  |
| 11/30/2003 | 9.64  | 4.17           | -0.68  |
| 12/1/2003  | -4.46 | -5.28          | -7.41  |
| 12/2/2003  | -0.58 | 1.5            | -1.61  |
| 12/3/2003  | -8.95 | -9.94          | -12.16 |
| 12/4/2003  | 9.05  | 9.72           | 15.85  |
| 12/5/2003  | 17.86 | 15.96          | 21.72  |
| 12/6/2003  | 18.09 | 16.86          | 21.54  |
| 12/7/2003  | 20.2  | 20.22          | 21.04  |
| 12/8/2003  | 18.22 | 16.97          |        |
| 12/9/2003  | 8.77  |                | 21.28  |
| 12/10/2003 |       | 6              | 5.81   |
|            | 9.54  | 5.09           | 8.88   |
| 12/11/2003 | 3.59  | -0.45          | -3.69  |
| 12/12/2003 | 0.2   | -5.59          | -10.1  |
| 12/13/2003 | 5.89  | 3.67           | -0.42  |
| 12/14/2003 | 13.99 | 10.52          | 9.27   |
| 12/15/2003 | 11.96 | 9.12           | 5.71   |
| 12/16/2003 | 11.59 | 8.28           | 3.78   |
| 12/17/2003 | 14.04 | 10             | 6.27   |
| 12/18/2003 | 9.3   | 4              | 0.65   |
| 12/19/2003 | 13.95 | 7.54           | -1.14  |
| 12/20/2003 | 11.71 | 8.29           | -2.39  |
| 12/21/2003 | 12.76 | 10.42          | 1.14   |
| 12/22/2003 | 12.18 |                |        |
| 12/24/2003 |       | 8.83           | -1.44  |
|            | 6.6   | 3.08           |        |
| 12/26/2003 | 11.84 | 9.32           |        |
| 12/27/2003 | 11.96 | 7.6            |        |
| 12/28/2003 | 10.38 | 5.78           |        |
| 12/29/2003 | 10.46 | 8.2            |        |
| 12/30/2003 | -0.06 | -3.44          | -2.88  |
| 12/31/2003 | 4.56  | 3.26           | -1.72  |
|            |       |                |        |

Summary of Microtox 2004 Data

|            | 5 MIN | 15 MIN | 30 MIN       |
|------------|-------|--------|--------------|
| 12/1/2003  | -4.46 | -5.28  | -7.41        |
| 12/2/2003  | -0.58 | 1.5    | -1.61        |
| 12/3/2003  | -8.95 | -9.94  | -12.16       |
| 12/4/2003  | 9.05  | 9.72   |              |
| 12/5/2003  | 17.86 |        | 15.85        |
| 12/6/2003  | 18.09 | 15.96  | 21.72        |
| 12/7/2003  |       | 16.86  | 21.54        |
| 12/8/2003  | 20.2  | 20.22  | 23.4         |
| 12/9/2003  | 18.22 | 16.97  | 21.28        |
| 12/10/2003 | 8.77  | 6      | 5.81         |
|            | 9.54  | 5.09   | 8.88         |
| 12/11/2003 | 3.59  | -0.45  | -3.69        |
| 12/12/2003 | 0.2   | -5.59  | -10.1        |
| 12/13/2003 | 5.89  | 3.67   | -0.42        |
| 12/14/2003 | 13.99 | 10.52  | 9.27         |
| 12/15/2003 | 11.96 | 9.12   | 5.71         |
| 12/16/2003 | 11.59 | 8.28   | 3.78         |
| 12/17/2003 | 14.04 | 10     | 6.27         |
| 12/18/2003 | 9.3   | 4      | 0.65         |
| 12/19/2003 | 13.95 | 7.54   | -1.14        |
| 12/20/2003 | 11.71 | 8.29   | -2.39        |
| 12/21/2003 | 12.76 | 10.42  | 1.14         |
| 12/22/2003 | 12.18 | 8.83   | -1.44        |
| 12/24/2003 | 6.6   | 3.08   |              |
| 12/26/2003 | 11.84 | 9.32   |              |
| 12/27/2003 | 11.96 | 7.6    |              |
| 12/28/2003 | 10.38 | 5.78   |              |
| 12/29/2003 | 10.46 | 8.2    |              |
| 12/30/2003 | -0.06 | -3.44  | -2.88        |
| 12/31/2003 | 4.56  | 3.26   | -1.72        |
| 1/1/2004   | 7.87  | 4.5    | 0.64         |
| 1/2/2004   | 9.49  | 10.08  | 5.71         |
| 1/3/2004   | 4.2   | 4.09   | 2.2          |
| 1/4/2004   | 12.33 | 10.12  | 7.84         |
| 1/7/2004   | 3.89  | 1.92   | -0.65        |
| 1/8/2004   | 2.85  | 1.73   | 7.65         |
| 1/9/2004   | -1.04 | -4.73  | -7.37        |
| 1/10/2004  | 3.2   | 3.93   | 0.84         |
| 1/11/2004  | 3.5   | 2.46   | 0.04<br>1.44 |
| 1/12/2004  | 1.24  | 1.55   | -0.02        |
| 1/13/2004  | -1.59 | 1.33   | -0.02        |
| 1/14/2004  | -0.25 | 0.83   |              |
| 1/15/2004  | -0.23 |        | 4.03         |
| 1/16/2004  |       | 3.55   | 4.45         |
| 1/17/2004  | 3.52  | 3.78   | 1.76         |
| 1/18/2004  | 6.85  | 5.08   | 4.64         |
| 1/19/2004  | 10.11 | 8.9    | 8.3          |
|            | 6.07  | 5.56   | 5.36         |
| 1/20/2004  | 6.48  | 5.02   | 5.23         |
| 1/21/2004  | 16.89 | 12.26  | 16.14        |

| 1/22/2004              | 11.36        | 9.92          | 7.29   |
|------------------------|--------------|---------------|--------|
| 1/23/2004              | 9.33         | 8.38          | 3.7    |
| 1/25/2004              | 4.55         | 2.26          | 2.15   |
| 1/26/2004              | 7.52         | 7.46          | 6.52   |
| 1/27/2004              | 10.96        | 11.89         | 13.32  |
| 1/28/2004              | 9.04         | 9.57          | 10.32  |
| 1/29/2004              | 7.18         | 6.64          | 3.83   |
| 1/30/2004              | 7.95         | 8.31          | 6.43   |
| 1/31/2004              | 6.41         | 3.23          |        |
| 2/1/2004               | 8.88         | 1.45          | 3.41   |
| 2/2/2004               | 7.48         | 2.86          | 5.01   |
| 2/4/2004               | 12.98        | 2.00<br>14.37 | 4.48   |
| 2/5/2004               | 9.48         | 14.37         | 7.48   |
| 2/6/2004               | 7.58         |               | 4.23   |
| 2/7/2004               | 15.9         | 4.1           | 1.46   |
| 2/8/2004               | 18.87        | 12.33         | 11.15  |
| 2/9/2004               | 16.23        | 15.91         | 13.46  |
| 2/10/2004              | 19.67        | 10.08         | 9.37   |
| 2/11/2004              |              | 16.74         | 17.46  |
| 2/12/2004              | -6.47        | -4.37         | -1.15  |
| 2/14/2004              | -3.03        | -5.38         | -2.13  |
| 2/15/2004              | -5.8         | -6.79         | -12.25 |
| 2/16/2004              | 0.29         | 0.11          | -5.53  |
| 2/17/2004              | 1.53         | 5.94          | 2.9    |
| 2/18/2004              | -0.79        | 5.25          | 2.11   |
| 2/19/2004              | 0.51<br>4.36 | 5.87          | 2.45   |
| 2/20/2004              |              | 7.36          | 14.74  |
| 2/20/2004              | 4.95<br>4.54 | 10.78         | 21.44  |
| 2/23/2004              | 4.54<br>8.94 | 8.43          | 15.29  |
| 2/24/2004              | 0.94<br>7.4  | 10.33         | 17.89  |
| 2/25/2004              | 7.4<br>5     | 12.31         | 19.52  |
| 2/26/2004              | 2.22         | 9.03          | 14.76  |
| 2/27/2004              | 10.54        | 10.74         | 17.1   |
| 3/1/2004               | 22.97        | 12.38         | 14.26  |
| 3/2/2004               | 24.65        | 27.54         | 28.3   |
| 3/3/2004               | 24.05        | 28.68<br>6.56 | 29.67  |
| 3/4/2004               | 11.77        | *100          | 11.1   |
| 3/5/2004               | 7.9          | 12.54<br>8.11 | 17.12  |
| 3/8/2004               | 7.09         | 7.11          | 7.74   |
| 3/9/2004               | 5.35         | 6.31          | 9.18   |
| 3/10/2004              | 7.1          |               | 7.84   |
| 3/11/2004              | 7.07         | 8.97          | 9.14   |
| 3/15/2004              | 8.14         | 10.14         | 11.44  |
| 3/16/2004              | 8.35         | 6.04          | 9.66   |
| 3/17/2004              |              | 8.48          | 14.15  |
| 3/19/2004              | 13.26        | 14.32         | 15.28  |
| 3/21/2004              | 13.66        | 14.08         | 18.12  |
| 3/22/2004              | 18.16        | 18.05         | 18.45  |
|                        | 9.66         | 9.47          | 10.98  |
| 3/23/2004<br>3/24/2004 | 10.2         | 9.99          | 9.74   |
|                        | 10.43        | 7.35          | 9.54   |
| 3/25/2004<br>3/26/2004 | 30.9         | 28.54         | 26.46  |
| 0/20/2004              | 30.5         | 28.97         | 27.19  |
|                        |              |               |        |

|    | 3/28/2004   | 29.6  | 28.6  | 26.68  |
|----|-------------|-------|-------|--------|
| 2  | 3/29/2004   | 3.12  | 2.23  | -0.96  |
|    | 3/30/2004   | 18.8  | 16.4  | 13.14  |
|    | 3/31/2004   | 18.42 | 17.95 | 14.58  |
|    | 4/2/2004    | 4.32  | -2.44 | -7.4   |
|    | 4/3/2004    | 20.49 | 12.98 | 12.36  |
|    | 4/4/2004    | 27.53 | 25.79 | 23.6   |
|    | 4/5/2004    | 29.9  | 24.82 | 24.21  |
|    | 4/6/2004    | 21.41 | 15.48 | 16.45  |
|    | 4/7/2004    | 3.11  | 4.51  | 10.84  |
|    | 4/8/2004    | 5.11  | 5.93  | 9.06   |
|    | 4/9/2004    | 0.32  | 2.75  | 5.52   |
|    | 4/10/2004   | 6.79  | -0.74 | -3.42  |
|    | 4/11/2004   | 19.81 | 8.15  | 7.71   |
|    | 4/12/2004   | 23.61 | 14.77 | 14.49  |
|    | 4/13/2004   | 21.36 | 13.99 | 12.3   |
|    | 4/14/2004   | 22.79 | 15.75 | 15.39  |
|    | 4/15/2004   | 0.82  | -0.2  | 2.6    |
|    | 4/16/2004   | 0.58  | 3.58  | 2.82   |
|    | 4/17/2004   | 2.29  | -6.11 | -2.29  |
|    | 4/18/2004   | 6.32  | -0.65 | -2.32  |
|    | 4/19/2004   | 10.32 | 6.27  | 6.14   |
|    | 4/20/2004   | 13.79 | 11.22 | 10.82  |
|    | 4/21/2004   | 9.78  | 5.98  | 6.13   |
|    | 4/22/2004   | 1.41  | 3.64  | 8.82   |
|    | 4/23/2004   | 7.96  | 5.19  | 4.51   |
|    | 4/24/2004   | 6.92  | 3.32  | 1.02   |
|    | 4/25/2004   | 7.58  | 2.26  | 2.63   |
|    | 4/26/2004   | 5.96  | -0.47 | -0.03  |
|    | 4/27/2004   | 5.87  | 2     | 3.98   |
|    | 4/28/2004   | 6.53  | 3.15  | 2.25   |
|    | 4/29/2004   | 0.81  | 1.24  | 3.78   |
|    | 4/30/2004   | 2.3   | -2.67 | -3.88  |
|    | 5/1/2004    | 23.59 | 23.13 | 20.48  |
|    | 5/2/2004    | 13.67 | 15.23 | 16.61  |
|    | 5/3/2004    | 11.87 | 12.55 | 12.67  |
|    | 5/4/2004    | 8.06  | 5.17  | 5.31   |
|    | 5/5/2004    | 16.09 | 10.73 | 12.67  |
|    | 5/6/2004    | 13.06 | 8.7   | 7.51   |
|    | 5/7/2004    | 8.54  | 2.81  | 1.46   |
|    | 5/8/2004    | 10    | 6.46  | 4.95   |
|    | 5/9/2004    | 15.75 | 13.27 | 11.95  |
|    | 5/10/2004   | 15.74 | 15.68 | 12.67  |
|    | · 5/11/2004 | 13.89 | 12.83 | 9.04   |
|    | 5/12/2004   | 17.62 | 16.32 | 13.02  |
|    | 5/13/2004   | 2.11  | -3.3  | -10.53 |
|    | 5/14/2004   | 6.51  | 4.19  | 1.88   |
|    | 5/15/2004   | 25.03 | 21.55 | 19.19  |
|    | 5/16/2004   | 23.13 | 19.87 | 18.56  |
| ς. | 5/17/2004   | 24.06 | 21.55 | 20.31  |
|    | 5/19/2004   | 00 44 |       | -0.01  |

5/18/2004

23.44

20.26

3/27/2004

3/28/2004

31.52

29.6

30.7

28.6

28.23

26.68

-0.96 13.14 14.58 -7.4 12.36 23.6 24.21 16.45 10.84 9.06 5.52 -3.42 7.71 14.49 12.3 15.39 2.6 2.82 -2.29 -2.32 6.14 10.82 6.13 8.82 4.51 1.02 2.63 -0.03 3.98 2.25 3.78 -3.88 20,48 16.61 12.67 5.31 12.67 7.51 1.46 4.95 11.95 12.67 9.04 13.02

19

|   | e | <br>-1 |
|---|---|--------|
| ŝ |   | ~      |
| / |   | 1      |

| 5/19/2004 | -2.75 | -5.14         | -3.83          |
|-----------|-------|---------------|----------------|
| 5/20/2004 | 1.15  | 3.7           | 6.26           |
| 5/21/2004 | 6.89  | 4.51          | 2.57           |
| 5/22/2004 | 9.99  | 7.94          | 5.54           |
| 5/23/2004 | 7.51  | 5.77          | 4.79           |
| 5/24/2004 | 9.17  | 7.63          | 6              |
| 5/25/2004 | 8.39  | 6.2           | 4.25           |
| 5/26/2004 | 2.36  | -2.81         | -10.98         |
| 5/27/2004 | 4.76  | 0.097         | -4.43          |
| 5/28/2004 | 9.91  | 3.51          | -2.08          |
| 5/29/2004 | 21.54 | 16.6          | 17.76          |
| 5/30/2004 | 22.36 | 19.78         | 18.65          |
| 5/31/2004 | 23.26 | 18.1          | 19.38          |
| 6/1/2004  | 20.20 | 15.71         | 19.38          |
| 6/2/2004  | 0.17  | -0.52         | 2.75           |
| 6/3/2004  | 2.06  | -0.92         | 4. <b>3</b> 2  |
| 6/4/2004  | 8.75  | -0.94<br>6.79 | 4.32<br>4.04   |
| 6/5/2004  | 19.86 | 18.09         | 4.04<br>17.67  |
| 6/6/2004  | 16.97 | 13.92         | 12.23          |
| 6/7/2004  | 17.95 | 15.78         | 12.23          |
| 6/8/2004  | 17.76 | 17.14         | 17.11          |
| 6/9/2004  | 3.59  | 3.42          | 3.57           |
| 6/10/2004 | 3.46  | 1.64          | -3.15          |
| 6/11/2004 | 3.34  | 0.12          | -0.28          |
| 6/12/2004 | 21.07 | 18.06         | -0.28<br>17.57 |
| 6/13/2004 | 18.63 | 16.61         | 14.6           |
| 6/15/2004 | 20.69 | 17.74         | 15.67          |
| 6/16/2004 | 15.03 | 14.63         | 27.09          |
| 6/17/2004 | -1.82 | -3.25         | 3.42           |
| 6/19/2004 | -0.9  | -4.44         | -1.55          |
| 6/20/2004 | -0.69 | -2.86         | 0.25           |
| 6/21/2004 | -2.35 | -2.69         | -2.52          |
| 6/22/2004 | -2.33 | -1.25         | 7.91           |
| 6/23/2004 | 1.12  | 0.29          | -1.85          |
| 6/24/2004 | 0.21  | 5.52          | 20.95          |
| 6/25/2004 | -1.88 | -2.92         | 17.4           |
| 6/26/2004 | 17.09 | 13.26         | 12.15          |
| 6/27/2004 | 12.69 | 9.86          | 13.24          |
| 6/28/2004 | 9.7   | 23.68         | 50.62          |
| 6/29/2004 | 13.51 | 27.77         | 52.29          |
| 6/30/2004 | 2.43  | 1.19          | 2.71           |
| 7/1/2004  | 2.32  | 1.67          | 1.85           |
| 7/2/2004  | 8.43  | 10.99         | 6.2            |
| 7/3/2004  | 6.7   | 10.14         | 5.37           |
| 7/4/2004  | 5.91  | 10.14         | 5.64           |
| 7/5/2004  | 0.81  | 7.75          | 2.77           |
| 7/6/2004  | 2.39  | 1.13          | 1.42           |
| 7/7/2004  | 5.24  | 9.79          |                |
| 7/8/2004  | 4.96  | 8.62          | 7.35<br>7.01   |
| 7/9/2004  | 4.90  | -0.49         | -0.75          |
| 7/10/2004 | 4.53  | -0.49         |                |
| 7/11/2004 | 5.18  | -0.05         | 1.83           |
|           | 0.10  | -1./4         | -1.07          |

| 7/12/2004 | 2.58   | -3.17  | -0.14       |
|-----------|--------|--------|-------------|
| 7/13/2004 | -0.96  | -6.54  | 1.49        |
| 7/14/2004 | -2.66  | -1.79  | 12.48       |
| 7/15/2004 | 4.28   | 5.89   | 17.48       |
| 7/16/2004 | 3.25   | -3.91  | -2.34       |
| 7/17/2004 | 21.49  | 12.81  | 14,74       |
| 7/18/2004 | 22.57  | 15.64  | 15.3        |
| 7/19/2004 | 21.36  | 17.1   | 16.37       |
| 7/20/2004 | 19.32  | 13.91  |             |
| 7/21/2004 | 1.37   |        | 12.73       |
| 7/22/2004 | 14.35  | -5.12  | -7.04       |
| 7/23/2004 | 5.14   | 12.44  | 11.05       |
| 7/24/2004 |        | 2.25   | 0.1         |
|           | 16.1   | 13.35  | 13.03       |
| 7/25/2004 | 18.51  | 16.72  | 15.45       |
| 7/26/2004 | 23.09  | 22.29  | 18.97       |
| 7/27/2004 | 20.54  | 19.96  | 16.62       |
| 7/28/2004 | -2.97  | -1.56  | 0.51        |
| 7/29/2004 | -2.3   | -1.06  | 1.73        |
| 7/30/2004 | 2.71   | 2.1    | 9.17        |
| 7/31/2004 | 8.32   | 5      | 9.79        |
| 8/1/2004  | 7.52   | 4.17   | 7.61        |
| 8/2/2004  | 6.76   | 2.48   | 5.36        |
| 8/3/2004  | 5.21   | 1.32   | 2.27        |
| 8/4/2004  | -0.94  | -4.37  | -3.23       |
| 8/5/2004  | 1.71   | 0.43   | -0.8        |
| 8/6/2004  | 8.24   | 4.88   | 5.46        |
| 8/7/2004  | 22.89  | 18.88  | 19.84       |
| 8/8/2004  | 22.76  | 20.97  | 19.74       |
| 8/9/2004  | 24.49  | 23.54  | 22.3        |
| 8/10/2004 | 22.5   | 22.82  | 20.64       |
| 8/11/2004 | -7.23  | -10.11 | -10.44      |
| 8/12/2004 | -3.6   | -3.09  | -2.09       |
| 8/13/2004 | 2.58   | -2.99  | -2.38       |
| 8/14/2004 | -2.89  | -6.88  | -6.87       |
| 8/15/2004 | -0.62  | -2.52  | -1.04       |
| 8/16/2004 | -4.93  | -4.29  | -3.98       |
| 8/17/2004 | 2.79   | -2.44  |             |
| 8/18/2004 | 12.91  | 7.97   | 1.1<br>7.43 |
| 8/19/2004 | -2.86  | -4.69  | -2.45       |
| 8/20/2004 | -2.00  | -4.09  |             |
| 8/21/2004 | 2.93   |        | -2.28       |
| 8/22/2004 | 18.24  | -2.85  | -0.23       |
| 8/23/2004 |        | 17.25  | 17.24       |
| 8/24/2004 | 26.12  | 23.58  | 22.11       |
|           | 18.89  | 16.82  | 15.78       |
| 8/25/2004 | 23.23  | 22.32  | 21.28       |
| 8/26/2004 | -1.43  | -6.59  | -6.76       |
| 8/27/2004 | 8.03   | 1.39   | 0.57        |
| 8/28/2004 | 7.88   | 2.34   | 2           |
| 8/29/2004 | 6.84   | 1.81   | 0.79        |
| 8/30/2004 | 3.28   | -0.51  | 0.1         |
| 8/31/2004 | -7.54  | -8.28  | -10.82      |
| 9/1/2004  | -15.35 | 2.23   | -1.02       |
|           |        |        |             |

ć.

.

| Made 6 |
|--------|
|--------|

| 9/2/2004   | 7.49   | -0.09  | -0.53 |
|------------|--------|--------|-------|
| 9/3/2004   | 24.79  | 19.24  | 19.59 |
| 9/4/2004   | 24.23  | 20.76  | 18.72 |
| 9/5/2004   | 23.58  | 18.76  | 16.94 |
| 9/6/2004   | 24.43  | 23.24  | 21.26 |
| 9/7/2004   | -8.74  | -5.93  | -4.71 |
| 9/8/2004   | -13.58 | -9.35  | -7.37 |
| 9/9/2004   | -1.07  | -2.95  | -5.31 |
| 9/10/2004  | 3.18   | 0.6    | -1.34 |
| 9/11/2004  | 3.95   | 3.17   | 1.97  |
| 9/12/2004  | 2.1    | 2.55   | -1.24 |
| 9/13/2004  | 0.01   | 1.12   | -3.45 |
| 9/14/2004  | 3.59   | -1.6   | 0.21  |
| 9/15/2004  | 23.94  | 20.88  | 20.4  |
| 9/16/2004  | 8.56   | 4.01   | 3.58  |
| 9/17/2004  | 22.89  | 18.72  | 18.4  |
| 9/18/2004  | 2.32   | -1.56  | 0.73  |
| 9/19/2004  | 9.3    | 4.83   | 5.3   |
| 9/20/2004  | 10.03  | 5.11   | 3.85  |
| 9/21/2004  | 5.62   | 2.46   | 3.11  |
| 9/22/2004  | 5.38   | 0.22   | 3.03  |
| 9/23/2004  | 0.37   | -6.2   | -3.97 |
| 9/24/2004  | 3.86   | -0.54  | 5.73  |
| 9/25/2004  | 5.83   | 2.26   | 7.13  |
| 9/26/2004  | 2.28   | 1.4    | 5.92  |
| 9/27/2004  | 2.8    | 3.63   | 7.76  |
| 9/28/2004  | 1.9    | -1.77  | 3     |
| 9/29/2004  | 12.8   | 9.95   | 10.73 |
| 9/30/2004  | 2.29   | -5.34  | 1.32  |
| 10/1/2004  | 10.22  | 3.89   | 8.56  |
| 10/2/2004  | 11.79  | 7.86   | 9.29  |
| 10/3/2004  | 17.05  | 11.98  | 7.8   |
| 10/4/2004  | 11.21  | 8.93   | 9.08  |
| 10/5/2004  | -9.57  | -4.07  | 3.91  |
| 10/6/2004  | -15.36 | -9.32  | -7.46 |
| 10/7/2004  | -5.16  | -9.71  | -8.17 |
| 10/8/2004  | 2.03   | -0.91  | -3.35 |
| 10/9/2004  | -0.41  | -0.75  | -2.66 |
| 10/10/2004 | 1.68   | 3.95   | 0.86  |
| 10/11/2004 | -0.41  | 2,4    | 1.28  |
| 10/12/2004 | 6.63   | 3.98   | 6.45  |
| 10/13/2004 | 15.57  | 12.27  | 16.83 |
| 10/14/2004 | 9.33   | 6.5    | 10.38 |
| 10/15/2004 | 8.17   | 7.09   | 6.91  |
| 10/16/2004 | 6.02   | 4.8    | 4.22  |
| 10/17/2004 | 8.97   | 8.16   | 7.15  |
| 10/18/2004 | 2.78   | 3.78   | 3.91  |
| 10/19/2004 | 4.58   | -1.96  | 0.4   |
| 10/20/2004 | 20.85  | 13.99  | 16.71 |
| 10/21/2004 | 18.73  | 12.29  | 14.35 |
| 10/22/2004 | 19.81  | 13.8   | 14.35 |
| 10/23/2004 | -15.68 | -16.41 | 10,03 |
|            | 10100  | 10.41  |       |

| 10/24/2004              | -13.84        | -8.531         |       |
|-------------------------|---------------|----------------|-------|
| 10/26/2004              | -13.09        | -8.61          |       |
| 10/27/2004              | -19.04        | -9.32          |       |
| 10/28/2004              | 0.58          | 1.16           |       |
| 10/29/2004              | 3.68          | 4.27           | 2.77  |
| 10/30/2004              | 9.12          | 12.4           | 8.21  |
| 10/31/2004              | 4.47          | 5.31           | 2.24  |
| 11/1/2004               | 14.51         | 14.89          | 10.65 |
| 11/2/2004               | 14.5          | 16.31          | 10.00 |
| 11/4/2004               | -1.78         | 9.27           | -0.74 |
| 11/5/2004               | 13.6          | 10.97          | 9.88  |
| 11/6/2004               | 19.11         | 18.2           | 16.67 |
| 11/7/2004               | 19.16         | 18.52          | 16.15 |
| 11/8/2004               | 9.03          | 16.77          | 33.44 |
| 11/9/2004               | 13.71         | 18.95          | 36.87 |
| 11/10/2004              | 4.69          | 0.94           | 10.79 |
| 11/11/2004              | 12.32         | 2.68           | 18.4  |
| 11/12/2004              | 1.64          | 0.12           | 3.4   |
| 11/13/2004              | 5.19          | 2.4            | 5.26  |
| 11/14/2004              | 2.49          | 0.36           | 3.04  |
| 11/15/2004              | 1.17          | -0.46          | 2.97  |
| 11/16/2004              | -2.51         | -1.76          | 9.25  |
| 11/17/2004              | -2.43         | -4.78          | -0.71 |
| 11/18/2004              | 2.33          | 2.15           | 3.94  |
| 11/19/2004              | 3.54          | 5.03           | 7.43  |
| 11/20/2004              | 1.84          | -3.12          | -1.97 |
| 11/21/2004              | 8.06          | 3.75           | 5.74  |
| 11/22/2004              | 6.19          | 2.83           | 5.18  |
| 11/24/2004              | 8.07          | 5.83           | 5.98  |
| 11/25/2004              | -1.39         | -5.56          | -4.45 |
| 11/26/2004              | -1.17         | -3.3           | 1.82  |
| 11/27/2004              | 3.61          | 4.35           | 6.83  |
| 11/28/2004              | 4.78          | 4.2            | 4.06  |
| 11/29/2004              | 1.77          | 2.7            | 2.64  |
| 11/30/2004<br>12/1/2004 | -2.68         | -2.07          | 2.8   |
| 12/2/2004               | 5.23          | 9.56           | 15.26 |
| 12/3/2004               | 4.08<br>-1.39 | 7.36           | 13.36 |
| 12/4/2004               |               | -5.33          | -4.32 |
| 12/5/2004               | 8.66          | 5.08           | 3.23  |
| 12/6/2004               | 8.21<br>9.18  | 4.63           | 3.29  |
| 12/7/2004               | -4.29         | 6.24           | 5.71  |
| 12/8/2004               | -4.29<br>5.07 | -8.91          | -8.67 |
| 12/9/2004               | 3.84          | 3.32           | 0.85  |
| 12/10/2004              | 3.84<br>19.76 | 0.46           | -0.47 |
| 12/11/2004              | 17.56         | 16.53<br>14.69 | 16.78 |
| 12/12/2004              | 16.78         | 14.89          | 14.93 |
| 12/13/2004              | 18.04         | 14.39<br>16.27 | 14.75 |
| 12/14/2004              | -0.41         | 10.27<br>-6.1  | 16.1  |
| 12/15/2004              | -0.41         | -0.99          | -5.88 |
| 12/16/2004              | 0.63          | -0.99<br>-3.86 | -2.59 |
| 12/17/2004              | -2.03         | -3,00          | -6.25 |

12/17/2004

-2.03

-5.27

-3.93

MICROTOX2004

| 12/17/2004 | -2.01  | -5.3  | -4.64 |
|------------|--------|-------|-------|
| 12/21/2004 | -6.2   | -8.22 | 1.76  |
| 12/22/2004 | -1.87  | -2.15 | 4.52  |
| 12/23/2004 | 0.14   | -0.66 | 6.29  |
| 12/24/2004 | 2,75   | 4.18  | 13.39 |
| 12/25/2004 | 4.29   | 6.94  | 11.4  |
| 12/26/2004 | -7.34  | -2.26 | 5.3   |
| 12/27/2004 | -7.86  | 7.2   | 15.45 |
| 12/28/2004 | -10.54 | 10.2  | 15.2  |
| 12/29/2004 | -6.65  | -5.16 | 5.37  |
| 12/30/2004 | -2.91  | -1.96 | 9.04  |
| 12/31/2004 | -4.16  | -1.96 | 6.8   |

•

••

.

Summary of 2005-2006 Microtox Results

|            | 5 MIN          | 15 MIN | 30 MIN |
|------------|----------------|--------|--------|
| 12/1/2005  | -3.39          | -10.2  | -4.47  |
| 12/2/2005  | -5.85          | -5.29  | 2.15   |
| 12/3/2005  | 14.92          | 10.74  |        |
| 12/4/2005  | 11.39          |        | 11.22  |
| 12/5/2005  | 12.34          | 12.14  | 20.23  |
| 12/6/2005  |                | 11.76  | 18.9   |
| 12/7/2005  | 12.31          | 8.49   | 9.4    |
| 12/10/2005 | 7.94           | 15.48  | 23.44  |
|            | 8.38           | 9.39   | 12.14  |
| 12/11/2005 | 4.34           | 4.35   | 1.86   |
| 12/12/2005 | 5.99           | 6.6    | 1.77   |
| 12/13/2005 | 4.11           | -1.67  | 0.38   |
| 12/14/2005 | 16.73          | 13.16  | 14.07  |
| 12/15/2005 | 16.08          | 13.71  | 15.45  |
| 12/16/2005 | 20             | 17.44  | 17.72  |
| 12/17/2005 | 20.16          | 16.49  | 18.43  |
| 12/18/2005 | 4.67           | 2.1    | 3.69   |
| 12/19/2005 | 10.06          | 4.68   | 8.52   |
| 12/20/2005 | 4.36           | 2.3    | 8.38   |
| 12/21/2005 | 2.59           | 3.14   | 4,95   |
| 12/22/2005 | 0.36           | 0.56   | 5.21   |
| 12/23/2005 | 4.05           | 1.41   | 6.74   |
| 12/24/2005 | -7.86          | -13.27 | -9.01  |
| 12/25/2005 | -9.65          | -15.82 | -14.59 |
| 12/26/2005 | -2.6           | -7.11  | -8.17  |
| 12/27/2005 | -5.69          | -12.5  | -14.8  |
| 12/28/2005 | 12.23          | 11.22  | 6.62   |
| 12/30/2005 | 18.47          | 15.87  | 14.47  |
| 12/31/2005 | 19.08          | 15.72  | 12.16  |
| 1/1/2006   | 15.96          | 13.15  | 9.94   |
| 1/2/2006   | 17.22          | 13.72  | 11.27  |
| 1/3/2006   | -4.44          | -0.24  | -0.82  |
| 1/4/2006   | 4.7            | 3.46   | -0.02  |
| 1/5/2006   | 4.29           | 1.06   |        |
| 1/6/2006   | 2.42           | -2.73  | 1.67   |
| 1/7/2006   | 2.8            | -1.51  | -2.79  |
| 1/8/2006   | 4.64           |        | -2.64  |
| 1/9/2006   | -1.58          | 0.1    | -1.98  |
| 1/10/2006  | -1.56<br>-3.18 | -2.83  | -5.98  |
| 1/11/2006  |                | -10.23 | -9.54  |
| 1/12/2006  | -4.13          | -8.88  | 0.07   |
| 1/14/2006  | 2.59           | -0.18  | 7.66   |
|            | 17.45          | 17.16  | 18.19  |
| 1/15/2006  | 18.45          | 17.51  | 21.69  |
| 1/16/2006  | 20.1           | 19.14  | 18.71  |
| 1/18/2006  | 20.31          | 19.52  | 19.46  |
| 1/20/2006  | -2.21          | -6.85  | -1.05  |
| 1/21/2006  | 22.03          | 18.63  | 25.24  |
| 1/22/2006  | 24.38          | 20.76  | 25.21  |
| 1/23/2006  | 20.3           | 13.98  | 16.85  |
| 1/24/2006  | 20.97          | 17.04  | 20.37  |
|            |                |        |        |

P:\2160-05-070\4(g)report draft\Appendix D Tox data\MICROTOX2006updatedMICROTOX2006updatedSheet1

| 4/05/0000 |        |        |                |
|-----------|--------|--------|----------------|
| 1/25/2006 | -3.03  | -0.39  | 1.16           |
| 1/26/2006 | -11.03 | -13.59 | -12.32         |
| 1/27/2006 | -0.76  | -4.24  | 4.09           |
| 1/28/2006 | -10.6  | -13.47 | -7.76          |
| 1/29/2006 | -13.35 | -17.13 | -10.75         |
| 1/31/2006 | 10.92  | 9.62   | 15.38          |
| 2/1/2006  | 28.44  | 24.44  | 28.78          |
| 2/2/2006  | 24.82  | 19.69  |                |
| 2/3/2006  | 24.28  |        | 21.48          |
| 2/4/2006  |        | 19.69  | 22.03          |
|           | 24.36  | 19.67  | 21.27          |
| 2/5/2006  | 2.24   | -0.11  | 7.29           |
| 2/6/2006  | 20.53  | 14.21  | 23.36          |
| 2/7/2006  | 9.02   | 6.72   | 9.87           |
| 2/8/2006  | 4.2    | 4.98   | 10.87          |
| 2/9/2006  | 6.74   | 6.63   | 9.97           |
| 2/11/2006 | 2.01   | -1.97  | -2.8           |
| 2/12/2006 | 5.8    | 3.58   | 3.87           |
| 2/13/2006 | 3.84   | 0.87   | 1.95           |
| 2/14/2006 | -3.64  | -9.53  | -6.23          |
| 2/15/2006 | -0.32  | -6.92  | -0.23          |
| 2/16/2006 | 3.08   | 0.49   | 0.83           |
| 2/17/2006 | 0.67   | -2.45  | -5.01          |
| 2/18/2006 | 2.12   | -2.40  | -5.01          |
| 2/19/2006 | 30.45  | 25.86  |                |
| 2/20/2006 | 31.21  | 25.80  | 27.06<br>27.54 |
| 2/21/2006 | 25.72  | 20.7   |                |
| 2/22/2006 | 24.55  | 19.04  | 21.71          |
| 2/23/2006 | 1.98   | -2.57  | 17.57          |
| 2/24/2006 | 15.33  | -2.57  | -3.95          |
| 2/25/2006 | 0.86   |        | 10.96          |
| 2/26/2006 | 15.37  | -3.92  | -3.48          |
| 2/27/2006 | 14.86  | 10.6   | 7.5            |
| 2/28/2006 |        | 9.72   | 5.57           |
| 3/1/2006  | 19.13  | 11.48  | 8,2            |
| -         | 17.24  | 10.43  | 2.63           |
| 3/2/2006  | -0.91  | -6.81  | -5.73          |
| 3/3/2006  | 4.35   | 1.28   | -3.99          |
| 3/4/2006  | 2.04   | -6.57  | 3.17           |
| 3/5/2006  | 7.48   | -2.62  | 0.02           |
| 3/6/2006  | 6.57   | -1.02  | 2.24           |
| 3/7/2006  | 7.76   | 1.02   | 0.15           |
| 3/8/2006  | 8.25   | -0.16  | 5.48           |
| 3/9/2006  | -5.63  | -9.85  | -6.82          |
| 3/10/2006 | -2.8   | -7.41  | 0.44           |
| 3/11/2006 | 1.65   | -3.63  | -3.5           |
| 3/12/2006 | 1.65   | -3.63  | -3.5           |
| 3/12/2006 | 18.09  | 12.82  | 7.01           |
| 3/13/2006 | 16.2   | 10.2   | 5.77           |
| 3/14/2006 | 14.4   | 7.82   | 5.84           |
| 3/15/2006 | 15.37  | 7.07   | 2.4            |
| 3/16/2006 | -1.49  | -2.82  | 0.56           |
| 3/17/2006 | -1.96  | -1.39  | 4.52           |
| 3/18/2006 | -3.81  | -9.18  | -11.15         |
|           | 0.01   | -0.10  | -11.15         |

Page 3

| 3/19/2006          | 1.08   | -1.34        | -4.84  |
|--------------------|--------|--------------|--------|
| 3/20/2006          | 0.84   | 0.11         | -5.99  |
| 3/21/2006          | 5.73   | 4.93         | 1,73   |
| 3/22/2006          | 2.34   | -0.93        | -4.61  |
| 3/23/2006          | 0.21   | -5.58        |        |
| 3/24/2006          |        |              | -6.42  |
|                    | 4.64   | -2.88        | -2.6   |
| 3/25/2006          | -13.21 | -20.9        | -20.31 |
| 3/26/2006          | -10.28 | -18.43       | -20.25 |
| 3/27/2006          | 0.47   | -5.66        | -9.35  |
| 3/31/2006          |        | -8.73        | -14.09 |
| 4/1/2006           | 12.82  | 7.48         | 5.77   |
| 4/2/2006           | 4.07   | -0.8         | 1.75   |
| 4/3/2006           | 1.37   | -2.63        | 7.89   |
| 4/4/2006           | 4.17   | 1.75         | 4.07   |
| 4/5/2006           | 1.65   | -3.04        | 0.16   |
| 4/6/2006           | -3.36  | -5.45        | -5.42  |
| 4/7/2006           | 0.83   | 4,43         | 3.05   |
| 4/8/2006           | 19.51  | 14.06        | 15.04  |
| 4/9/2006           | 23.5   | 17.9         | 14.45  |
| 4/10/2006          | 22.64  | 16.66        | 14.7   |
| 4/11/2006          | 23.97  | 18.81        | 15.04  |
| 4/12/2006          | 26.83  | 21.09        |        |
| 4/13/2006          | 7.16   | -0.77        | 16.87  |
| 4/14/2006          | 12.01  |              | -1.39  |
| 4/15/2006          |        | 6.81         | 10.47  |
| 4/16/2006          | 8.73   | 3.81         | 9.2    |
|                    | 8.63   | 4.28         | 7.9    |
| 4/19/2006          | 3.35   | 3.29         | 11.25  |
| 4/21/2006          | 2.1    | -0.57        | -3.67  |
| 4/22/2006          | 5.92   | 2.32         | -2.9   |
| 4/23/2006          | 4.4    | 2.48         | -4.06  |
| 4/24/2006          | 7.39   | <b>6.1</b> 1 | -1.03  |
| 4/25/2006          | 7.05   | 5.62         | -0.62  |
| 4/26/2006          | -1.03  | -3.09        | -6.32  |
| 4/27/2006          | -7.9   | -11.42       | -13.9  |
| 4/28/2006          | -6.97  | -11.04       | -14.53 |
| 4/29/2006          | -9.57  | -15.84       | -12.74 |
| 4/30/2006          | -1.8   | -4.97        | -3.07  |
| 5/1/2006           | 4.24   | -1.97        | 2.51   |
| 5/2/2006           | 4.94   | 1.01         | 3.39   |
| 5/3/2006           | 7.7    | 2.53         | 3.68   |
| 5/4/2006           | -7.82  | -11.12       | -5.74  |
| 5/5/2006           | -2.54  | -2.52        | 5.56   |
| 5/6/2006           | -3.1   | -4.13        | -5.97  |
| 5/7/2006           | 12.53  | 14.13        | 12.03  |
| 5/8/2006           | 11.73  | 15.26        | 13.46  |
| 5/9/2006           | 8.96   | 14.21        | 12.71  |
| 5/10/2006          | 9.73   | 14.94        |        |
| 5/11/2006          |        |              | 13.28  |
| 5/12/2006          | 1.96   | -9.73        | -7.96  |
| 5/13/2006          | 1.06   | 1.23         | -2     |
|                    | -2.03  | -11.9        | -15.8  |
| 5/14/2006          | -5.87  | -10.1        | -6.84  |
| 5/1 <b>5/</b> 2006 | 0.87   | -3.73        | -5.45  |

| 5/16/2006 | -8.56  | -4.34  | 1.19   |
|-----------|--------|--------|--------|
| 5/17/2006 | -6.01  | 3.05   | 2.05   |
| 5/18/2006 | -4.61  | 3.23   | 3.59   |
| 5/19/2006 | 2.37   | -0,57  | -2.01  |
| 5/20/2006 | 7.22   | 7.98   | -2.49  |
| 5/21/2006 | 5.88   | 4.11   | -3.23  |
| 5/22/2006 | 4.25   | 0.51   | -7.16  |
| 5/23/2006 | 8.32   | -0.26  | -7.71  |
| 5/24/2006 | -11.17 | -22.36 | -13.42 |
| 5/25/2006 | -5.77  | -11.01 | -6.39  |
|           |        |        |        |

P:\2160-05-070\4(g)report draft\Appendix D Tox data\MICROTOX2006updatedMICROTOX2006updatedSheet1

# Appendix E Field Data Sheets

### GENERAL PHYSICAL CHARACTERIZATION FIELD FORM

| STATION I.D: (-C-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LOCATION:                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STREAM NAME: Loutre Couck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RIVER BASIN: WS of Lion 0.1                                                                                                                                                         |
| LAT: 33 12 5.4 LONG: 92,43,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                     |
| LAT: 33 12 54 LONG: 92,43,1<br>INVESTIGATORS: SHA / JB DATE/TIME:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Glass FORM CHECKED BY:                                                                                                                                                              |
| 507703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GI281.55 FORM CHECKED BY:                                                                                                                                                           |
| storm (heavy rain)<br>rain (steady rain)<br>showers (intermittent)<br>%<br>%<br>clear/sunny<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24-hr       Heavy rain in the last 7 days?       Yes       No         Air Temperature       °C/°F         %       Other                                                             |
| Stream Origin<br>☐ Glacial<br>☐ Montane, non-glacial<br>☐ Swamp and bog<br>Stream Gradient: ☐ High (≥25ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Stream Type         Tidal       Coldwater         Spring-fed       Catchment Area:mi <sup>2</sup> Mixture of origins       Stream Order:         Other       Moderate (10-24 ft/mi) |
| Flows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Flows,Measured?       Reach:       Slope       & Sinuosity         None       Yes       No      ft/mi                                                                               |
| Predominant Surrounding Land         ✓ Forest 50 %       □ Sub-Ur         □ Pasture%       □ Comme         □ Row Crops%       □ Industr         ✓ Urban 50 %       □ Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Local Watershed NPS Pollution       ban     No evidence [] Agricultural       ercial%     Industrial Storm Water                                                                    |
| Imature Forest 10 %       Imature Forest 10 %         Imature Forest 10 %       Imature Forest 10 % <th>b/Sapling 10% Herbs/Grasses% Turf%</th> | b/Sapling 10% Herbs/Grasses% Turf%                                                                                                                                                  |
| Channelized:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                     |
| Turbidity/Water Clarity (if not me         Clear       Slightly turb         Opaque       Stained         Sediment Odor       Normal         Chemical       Anaerobic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | asured)       13.3 NTU         Did       Turbid         Other         Sediment Deposits         Petroleum       Sludge         None       Sand         Relict shells                |
| Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DKOther Silt/Dirt                                                                                                                                                                   |

| GENERAL PHYSICAL | CHARACTERIZATION FIELD | FORM |
|------------------|------------------------|------|
|------------------|------------------------|------|

| STATION I.D.              | LC-1                                                                                                       | LOCATION Union, AK: Eldurado                                                                                                                                           |
|---------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STREAM NAME               | Loutre Creek                                                                                               | RIVER BASIN Quachita                                                                                                                                                   |
| LAT                       | LONG                                                                                                       | CLIENT LIGA GIT                                                                                                                                                        |
| INVESTIGATORS             |                                                                                                            | JB.                                                                                                                                                                    |
| B7                        |                                                                                                            | DATE 4/2805 REASON FOR SURVEY<br>TIME 7500                                                                                                                             |
| WEATHER<br>CONDITIONS     | Now<br>storm (heavy rain)<br>rain (steady rain)<br>showers (intermittent<br>% % cloud cover<br>clear/sunny | Air Temperature 80 COR                                                                                                                                                 |
| STREAM<br>ATTRIBUTES      | Stream Subsystem                                                                                           | nt 🗍 Tidal Stream Type<br>Coldwater 🛃 Warmwater                                                                                                                        |
|                           | Stream Origin<br>Glacial<br>Non-glacial montane<br>Swamp and bog                                           | Catchment Areami <sup>2</sup>                                                                                                                                          |
| HYDROLOGY                 | Flows                                                                                                      |                                                                                                                                                                        |
| FEATURES                  | Predominant Surrounding L<br>Forest Commen<br>Field/Pasture Industria<br>Agricultural Other<br>Residential | al Divious sources                                                                                                                                                     |
| INSTREAM<br>FEATURES      | Riffie 30 %<br>Run 20 %<br>Pool <u>50 %</u><br>Channelized Yes [<br>Dam Present Yes [                      | sented by Stream Morphology Types                                                                                                                                      |
| WATER/<br>OBSERVATIONS    | Water Odors         V Normal/None       Sewag         Petroleum       Chemic         Fishy       Other_    |                                                                                                                                                                        |
| 000.000                   | Turbidity (if not measured)         Clear       Slightly         Opaque       Stained                      | ed Other                                                                                                                                                               |
| SEDIMENT/<br>OBSERVATIONS | Sediment Odor<br>Normal Sewage<br>Chemical Anaerobic<br>Other                                              | Sediment Deposits         Petroleum       Sludge       Sawdust       Oils         None       Sand       Relict shells         Other       Official (Color)       Other |

S.C.,

| rement Form  |  |
|--------------|--|
| e/Flow Measu |  |
| Discharg     |  |

 $\left( \right)$ 

| Station: $\angle C < 1$           |                                   |                  | ( <del>;</del> ) | (2)          | (2)            |             | <del>(</del> )   | Method     | (2)         | (8)       |
|-----------------------------------|-----------------------------------|------------------|------------------|--------------|----------------|-------------|------------------|------------|-------------|-----------|
| Waterbody. Loutin Court           | Corek                             |                  | from             | Width        | Depth          |             | Avg.<br>Velocity | Depth      | Area        | Discharge |
| 21/2                              |                                   |                  | initial<br>point |              |                | · · · · · · | At Point         | 9          |             |           |
| Crew: 5/4 1-5-8                   | Start Time: 1555                  | Recorder: 524    |                  | £            | ê              | sdO<br>sdO  | ε                | 6.0        | Ś           | (Ċ)       |
| <b>a</b>                          | End Time:                         | GH. Change:      | 50               | 0.5          | 20             | U<br>U      | QN               |            |             |           |
|                                   | Staff/Gage:                       | E SF             | 1.0              | $\downarrow$ | 5              |             | 61.0             |            |             |           |
| Width: 5.0                        | Area:                             | Velocity:        | 20               |              | <u>ه،</u><br>ک |             | 150              |            |             |           |
| Disch/Flow:                       | Method:                           | No Secs:         | V 9, 4           | 7            | 28             |             | 275              |            |             |           |
| Meter No:                         | Max Vel:                          | Min Vel:         | 200              |              | 0.2            |             | 0.29             |            |             |           |
| ORIENTATION:                      |                                   |                  | 6.2              | -4           | 1.0            |             | 10               |            |             |           |
| Wading, Boat, Upstre              | Upstream, Downstream, Side Bridge | doe<br>A/mi      |                  |              | \$             |             |                  |            |             |           |
| below g                           |                                   |                  | >                |              | 2              |             |                  |            |             |           |
| Measurement rated: excellent good | llent good fair poor based on th  | on the following |                  |              |                |             |                  |            |             |           |
| conditions: Cross section         |                                   |                  |                  |              |                | +           |                  |            |             |           |
| Flow                              | Weather                           |                  |                  |              |                |             |                  |            | <br>·  <br> | T         |
| Other                             | Air F                             |                  |                  |              |                |             |                  |            |             |           |
| Gage                              |                                   |                  |                  |              |                | - <u> </u>  |                  |            |             |           |
| Observer                          |                                   |                  |                  |              | •              |             |                  |            |             |           |
|                                   |                                   |                  |                  | ╋            |                |             |                  |            |             |           |
| Control                           |                                   |                  |                  |              |                |             |                  |            |             |           |
|                                   |                                   |                  |                  |              |                |             |                  |            |             |           |
|                                   |                                   |                  |                  |              |                |             |                  | . <u>.</u> |             |           |
| Remarks                           |                                   |                  |                  |              |                | _           |                  |            |             |           |
|                                   |                                   |                  | TOTALS           |              | -              |             |                  |            |             |           |
|                                   |                                   |                  |                  |              |                |             |                  |            |             | ]         |
|                                   | -                                 |                  |                  |              |                |             |                  |            |             |           |
|                                   |                                   |                  | •                |              |                |             |                  |            |             |           |

Completed By

Checked by\_

Reviewed by\_\_\_

:

V1.0 1096

| Lion Oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |         | date                             | 4/28/2005 |                | Start<br>Stop | 1555 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|----------------------------------|-----------|----------------|---------------|------|
| Station:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LC-1           |         |                                  |           |                | J             | 1605 |
| Waterbody:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Loutre Cree    | ek      |                                  |           |                | -             |      |
| Crew:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>BJP/SKH</b> |         |                                  |           |                | -             |      |
| Width (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | Area:   | 1.5                              | Max Vel:  | 0.51           | -             |      |
| Disc/Flow (cfs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         | 025                              | Min Vel:  |                | -             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |                                  |           | 0              | 1             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |                                  |           |                |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         | er stelle stelle<br>System i Kan |           |                |               |      |
| nin veron nëbit<br>(Ni - Villen llettit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |         |                                  |           |                |               |      |
| 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5            | 0.2     | 0                                | 0.1       | 0              |               |      |
| 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5            | 0.5     | 0.19                             | 0.1       | 0.0475         | -             |      |
| 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5            | 0.5     | 0.31                             | 0.25      | 0.0475         |               |      |
| 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5            | 0.5     | 0.51                             | 0.25      | 0.1275         | 4             |      |
| 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5            | 0.4     | 0.47                             | 0.2       | 0.094          | 1             |      |
| 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5            | 0.4     | 0.4                              | 0.2       | 0.08           | 4             |      |
| 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5            | 0.3     | 0.29                             | 0.15      | 0.0435         | ł             |      |
| 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5            | 0.1     | 0.1                              | 0.05      | 0.005          | ł             |      |
| 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0            | 0       | 0                                | 0         | 0              | 1             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |                                  |           |                | ł             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |                                  |           |                |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |                                  |           |                |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |                                  |           |                |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |                                  |           |                |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |                                  |           |                |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |                                  |           |                |               |      |
| a series and the series of the |                |         |                                  |           |                |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 23.910. | C 2227 C                         |           | s si û dista d |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |                                  |           |                |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |                                  |           |                |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |                                  |           |                |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |                                  |           |                |               |      |

 $\partial$ 

### Stream Habitat Assessment (Semi-Quantitative)

| Station # | #: <u>4C-1</u>   |               | ]        | Date/Ti  | me: 4/      | 2.870   | 5 |          | Initials |                                       | at a  |          |
|-----------|------------------|---------------|----------|----------|-------------|---------|---|----------|----------|---------------------------------------|-------|----------|
| 9. Aqua   | ttic Macrophytes | and Pe        | erlphyto | on (Perc | ent Cov     | verage) |   |          |          | 01                                    | -17/0 | 0        |
|           |                  |               |          |          | 1           |         |   | ann an s |          |                                       |       |          |
| Riffle    | Macrophytes      | ·             |          | 0        | <u>سر ا</u> |         |   |          |          |                                       |       | LAW-ROLL |
|           | Periphyton       | -             |          | 0        | -           |         |   | 0        | 0        | **                                    |       | 0        |
| Pool      | Macrophytes      | 15            | C        | 0        |             |         | · | 0        | 6        | · · · · · · · · · · · · · · · · · · · | ·     | 0        |
|           | Periphyton       | $\mathcal{D}$ | 0        | 0        | 0           | 0       | 0 | 4        | -        | 0                                     |       | 2.9      |

#### 10. Canopy Cover (Percent Stream Shading)

| act the generative sector of the |        |       |       |    |      |    | ł |
|----------------------------------|--------|-------|-------|----|------|----|---|
| Shading 50                       | 80 90. | 90 90 | 90 90 | 90 | 90 9 | () |   |

### 11. Bank Stability (Score) and Slope (Degrees)

| leering.             |              |             |       |    | - 4 | - 19<br>- 19 |          |     |    |    | H. H.S. Harrison |
|----------------------|--------------|-------------|-------|----|-----|--------------|----------|-----|----|----|------------------|
| Score                | 8            | 10          | .7    | 8  | 8   |              | 0        | 1.0 |    |    | Val Corre        |
| Slope (°)            | 80°          | 900         | 700   | 90 | 85  | Ro-          | Ten      | 20  | 8  | 6  | 7.5              |
| ्यतः<br>अवविधियस्य स |              |             |       |    | 6   |              |          | 40  | 00 | 08 | 79               |
| Score                | 8            | 7           | P     | 4  | 1.  |              | 4        |     |    |    |                  |
| Slope (°)            | 80°          | Po'         | 80    | 50 | (10 | 32 A         | 60       | 20  | Y  | 7  | 7.3              |
| Score $9-10 = 3$     | Stable, < 59 | % bank affe | cted. |    |     | Score 6.8 -  | <u> </u> | 10  | 10 | 80 | 73               |

Score 3-5 = Moderately unstable, 30-59% bank eroding.

Score 6-8 = Moderately stable, 5-29% of bank eroding Score 1-2 = Unstable, 60-100% bank eroding.

#### 12. Vegetative Protection (Percent Banks Protected)

| 的精神的空气  |    |    |    |    | 3  | 100 |    |     | 19.35 |    |    |
|---------|----|----|----|----|----|-----|----|-----|-------|----|----|
| %       | 90 | 60 | 20 | 60 | 40 | 5   | 40 | 100 |       |    |    |
| - 時代基本: |    |    |    |    |    |     |    |     |       | 70 | 54 |
| %       | 80 | 46 | 10 | 35 | 25 | 57) |    | 40  |       |    |    |

#### 13. Riparian Vegetative Zone Width

| · 特别的              |             |             |             |    |          |      |   |             |   |   |     |
|--------------------|-------------|-------------|-------------|----|----------|------|---|-------------|---|---|-----|
| Score              | 7           | 8           | 8           | -0 | 8        | 8    | 8 | <b>\$</b> . | D | 8 |     |
|                    |             |             |             |    |          |      |   |             |   |   |     |
| Score              | 8           | 8           | 8           | 9  | 8        | 8    | 7 | V           | X |   |     |
| Score $9 - 10 = 1$ | Riparian Zo | one Width : | > 18 meters |    | Second 6 | D' i |   |             | 0 | 0 | 8.1 |

Score 3-5 = Riparian Zone Width 11 - 6 meters

Score 6-8 = Riparian Zone Width 18 - 12 meters Score 1-2 = Riparian Zone Width < 6 meters

#### 14. Land-Use Stream Impacts

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |   |      |                  |    |       |     |                    | 1. | 唐·司兰之皇                     | a area   | Argua   |    |    |         |        |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|------|------------------|----|-------|-----|--------------------|----|----------------------------|----------|---------|----|----|---------|--------|----------|
| Head and the second sec |    |   | 1. C |                  |    |       |     |                    |    |                            |          |         |    |    |         |        |          |
| Impact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U  | 9 | u    |                  | U. | 10    | 4 / | u                  | 1  | 1                          |          |         |    |    |         | dia an |          |
| C = Cattle<br>Score $0 = nc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ne |   |      | Crops<br>nor aff | U  | Urbar |     | achmer<br>ate affe |    | I = Industr<br>3 = major a | ial Encr | oachmei | nt | 0: | = Other | и, 1   | <u> </u> |
| Page 2 of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |   |      |                  |    |       |     |                    |    |                            |          |         |    |    |         |        |          |

| · ·                         |                        |                   | •                   |                                       |                            |                                                 |              |                                         |                              |                  |                 | A              | $\sim$                       |              |
|-----------------------------|------------------------|-------------------|---------------------|---------------------------------------|----------------------------|-------------------------------------------------|--------------|-----------------------------------------|------------------------------|------------------|-----------------|----------------|------------------------------|--------------|
|                             |                        |                   |                     | Strea                                 | ım Ha                      | abitat /                                        | Asses        | sment (S                                | Semi-Q                       | uantitat         | ive)            | Long.          | /                            |              |
| Station #:                  | 10-                    | -1                | Stream              | 1: 100                                | white                      | Cree                                            | K            | Date/1                                  | Time:                        | 58/05            | Analyst         | c 2011         | Z                            |              |
| [                           | -                      |                   | Locati              | on: Un                                | cr Lo                      | the                                             | Fast &       | Ever 14                                 | 20-71                        | 2943             | - Filalyst,     | _27            | 015                          | -            |
| 1. Reach                    | Longe                  | h Det             |                     |                                       |                            |                                                 | 200 1        |                                         |                              | 23               |                 | <u> </u>       |                              |              |
| I A Long                    | CONSC                  | 11 Def            | <b>ALIUIN</b>       | ation                                 | har visi                   | ni<br>Bishina i                                 | Parata (1    | - A W                                   | 20ph                         | Q.               |                 |                |                              |              |
| Denkfull                    | 12.444                 |                   |                     |                                       |                            |                                                 |              | s.<br>Kata                              |                              | switt aborties   |                 |                | ant se partir.<br>Se a Sunas | . 1          |
| Bankfull V<br>Bankfull D    |                        | 10                | 5                   | 11.5                                  |                            | 0.6                                             | 13           | B12.5 18                                | 35.1                         | 2.7-             | 25              | 1 2            | $\leq \omega'$               |              |
| Average                     |                        | <u> </u>          | 8                   | 2.4                                   | 4                          | 2.8                                             | 2            | € 1 4                                   | .5                           | 1.4              | na              |                | na <u>-7 -</u>               | 1            |
|                             |                        | 1.1               | 2                   | 1.90                                  | otal Ler                   | <b>y</b> qthγdivi                               | ded K?       | to lat                                  | 3.5                          |                  | 352,1:          | 1 at .         | 37'12'                       | _ <br>*_~~ " |
| 2. Riffle-P                 | ool S                  | equer             | ICe (               |                                       |                            | Cino 4                                          | 253          | pzy.                                    | 22 110 4                     | 3.5              | 9/5             | -              | 12°43'                       | •            |
| - 문왕 정영있<br>- 문일한 김 영양      |                        |                   |                     |                                       |                            |                                                 | oser ès      |                                         |                              |                  |                 |                | - <sub>()</sub>              |              |
| Riffle                      |                        |                   | egarat kare a Maria |                                       | 2.4                        | <u>an an a</u> |              |                                         |                              |                  |                 |                | <u>h adar</u>                |              |
| Run                         | _                      |                   |                     | 1                                     | <b></b>                    |                                                 |              | _                                       | 25.4                         | 25.4             |                 |                | 642                          | 125          |
| Pool<br>Total               | _2                     | <u> ૬ ત</u>       | 25.                 | 1 12                                  |                            | 25.4                                            | 25,0         | 1 25.4                                  |                              | +                | 25.4            | 25.4           | 187.8                        | 12.1         |
| Sequence                    |                        | ,                 |                     | _                                     | <u> </u>                   |                                                 |              | ·                                       | 1                            |                  |                 | <u>, 63. 7</u> | 101.0                        | 77.          |
| <sup>1</sup> Riffle="xx     |                        | $\sim$            | " Do                | $\frac{1}{2}$                         | with the second            | $\sim$                                          | $\sim$       | <b>Ipaas</b>                            | SCIENCIA                     | XXXXXX           | in              | m              | J                            |              |
|                             |                        |                   | •.                  |                                       |                            |                                                 |              | •                                       |                              |                  | 2               |                |                              | 1            |
| 3. Depth a                  |                        | dth R             | <u>egime</u>        |                                       |                            |                                                 | 950 KA (444) | · مــــــــــــــــــــــــــــــــــــ | and the factor of the second | T                | is from         | ficer B        | rest )                       |              |
|                             |                        |                   |                     |                                       |                            |                                                 |              | el (Gie) Citil<br>Sé                    |                              | ulâlin (tê)<br>M | 2               |                |                              |              |
| Riffle Dept<br>Riffle Widtl |                        |                   |                     | 0.                                    | 4/                         | -1,1                                            | <u> </u>     | -Xx                                     | 0.2-                         | 02               |                 |                |                              |              |
| Pool Depth                  |                        |                   | ·                   | 5                                     | -                          | <i>P</i> 10                                     |              | -48                                     | 605                          | O CESE           |                 | - 3            |                              |              |
| Pool Width                  |                        | . <u>8</u><br>1.0 | $\frac{1.1}{12.0}$  | 0.0                                   | 7//                        |                                                 | 2.50         | /.8(22                                  | 2-                           | 27               | 1.4             | 1.3            | 1.7                          | 3            |
|                             |                        |                   |                     | · · · · · · · · · · · · · · · · · · · | N/                         | 7.8                                             | Shall        |                                         | <u> </u>                     | SPO              | 11.0 0          | 7.0            | 8.8                          |              |
| 4. Eplfaun                  | al Sub                 | strate            | e, Perc             | ent Sta                               | ble Ha                     | bitat (fe                                       | or Macro     | nverteb                                 | rates) '                     |                  |                 |                |                              |              |
| % Area                      | 60                     | 4                 | 0                   | 30                                    | 35                         | Ŧ                                               | Allen        | 65ª 2                                   |                              |                  | A               |                |                              |              |
|                             |                        |                   |                     |                                       |                            |                                                 |              |                                         |                              | 0 4              |                 | ) 4            | 4.5                          |              |
| 5. In-Strea                 | m Hab                  | itat, F           | Percen              | t Stable                              | Habi                       | tat (Ava                                        | llable F     | ish Cover                               | in Wette                     | d Perime         | ter)            |                |                              |              |
| Barket 1                    | istetik<br><u>Line</u> |                   |                     |                                       |                            |                                                 |              |                                         |                              |                  |                 |                |                              | ·            |
| % Area.                     | <u>70</u>              | 5                 | 0                   | 30                                    | 40                         | 70                                              | PT TO        | ) 42                                    | 0 2                          | 0 5              | 5. 1.           |                |                              |              |
| 6. Substrat                 | te Cha                 | racte             | rizatio             | n (Dom                                | inant s                    | Substra                                         |              |                                         | <u> </u>                     |                  | <u>).</u> (60   |                | <del>3</del> 0               |              |
|                             |                        |                   |                     |                                       |                            | Rate                                            |              | Que North                               | 1:5332-04                    |                  |                 |                |                              |              |
| Riffle                      | -                      |                   |                     |                                       |                            |                                                 |              |                                         |                              |                  |                 |                |                              |              |
| Pool .                      | 5(2)                   | 1                 | 2)                  | 6/21                                  | 5(2                        | 5(2                                             |              |                                         |                              |                  |                 |                |                              |              |
| BR=Bedrock                  | (7), BL                | D=Bou             | ilder(6),           | COB=C                                 | <u>&gt; / /</u><br>obble(5 | ), GC=G                                         | navel Coa    | 2) <u></u> (4) GF                       | 2) 5<br>=Gravel Fi           | 2) 5             | $ \nu  \leq (2$ | $) \leq ($     | $\overline{\mathbf{X}}$      |              |
| 7. Embedd                   | ednee                  | s (Gr             | avel C              | obbla                                 | اداریم                     |                                                 |              |                                         |                              |                  | anu(2), SC      | =Silt/Clay(    | 1) 1                         |              |
| and the second              |                        |                   |                     | Coble,                                | Bould                      | ala Loi(                                        | ent Em       | bedded)                                 |                              |                  |                 |                |                              |              |
| % Embedd                    | ed                     |                   |                     |                                       |                            | $ \rightarrow $                                 |              |                                         |                              |                  |                 |                |                              |              |
| 0 0 a al 2                  |                        | l                 |                     |                                       | L                          | <u> </u>                                        |              | <u> </u>                                |                              |                  | L               |                |                              |              |
| 8. Sedimen                  | it Depo                | ositio            | n (Perc             | cent of                               | Bottor                     | n Affect                                        | ed)          |                                         |                              |                  | <u> </u>        |                |                              | •.           |
|                             | 30                     | .4                | 0                   | 50                                    | 25                         | 50                                              | 7            | 0 20                                    |                              |                  |                 |                | 9-1-1                        |              |
| Page 1 of 2                 |                        | 1                 |                     |                                       | -0                         | 100                                             | 7            | 20 20                                   | 20                           | 20               | 50              | 37.            | 5                            |              |
| V 2.1                       |                        |                   |                     |                                       |                            |                                                 |              |                                         |                              |                  |                 |                |                              |              |

2.00

. .

| Stream name: Lower Creek |                                           | Date/Tim                                                                                                        |                                              |                                              |  |  |  |  |  |  |
|--------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|--|--|--|--|--|--|
| <u></u>                  | ENTRE LATEN                               | Form Co                                                                                                         | mpleted By:                                  |                                              |  |  |  |  |  |  |
| Habitat                  |                                           |                                                                                                                 |                                              |                                              |  |  |  |  |  |  |
| Parameter                |                                           | CATEGORY                                                                                                        |                                              |                                              |  |  |  |  |  |  |
|                          | Optimal                                   | Suboptimal                                                                                                      |                                              |                                              |  |  |  |  |  |  |
| 6. Channel Sinuosity     | The bends in the                          | The bends in the stream                                                                                         | Marginal                                     | Poor                                         |  |  |  |  |  |  |
| ·                        | stream increase the                       | increase the stream                                                                                             | The bends in the stream increase the         | Channel straight;                            |  |  |  |  |  |  |
|                          | stream length 3 to 4                      | length 2 to 3 times                                                                                             | stream length 1 to 2                         | waterway has been                            |  |  |  |  |  |  |
|                          | times longer than it if                   | longer than if it was in a                                                                                      | times longer than if it                      | channelized for a distance.                  |  |  |  |  |  |  |
| SCORE 13                 | was in a straight line.<br>20 19 18 17 16 | straight line.                                                                                                  | was in a straight line.                      | distance,                                    |  |  |  |  |  |  |
| 7. Channel Flow          | Water reaches base of                     | 15 14(13')2 11                                                                                                  | 109876                                       | 54321                                        |  |  |  |  |  |  |
| Status                   | both lower banks and                      | Water fills >75% of the available channel; or <                                                                 | Water fills 25-75% of                        | Very little water in                         |  |  |  |  |  |  |
|                          | minimal amount of                         | 25% of channel                                                                                                  | the available channel                        | channel and mostly                           |  |  |  |  |  |  |
|                          | channel substrate is                      | substrate is exposed.                                                                                           | and/or riffle substrates are mostly exposed. | present as standing                          |  |  |  |  |  |  |
| SCORE 17-                | exposed.<br>20 19 18(17)16                |                                                                                                                 | sie meedy expeded.                           | pools.                                       |  |  |  |  |  |  |
| 8. Bank Stability        | Banks stable; no                          | 15 14 13 12 11                                                                                                  | 109876                                       | 54321                                        |  |  |  |  |  |  |
|                          | evidence of erosion or                    | Moderately stable;<br>infrequent, small areas                                                                   | Moderately unstable; up                      | Unstable: many                               |  |  |  |  |  |  |
|                          | bank failure. <5%                         | of erosion mostly healed                                                                                        | to 30%-60% of banks in                       | eroded areas: "raw"                          |  |  |  |  |  |  |
|                          | affected.                                 | over. 5%-30% affected.                                                                                          | reach show areas of<br>erosion. High erosion | areas frequent along                         |  |  |  |  |  |  |
|                          |                                           |                                                                                                                 | potential during floods.                     | straight sections and bends; 60-100% of      |  |  |  |  |  |  |
| X                        |                                           |                                                                                                                 |                                              | banks have erosion                           |  |  |  |  |  |  |
| SCORE $\mathcal{X}_{LB}$ | Left Bank 10 9                            | 8 7 6                                                                                                           |                                              | scars.                                       |  |  |  |  |  |  |
| SCORE 7 RB               | Right Bank 10 9                           | 8 (7) 6                                                                                                         | <u>543</u><br>543                            | 2 1                                          |  |  |  |  |  |  |
| . Vegetative             | More than 90% of the                      | 70-90% of the                                                                                                   | 5 4 3<br>50-70% of the                       | 2 1                                          |  |  |  |  |  |  |
| Protection               | streambank surfaces                       | streambank surfaces                                                                                             | streambank surfaces                          | Less than 50% of                             |  |  |  |  |  |  |
|                          | and immediate riparian zone covered by    | covered by vegetation.                                                                                          | covered by vegetation.                       | streambank surfaces<br>covered by vegetation |  |  |  |  |  |  |
|                          | vegetation. Vegetation                    | Disruption minimal or not evident; one group of                                                                 | Disruption obvious:                          | Disruption of stream                         |  |  |  |  |  |  |
|                          | disruption minimal or                     | plants likely not evident.                                                                                      | patches of bare soil or<br>closely cropped   | bank vegetation verv                         |  |  |  |  |  |  |
| •                        | not evident; aimost all                   | Almost all plants allowed                                                                                       | vegetation common;                           | high; vegetation has                         |  |  |  |  |  |  |
|                          | plants allowed to grow naturally.         | to grow naturally.                                                                                              | less than one-half of the                    | been removed; 2<br>inches or less average    |  |  |  |  |  |  |
| _                        | natarany.                                 |                                                                                                                 | potential plant stubble                      | stubble height.                              |  |  |  |  |  |  |
| CORE 7 LB                | Left Bank 10 9                            | 8 0 6                                                                                                           | height remaining.                            |                                              |  |  |  |  |  |  |
| CORE 5 RB                | Right Bank 10 9                           | 8 7 6                                                                                                           | 5 4 3<br>(5) 4 3                             | 2 1                                          |  |  |  |  |  |  |
| 0. Riparian              | Width of riparian zone                    | Width of riparian zone                                                                                          | Width of riparian zone                       | 2 1                                          |  |  |  |  |  |  |
| Vegetative Zone<br>Width | >18 meters; human                         | 12-18 meters; human                                                                                             | 6-12 meters: human                           | Width of riparian zone <6 meters; little     |  |  |  |  |  |  |
|                          | activities (i.e., parking lots, roadbeds, | activities have impacted                                                                                        | activities have impacted                     | riparian vegetation to                       |  |  |  |  |  |  |
| 1                        | clearcuts, lawns or                       | zone only minimally.                                                                                            | a great deal.                                | human activities.                            |  |  |  |  |  |  |
|                          | crops) have not                           |                                                                                                                 |                                              |                                              |  |  |  |  |  |  |
|                          | Impacted zone.                            |                                                                                                                 |                                              |                                              |  |  |  |  |  |  |
|                          |                                           | the second se | •                                            |                                              |  |  |  |  |  |  |
|                          | Left Bank 10 9<br>Right Bank 10 9         | (8) 7 6<br>(8) 7 6                                                                                              | 5 4 3                                        | 2 1                                          |  |  |  |  |  |  |

# Habitat Assessment Field Data Sheet (Low Gradient Cont.)

Date/Time:

Page 2 of 3 (Pg.3 optional) GBMc Rev: 1.2

14

Barbour, M.T. et.al., 1999. Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers.

TOTAL SCORE: AVERAGE SCORE:

Station I.D:

LC-1

### Habitat Assessment Field Data Sheet (Low Gradient)

| Station I.D: LC-1         | Client: Gian 6,1            |
|---------------------------|-----------------------------|
| Stream name: Loutre Creek | Date/Time: 1/28/05          |
| Location:                 | Form Completed By: JBB /SKH |

| Habitat<br>Parameter                              | CATEGORY                                                                                                                                                                                                            |                                                                                                                                                                                                                                     |                                                                                                                                                                                                           |                                                                                                                                                         |  |  |  |  |  |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                   | Optimal                                                                                                                                                                                                             | Suboptimal                                                                                                                                                                                                                          | Marginal                                                                                                                                                                                                  | Poor                                                                                                                                                    |  |  |  |  |  |
| 1. Epifaunal<br>Substrate /<br>Available<br>Cover | Greater than 50% of<br>substrate favorable for<br>epifaunal colonization and<br>fish cover; mix of snags,<br>submerged logs, undercut<br>banks, cobble, or other<br>stable habitat; and at a<br>stage to allow full | 30-50% mix of stable<br>habitat suited for<br>colonization; adequate<br>habitat for maintenance<br>of population; some<br>newfall may be present.                                                                                   | 10-30% mix of stable<br>habitat; habitat<br>availability less than<br>desirable; substrate<br>frequently disturbed.                                                                                       | Less than 10% stable<br>habitat; lack of<br>habitat obvious;<br>substrate lacking                                                                       |  |  |  |  |  |
| SCORE                                             | colonization.                                                                                                                                                                                                       |                                                                                                                                                                                                                                     |                                                                                                                                                                                                           |                                                                                                                                                         |  |  |  |  |  |
| 2. Pool Substrate                                 | 20 19 18 17 16<br>Mixture of substrate                                                                                                                                                                              | 15 14 13 12 11                                                                                                                                                                                                                      | 10 9/11 6                                                                                                                                                                                                 | 54321                                                                                                                                                   |  |  |  |  |  |
| Characterization                                  | materials, with gravel and<br>firm sand prevalent; root<br>mats and submerged<br>vegetation common.                                                                                                                 | Mixture of soft sand,<br>mud, or clay; mud may<br>be dominant; some root<br>mats and submerged<br>vegetation present.                                                                                                               | All mud or clay to sand<br>bottom; little or no root<br>mat; no submerged<br>vegetation.                                                                                                                  | Hard-pan clay or<br>bedrock; no root or<br>vegetation.                                                                                                  |  |  |  |  |  |
| SCORE 10                                          | 20 19 18 17 16                                                                                                                                                                                                      | 15 14 13 12 11                                                                                                                                                                                                                      | (10)9876                                                                                                                                                                                                  | 54321                                                                                                                                                   |  |  |  |  |  |
| 3. Pool Variability                               | Even mix of large-shallow,<br>large-deep small-shallow,<br>small deep pools present.                                                                                                                                | Majority of pools large deep; very few shallow.                                                                                                                                                                                     | Shallow pools much<br>more prevalent than<br>deep pools.                                                                                                                                                  | Majority of pools<br>small-shallow or<br>absent.                                                                                                        |  |  |  |  |  |
| SCORE 13                                          | 20 19 18 17 16                                                                                                                                                                                                      | 15 14/13 12 11                                                                                                                                                                                                                      | 10 9 8 7 6                                                                                                                                                                                                | 54321                                                                                                                                                   |  |  |  |  |  |
| 4. Channel<br>Alteration                          | No channelization or<br>dredging present. Stream<br>channel normal.                                                                                                                                                 | Some channelization<br>present, usually in areas<br>of bridge abutments;<br>evidence of past<br>channelization, i.e.<br>dredging, (greater than<br>past 20 yrs.) may be<br>present, but recent<br>channelization is not<br>present. | Embankments present<br>on both banks;<br>channelization may be<br>extensive, and 40%-<br>80% of steam reach<br>channelized and<br>disrupted.                                                              | Extensive<br>channelization;<br>shored with Gabon<br>cement; heavily<br>urbanized areas; in<br>steam habitat greatly<br>altered or removed<br>entirely. |  |  |  |  |  |
| OOONL 1                                           | 20 19 (18) 17 16                                                                                                                                                                                                    | 15 14 13 12 11                                                                                                                                                                                                                      | 10 9 8 7 6                                                                                                                                                                                                | 54321                                                                                                                                                   |  |  |  |  |  |
| 5. Sediment<br>Deposition<br>SCORE                | Less than 20% of bottom<br>affected; minor<br>accumulation of fine and<br>coarse material at snags<br>and submerged<br>vegetation; little or no<br>enlargement of islands or<br>point bars.                         | 20-50% affected; some<br>accumulation;<br>substantial sediment<br>movement only during<br>major storm even; some<br>new increase in bar<br>formation.                                                                               | 50-80% affected;<br>moderate deposition;<br>pools shallow,<br>moderately silted;<br>embankments may be<br>present on both banks;<br>frequent and substantial<br>sediment movement<br>during storm events. | Heavily silted; >80%<br>affected;<br>movement/shifting of<br>bottom occurs<br>frequently; pools<br>nearly absent due to<br>deposition.                  |  |  |  |  |  |
| SCORE                                             | 20 19 18 17 16                                                                                                                                                                                                      | 15 (14) 13 12 11                                                                                                                                                                                                                    | 10 9 8 7 6                                                                                                                                                                                                | 54321                                                                                                                                                   |  |  |  |  |  |

•

2

Page 1 of 3 (Pg.3 optional) GBMc Rev: 1.2

#### FIELD DATA SHEETS - FISH

Waterbody Name: Loutre Creek (UC-1) Client: <u>LIM</u> BI Project no: 2160-05-070. (EM. Investigators: STP

Date Sample Collected: <u>4/28/05</u> Habitat Forms Completed: yes y no

Location: Union Eldorado Ecoregion: Culf 'n Weather: Ca Niba

Form Completed By: Form Checked By:\_

Fish Sampling Completed

|                              | Collection Site Observed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ervations                                                                                                       | ·             |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------|
|                              | Above Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Below Station                                                                                                   | Additional    |
|                              | EXPERIMENTAL HERE OF A GUARDER BOOK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | Observations: |
| Periphyton:                  | 0 (0 2 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01234                                                                                                           |               |
| Filamentous Algae:           | 0 1 2 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01234                                                                                                           |               |
| Macrophytes:                 | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01234                                                                                                           | · ·           |
| Slimes:                      | <b>()</b> 1 2 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 1 2 3 4                                                                                                       |               |
| Macroinvertebrates:<br>Fish: | 012(3)4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01234                                                                                                           |               |
|                              | 0 1 2 (3) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01234                                                                                                           | · ·           |
| Other:                       | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 1 2 2 4                                                                                                       |               |
| 0=Not Ob                     | served, 1=Rare, 2=Common, 3=Abundant,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4=Dominant                                                                                                      |               |
| Riffle/Run:                  | A STATE OF THE PROPERTY OF THE |                                                                                                                 |               |
| Shallow Pool:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |               |
| Deep Pool:                   | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · · · · · · · · · · · · · · · · · ·                                                                           | •             |
| Backwaters:                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |               |
|                              | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |               |
| Chanelized:                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |               |
| Woody debris:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |               |
|                              | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |               |
| Emergent Vegatation:         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |               |
| Submerged Vegetation:        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |               |
| Depositional Area:           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |               |
| Overhanging Veg:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | •             |
| Root Wads:                   | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |               |
| Undercut Banks:              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ······                                                                                                          |               |
| Filamentous algae:           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |               |
| Leafy debris:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ······································                                                                          |               |
|                              | and a state of the | The second s  | • •           |
| Substrate                    | Score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a de la la companya de la companya d |               |
| Bedrock:                     | X 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Adj. Score                                                                                                      | · .           |
| _g. Boulder:                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |               |
| Boulders:                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·                                                                           |               |
| Rubble:                      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |               |
| Gravel:                      | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 | ,             |
| Sand:                        | <u>X0.5</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |               |
| Mud/Silt: 20/20              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |               |
|                              | 4/0 X 0.1<br>bundant 11-15, Common 6-10, Sparce 1-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | •             |

Revision 1.2 05/28/02 GBMc Assoc. Doc.1 Page 1 of 2

|                | Sampling Gear Type: Electrofishing Seine Gill nets                       |               |
|----------------|--------------------------------------------------------------------------|---------------|
| -              | Unit of Effort: Above MT 2-1692 -Below:-                                 |               |
| $\bigcirc$     | Quantity of Available Fish Cover:                                        |               |
| •              | Above Station: Very Abundant Abundant, Moderate, Sparse, Absent          |               |
|                | Below Station: Very Abundant, Abundant, Moderate, Sparse, Absent         |               |
|                | Site Description & Notes:                                                | ·             |
|                | Above Station: <u>Canopy cover prolifiz</u> , sediment depas<br>abundant | Thin          |
| 51 M05         | Below Station:                                                           |               |
| AB chut        | Fish Species Observed                                                    | Keleose       |
| (A)            | Above Station # 4C-1 Below Station #                                     | 1 .           |
| 68)-           | Long ear Un                       | ( · · ·       |
| 46)-           | Gampusta un un un un un un un                                            |               |
| (1)<br>A       | Golden shiner 1100                                                       | 1             |
| 3.             | Colden top minnow 111<br>Pirak Perch                                     |               |
| <u> </u>       | Blue A Not Frank                                                         | $\mathcal{O}$ |
| <b>以</b> 一.    | Notropis 1 Notropis emiliae (Pugnose Minnow)                             |               |
| <u></u>        | Spottic surfish 111                                                      | • • •         |
| ()             | broen 1                                                                  |               |
| -              |                                                                          |               |
| -              |                                                                          | • •           |
|                |                                                                          |               |
| \$<br>←        |                                                                          | •             |
| . <del>-</del> |                                                                          | •             |
| -              |                                                                          | · .           |
| . –            |                                                                          |               |
| -              |                                                                          |               |
| -              |                                                                          |               |
|                |                                                                          |               |
|                | Revision 1.2 05/28/02<br>GBM <sup>°</sup> & Assoc. Doc. 1<br>Page 2 of 2 |               |
|                |                                                                          |               |

### FIELD DATA SHEETS - BENTHIC INVERTEBRATES

Waterbody Name: Loutre Creek (2C-1) Client: Lion Project no: \_\_\_\_\_\_0-05-070 Investigators: BJP CEM

Date Sample Collected: <u>9/28/0</u> Habitat Forms Completed: yes / no

Location: AR. Eldred min CA Ecoregion: Gu, Weather: Clear Wing

Form Completed By: <u>Stroked</u> Form Checked By: \_\_\_\_\_ Fish Sampling Completed; <u>yes</u>/ no

| Collecti               | on Site Observation                                                                                             | ons                                  |                |                     | · ·                                   |
|------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------|---------------------|---------------------------------------|
|                        |                                                                                                                 | T                                    | Macroinvertet  | orate Qualitative   | Sample List                           |
|                        | Above Station                                                                                                   | Below Station                        | Таха           | Above Station       |                                       |
| Barinhuteau            | a la la la la carlo de la c | A laster                             | Annelida       |                     |                                       |
| Periphyton:            | 0 (1) 2 3 4                                                                                                     |                                      | Decapoda       |                     |                                       |
| Filamentous Algae:     | 01234                                                                                                           | 01234                                | Gastropoda     |                     |                                       |
| Macrophytes:           | (01234                                                                                                          | 01234                                | Pelecypoda     | · · ·               |                                       |
| Slimes:                |                                                                                                                 | 01234                                | Hemiptera      |                     |                                       |
| Macroinvertebrates:    | 01234                                                                                                           | 01234                                | Coleoptera     |                     |                                       |
| Fish:                  | 0 1 2 3 4                                                                                                       | 01234                                | Lepidoptera    |                     | · · · · · · · · · · · · · · · · · · · |
| Other                  | 012(3)4                                                                                                         |                                      | Odonata        |                     | · ·                                   |
|                        | 01234                                                                                                           | 01234                                | Megaloptera    |                     |                                       |
|                        |                                                                                                                 |                                      | Diptera        |                     |                                       |
| 0=Not Observed, 1=Rare | , 2=Common, 3=Abund                                                                                             | ant, 4=Dominant                      | Chironomidae   |                     |                                       |
|                        | Ribillan Semana en 195                                                                                          |                                      | Plecoptera     |                     |                                       |
|                        | 10 r 185                                                                                                        |                                      | Ephemeroptera  |                     |                                       |
| Shallow Pool:          | 70                                                                                                              |                                      | Trichoptera    |                     |                                       |
| Deep Pool:             | 20                                                                                                              |                                      | Amphipoda      | ·                   |                                       |
| Backwaters:            |                                                                                                                 |                                      |                |                     |                                       |
| Chanelized:            |                                                                                                                 |                                      |                |                     |                                       |
| Western Street         | Male Schooler etc.                                                                                              |                                      |                |                     |                                       |
| Woody Debris:          | .50                                                                                                             | <u>an an Alastin (1997), per 199</u> | l              | · .                 |                                       |
| Emergent Vegatation:   | 0                                                                                                               |                                      | R=Rare, C=Comr | non, A=Abundant, D: | =Dominant                             |
| Submerged Vegetation:  | 0                                                                                                               |                                      | Rare<3, Common | 3-9, Abundant>10, D | ominant>50                            |
| Depositional Area:     |                                                                                                                 |                                      | Site Descript  | lion and Observ     | ations:                               |
| Overhanging Veg:       | 10                                                                                                              | ·····                                |                |                     |                                       |
| Root Wads:             | 30                                                                                                              |                                      |                |                     |                                       |
| Undercut Banks:        | the second s  |                                      |                |                     |                                       |
| Filamentous algae:     | 10                                                                                                              |                                      |                |                     |                                       |
| A an ionious aigae:    |                                                                                                                 |                                      |                |                     | ·                                     |
| Leafy Debris:          | · •••                                                                                                           |                                      |                |                     |                                       |
| Other:                 |                                                                                                                 |                                      |                |                     |                                       |
|                        |                                                                                                                 |                                      |                |                     | • •                                   |

Revision 1.2 05/28/02 GBMc Assoc. Doc.2 Page 1 of 2

nid Di D,

|                                        | Sample Technique   | Sedimen                                | t?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ate <u>5/5/05</u>             |
|----------------------------------------|--------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| tat Description: ABC                   | DVE Reach 6 c-1    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| DEL                                    |                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| DCL                                    | OW Reach LC-2      | ······································ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                                        | MACROINVERTE       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| OVE Station #                          | MACROINVERTE       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                             |
| t. Taxa                                | Tally              |                                        | V Station #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |
| 9 Oligochater                          | H11 HA HA HA HA HI | <u>Cnt.</u>                            | Taxa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tally                         |
| 1 Lecohe (moorbl                       |                    |                                        | Oliso.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MMM111                        |
| 3 Gray baring                          | W/                 |                                        | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |
| 1 Amphipoda                            |                    | 1_                                     | CinyFish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>W7//</u>                   |
| 3 Contricula                           | 1107 1147 111      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 1 Belostomin                           | <u>W1,W1,111</u>   |                                        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |
| Ania                                   | /                  |                                        | Belastona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |
| Likellulia                             |                    |                                        | Avia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |
| The Ale                                |                    |                                        | Libellula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _ /                           |
| Anopheles                              |                    |                                        | 1 exatama                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - //                          |
| Bittacanosphe-                         |                    |                                        | Marquito                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _ #                           |
|                                        |                    |                                        | Contraid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| _ levitherin                           |                    |                                        | Corixidan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |
| ······································ | · · ·              |                                        | and the second distance of the second distanc | + RB                          |
| _ Chiconomidae                         |                    |                                        | ENallAquia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |
| 5 Chirononimue                         | WAT WIT MI         | 28                                     | Chirorowidow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and the case (1) of 1/16 ( 1) |
| 5 TANY pod, Nas                        | un un den den pri  | 14                                     | TANY DECIMAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HT MI WI (1/ 1/1/1/1          |
| 7 tonyforsini                          | WT11               |                                        | Tanytarsin1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WI IHI III                    |
| · · · · · · · · · · · · · · · · · · ·  |                    |                                        | Jan Jan Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1871111                       |
|                                        |                    |                                        | Gauxidoan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m                             |
| Probezza                               | _ /                | 2                                      | Probuckia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - K                           |
|                                        |                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| Diseutis                               |                    |                                        | Herntoma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| leurodytes                             |                    | 2                                      | Tipula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <i>i</i> )                    |
|                                        |                    |                                        | Dytions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                             |
| Tipula                                 |                    |                                        | indiacon thus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |
|                                        |                    |                                        | Hydrochus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . <u>1</u>                    |
| ·····                                  |                    |                                        | UNAINI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BII                           |
|                                        |                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| :TOTAL:                                |                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                             |
|                                        |                    |                                        | :TOTAL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |
|                                        | Community          | <u>/ Structure</u>                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| ABOV                                   | E BELOW            |                                        | ABOVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BELOW                         |
| Эсор.                                  |                    | % Odon.                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>                       |
| chop.                                  |                    | % Cole.                                | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |
| т                                      |                    | % Crustacea                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                                        |                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |

1.1 6/99 age 2 of 3

•

### GENERAL PHYSICAL CHARACTERIZATION FIELD FORM

| STATION I.D:   | 1-2                                                                                                              |                                                                           | LOCATION                                |                                                    | <u> </u>                                                                                |                         |          |
|----------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------|----------|
| STREAM NAME:   | outry Amer                                                                                                       |                                                                           |                                         | LION                                               | Oil                                                                                     |                         | ······   |
| , LAT:         | LONG:                                                                                                            | ······                                                                    | PROJECT:                                | <u> </u>                                           | chich the                                                                               |                         |          |
| INVESTIGATORS: | SKH/JB                                                                                                           | DATE/TIME:                                                                |                                         |                                                    | FORM CHECKED                                                                            | BY:                     |          |
|                |                                                                                                                  | · ·                                                                       | **************************************  |                                                    | <u> </u>                                                                                | ·                       |          |
|                | └│ rain (ste<br>└│ showers (i<br>%□ % clou<br>☑  clean                                                           | eavy rain) [<br>pady rain) [<br>intermittent) [<br>id cover [<br>/sunny ] | 24-hr<br>]<br>]%                        |                                                    | In the last 7 days<br>rature                                                            | ? X Yes<br>•C/ºF        | s 🛄 No   |
|                | Stream Subsyster<br>Perennial<br>Stream Origin<br>Glacial<br>Montane, non-g<br>Swamp and bog<br>Stream Gradient: | Intermittent                                                              |                                         | lins                                               | Stream Type<br>Coldwater Area:<br>Catchment Area:<br>Stream Order:<br>ft/mi) X Low (<10 |                         |          |
|                | Flows High [] Modera                                                                                             |                                                                           | 444                                     |                                                    |                                                                                         |                         | inuosity |
|                | Predominant Surr  Forest% Pasture% Row Crops% Urban%                                                             | ounding Land<br>Sub-Urt<br>Comme                                          | use<br>oan<br>rcial%<br>al <u>/00</u> % |                                                    | al Watershed NPS I<br>No evidence [] Age<br>Industrial Storm Wat<br>Jrban/Sub-Urban St  | ricultural<br>ter       | r        |
|                | 24Riffle _/%                                                                                                     | 🗌 Run                                                                     | % 🛛 Pool 4                              | 79 %                                               | os/Grasses 100%                                                                         | <b></b>                 | %        |
|                | Roads 🖾 Bridg<br>X Dams 🔲 Trash                                                                                  | es Pipelines                                                              | Bea<br>Cess C Min                       | iver Dams<br>ing 🔲 ATV                             | Crossing Other                                                                          | Source                  |          |
|                | Channelized:<br>Local Watershed E<br><u>Channel Dynamics</u><br>Water Odors<br>Normal/None<br>Petroleum<br>Fishy | irosion: 🗍 No                                                             | s 🗌 Som<br>ne 🔲 Minir<br>grading 🕅      | e In<br>nal M<br>Degrading<br>Water Surfa<br>Slick | No<br>Moderate 🔲 Hea                                                                    | ivy<br>leadcuttin<br>os | g        |
|                | _ Opaque                                                                                                         | arity (If not mea<br>Slightly turb<br>Stained                             | id 1                                    | Furbid<br>Dther                                    | 24.0 A                                                                                  | AU                      |          |
|                |                                                                                                                  | Sewage 🛛                                                                  | Petroleum<br>None                       | Sedime<br>Slude<br>Sand<br>Other                   |                                                                                         | ⊠ Olls                  |          |

l

١

|                          | GENERAL PHYSIC                                                                                            | AL CHARACTER              | ZATION FIELD FORM                                                                                  |
|--------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------|
| STATION I.D.             | C-2                                                                                                       | LOCATION                  | Union, AR; Eldorado                                                                                |
| STREAM NAME              | Loutre Creet                                                                                              | RIVER BASIN               | Wachilz ZIOOrado                                                                                   |
| LAT                      | LONG                                                                                                      | CLIENT LIUM               |                                                                                                    |
| INVESTIGATORS            |                                                                                                           | B                         |                                                                                                    |
| FORM COMPLET             | еd вү<br>/ <i>J73</i>                                                                                     | DATE 4/21/05<br>TIME 1900 | REASON FOR SURVEY                                                                                  |
| WEATHER                  | Now                                                                                                       | Past 24                   | Has there been a heavy rain in the last 7 days?                                                    |
| CONDITIONS               |                                                                                                           | nours                     | Yes No                                                                                             |
|                          | storm (heavy rain)<br>rain (steady rain)<br>showers (intermitten<br>% % cloud cover<br>clear/sunny        | at)                       | Air Temperature <i>N_SU</i> °C <i>P</i> F<br>Other                                                 |
| STREAM<br>ATTRIBUTES     | Stream Subsystem                                                                                          |                           | Stream Type                                                                                        |
| ATTROUCO                 | Perennial DIntermitte                                                                                     | nt 🔲 Tidal                | Coldwater GWarmwater                                                                               |
|                          | Stream Origin<br>Glacial<br>Non-glacial montane<br>Swamp and bog                                          | Spring-fed                |                                                                                                    |
| HYDROLOGY                | Flows                                                                                                     | tend to be                | Flow's Measured?                                                                                   |
| WATERSHED<br>FEATURES    | Predominant Surrounding  <br>Forest Omme<br>Field/Pasture Industria<br>Agricultural Other_<br>Residential | rcial                     | Local Watershed NPS Pollution                                                                      |
|                          |                                                                                                           |                           | None Moderate Heavy                                                                                |
| INSTREAM<br>FEATURES     | Proportion of Reach Repres                                                                                | sented by Stream I        |                                                                                                    |
|                          | Channelized Yes [                                                                                         | Some No                   | •                                                                                                  |
| NATED                    | Dam Present  Ves [                                                                                        | Some 🗌 No                 |                                                                                                    |
| NATER/<br>DBSERVATIONS   | Water Odors         Normal/None       Sewage         Petroleum       Chemil         Fishy       Other     | je j                      | Water Surface Øils         Slick       Sheen         Globs         Flecks       None         Other |
|                          | Turbidity (if not measured)         Clear       Visightly         Opaque       Staine                     |                           | urbid<br>ther                                                                                      |
| EDIMENT/<br>DBSERVATIONS | Sediment Odor                                                                                             | Petroleum                 | Sediment Deposits Sludge Sawdust Oils Sand Relict shells Other                                     |

.

Page 1 of 1 VI.0 04/00

ſ

**Discharge/Flow Measurement Form** 

.

| Cotton: - A C             |                                            |                  |                        |         | ŀ                 | ŀ            |                  |              |      |           |
|---------------------------|--------------------------------------------|------------------|------------------------|---------|-------------------|--------------|------------------|--------------|------|-----------|
|                           |                                            |                  | Distance               |         | Denth             |              | ( <del>4</del> ) | Method       | 6    | ©.        |
| Waterbody: Low            | Deec                                       | •                | from                   |         |                   | <u> </u>     | Velocity         | (0.2<br>(0.2 | Area | uischarge |
| Date: 1/128/              |                                            |                  | point                  |         | <u> </u>          |              | t Point          | 0.6<br>or    |      |           |
| Crew: Shit / or is        | Start Time: /2.2.0                         | Recorder: SWH    |                        | (M)     | ê                 | 'sßoj<br>OPi | ε                | 0.8)         | È    | ð         |
| ~                         | End Time: 1, 3, 4,                         | GH. Chánge:      | 20                     | 2.0     | 0.3               | o.           | 28.              |              |      |           |
|                           | 1 C 30                                     |                  | 57.0                   | 2.0     | 1                 | 0            | E 1              | •            |      |           |
|                           | Staff/Gage:                                | hrs.             | 0, Ŋ                   | 2       | 6,9               | 0            | .89              |              |      |           |
| Width: 17.0               | Area:                                      | Velocity:        |                        |         | 5.0               | 4            |                  |              |      |           |
| Disch/Flow:               | Method:                                    | No Secs:         | 0.01                   | ٩,      | <u>ين</u><br>مربع | é            | 8 2.             |              |      |           |
| Meter No:                 | Max Vel:                                   | Min Vel:         | 14.0                   |         | 2.0               | 0 4          | 0.80             | +-           |      |           |
|                           |                                            |                  | 10-21                  | 2.0     |                   |              | 108              |              |      |           |
|                           | Ø                                          |                  | 44                     | 1 0 1   | 0.2               |              | Ą                |              |      |           |
| Wading, Boat, Upstre      | Upstream, pownstream, Side Bridge          | geft/mi,         |                        |         |                   |              |                  |              |      |           |
| above, below gage,        | and                                        |                  |                        |         |                   |              |                  |              |      |           |
|                           |                                            |                  |                        |         |                   | -            |                  |              |      |           |
|                           | ment good rair poor based on the following | on the following |                        |         |                   |              |                  |              |      |           |
| conditions: Cross section |                                            |                  |                        |         |                   | -            |                  |              |      |           |
| Flow                      | Weather                                    |                  |                        |         |                   | -            |                  |              |      |           |
| Other                     | Air<br>°F@                                 |                  |                        |         |                   |              |                  | -            |      | •         |
| Gade                      |                                            |                  |                        |         |                   | ╞            |                  |              |      |           |
|                           |                                            |                  |                        |         |                   |              | -                |              |      |           |
| Observer                  |                                            |                  |                        |         |                   | +            | +                |              |      |           |
|                           |                                            |                  | · ·                    |         |                   |              |                  |              |      |           |
| Control                   |                                            |                  |                        | •       |                   |              |                  |              |      |           |
|                           |                                            |                  |                        |         |                   |              |                  |              |      |           |
|                           |                                            |                  |                        |         |                   | _            |                  |              |      |           |
| Remarks                   | -                                          |                  |                        | -       | ╋                 | +            | +                |              |      |           |
|                           |                                            |                  | TOTALS                 |         |                   | _            |                  |              |      |           |
|                           |                                            |                  | I OI MES               | -       | ┦                 | ÷            |                  | ·            |      |           |
|                           |                                            |                  | Converte Batton ( plat | e Botto | (44)              | ,            |                  | ш.,          |      |           |
|                           | •                                          |                  |                        |         |                   |              |                  |              |      |           |

V1.0 1096

Checked by

Completed By\_\_\_\_

Reviewed by

| Lion Oil         |                                                                                                                 |           | date             | 4/28/2005    |             | Start | 1220 |
|------------------|-----------------------------------------------------------------------------------------------------------------|-----------|------------------|--------------|-------------|-------|------|
|                  | · · · · · · · · · · · · · · · · · · ·                                                                           |           |                  |              |             | Stop  | 1230 |
| Station:         | LC-2                                                                                                            |           |                  |              |             | ]     | 1200 |
| Waterbody:       | Loutre Cree                                                                                                     | k         |                  |              |             | 1     |      |
| Crew:            | BJP/SKH                                                                                                         |           |                  |              | ······      | 4     |      |
| Width (ft):      | 17.0                                                                                                            | Area:     | 5.1              | Max Vel:     | 1.01        | 1     |      |
| Disc/Flow (cfs): | 4 1 9                                                                                                           | Velocity: | 0.78             | Min Vel:     | 0           | -     |      |
|                  |                                                                                                                 |           |                  |              |             | 3     |      |
|                  |                                                                                                                 |           |                  |              |             |       |      |
|                  |                                                                                                                 |           | No.              |              |             | Ĩ     |      |
|                  |                                                                                                                 |           | wys)icielliszeni |              |             |       |      |
|                  | i wana in                                                                                                       |           | a deitair a      | ander doer - | Ustra para  |       |      |
|                  | the second se |           |                  |              | 查到公司        |       |      |
| 2.0              | 2.0                                                                                                             | 0.3       | 0.82             | 0.6          | 0.492       |       |      |
| 4.0              | 2.0                                                                                                             | 0.3       | 0.92             | 0.6          | 0.552       |       |      |
| 6.0              | 2.0                                                                                                             | 0.3       | 0.89             | 0.6          | 0.534       |       |      |
| 8.0              | 2.0                                                                                                             | 0.3       | 1.01             | 0.6          | 0.606       |       |      |
| 10.0             | 2.0                                                                                                             | 0.3       | 0.78             | 0.6          | 0.468       |       |      |
| 12.0             | 2.0                                                                                                             | 0.3       | 0.8              | 0.6          | 0.48        |       |      |
| 14.0             | 2.0                                                                                                             | 0.3       | 0.96             | 0.6          | 0.576       |       |      |
| 16.0             | 2.0                                                                                                             | 0.3       | 0.8              | 0.6          | 0.48        |       |      |
| 17.0             | 1.0                                                                                                             | 0.3       | 0                | 0.3          | 0           |       |      |
|                  |                                                                                                                 |           |                  |              |             |       |      |
|                  |                                                                                                                 |           |                  |              |             |       |      |
|                  |                                                                                                                 |           |                  |              |             |       |      |
|                  |                                                                                                                 |           |                  |              |             |       |      |
|                  |                                                                                                                 |           |                  |              |             |       |      |
|                  |                                                                                                                 |           |                  |              |             |       | 1    |
| ————             |                                                                                                                 |           |                  |              |             |       |      |
|                  |                                                                                                                 |           |                  |              |             |       |      |
|                  |                                                                                                                 |           |                  |              | n ar Ase. a |       |      |
| TAUCOR STATE     | <u>Re (現例に)的</u> 性                                                                                              | SO 0      |                  |              |             |       |      |

. .

.

.

| Station #: LC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stream: Cov                       | m Habitat Asses                                                                              | Date/Time: 4                                                      |                                                                         |                                             | X11/08                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------|--------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Location: Unit                    | - Conty                                                                                      | 0 10 50-1                                                         | 205                                                                     | <u>_</u>                                    |                                |
| 1. Reach Length D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | etermination                      | Pur                                                                                          | Purlamo LIS                                                       | flat: 33                                                                | 11 46                                       | 8 de                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                                                                                              |                                                                   |                                                                         |                                             |                                |
| Bankfull Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                                                                                              | NGIN COMMENTS                                                     | Service and the service of the                                          |                                             |                                |
| Bankfull Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20 25.6                           |                                                                                              | 2 \$ 19.9                                                         | 21,2 "                                                                  | 124 (                                       | 42.4                           |
| Average width time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -2 3.1'                           |                                                                                              | 2/21/                                                             | 2.2                                                                     | na                                          | na                             |
| H20 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .9 1 1.6                          | tal Length divided by                                                                        |                                                                   |                                                                         |                                             |                                |
| 2. Riffle-Pool Sequ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ence                              |                                                                                              |                                                                   |                                                                         |                                             |                                |
| 에 가장에 있는 것을 가지 않는다.<br>이 가장에서 가지 않는 것을 하는 것을                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | 1.1.11111月1日(1993年)<br>1.111日日(1993年)<br>1.111日日日(1993年)                                     |                                                                   |                                                                         |                                             |                                |
| Riffle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                                                                              |                                                                   | usid attraction of the                                                  |                                             | <u>in a lineal</u>             |
| Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                                                                                              |                                                                   |                                                                         |                                             |                                |
| Pool 42.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 42.4 42                         | 2.7 42.4 42.                                                                                 | 4 42.4 42.                                                        | 4 42.4 4                                                                | 2.4 4/2                                     | .4                             |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                                                                                              |                                                                   |                                                                         | <u> </u>                                    |                                |
| Sequence m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mon                               | marp                                                                                         | my                                                                | m                                                                       | ~~~                                         | ~                              |
| "Riffle≈"xxx", Run="<br>Mo≪+ ∩ +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ", Pool="~~~<br>~ <               | is chandled                                                                                  | Pod/Run                                                           | NUTE: Str                                                               | in Hall.                                    | 1 Rifth                        |
| 3. Depth and Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Regime                            |                                                                                              |                                                                   | Files                                                                   | , if Brita                                  | Evenih                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   | Concension of                                                                                | vo) etge (vo) (to (ag)                                            |                                                                         |                                             |                                |
| Riffle Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                                                                              |                                                                   |                                                                         | f                                           |                                |
| Riffle Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                                                                              | <u>  _  </u>                                                      |                                                                         |                                             | · · ·                          |
| Pool Depth 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.1 0.                            | 9 0.7 1.2                                                                                    | 1.0 0.8                                                           | 0.9 0.3                                                                 | 7 1.1                                       | .99                            |
| Pool Width 28.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2017                              | 2 18 20                                                                                      | 18 71                                                             | 18 20                                                                   | 19                                          | 19.9                           |
| I. Epifaunal Substr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ate, Percent Sta                  | Shallow Bo<br>ble Habitat (for Mac                                                           | ris no Deip                                                       |                                                                         |                                             | ┛━҂ <u>_ぽ<sub>╅╹</sub>┊</u>    |
| BORNE THE SAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.4                              |                                                                                              |                                                                   |                                                                         |                                             |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                                                                                              |                                                                   |                                                                         | 1. 出一组织后的是否相关                               | CAN 2000 CONTRACTOR CONTRACTOR |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{1}{5}$                     | 10 10                                                                                        | 15 20                                                             | 15 15                                                                   | 20                                          | 14.5                           |
| % Area 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t, Percent Stable                 |                                                                                              |                                                                   | <u>15 - 75</u>                                                          | 20                                          |                                |
| <u>% Area 10</u><br>5. In-Stream Habita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t, Percent Stable                 | Pabitat (Available                                                                           |                                                                   | 15 15                                                                   | 20                                          |                                |
| <u>% Area 10</u><br>5. In-Stream Habita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t, Percent Stable                 | e Habitat (Available                                                                         | Fish Cover in We                                                  | 15 15<br>Itted Perimeter                                                | 20                                          |                                |
| % Area 10<br>5. In-Stream Habita<br>% Area 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15 15                             | Habitat (Available                                                                           |                                                                   | 15 - 15<br>htted Perimeter<br>15 - 15                                   | 20                                          | <u>14.5</u>                    |
| <u>Area</u> 10<br>In-Stream Habita<br>Million<br>Area 10<br>Substrate Charac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15 15                             | Habitat (Available                                                                           | Fish Cover In We                                                  | <u>15</u> <u>15</u><br>tted Perimeter<br>15 <u>15</u>                   | 20                                          | 14.5                           |
| <u>Area</u> 10<br>In-Stream Habita<br>Area 10<br>Substrate Charac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15 15                             | Habitat (Available                                                                           | Fish Cover in We                                                  | 15 15<br>Atted Perimeter<br>15 15                                       | 20                                          | <u>14.5</u><br>:<br>14         |
| <u>Area</u> 10<br>In-Stream Habita<br>Area <u>10</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15 15                             | Habitat (Available                                                                           | Fish Cover In We                                                  | <u>15</u> . <u>15</u><br><b>Sted Perimeter</b><br><u>15</u> . <u>15</u> | 20                                          | 14.5                           |
| $\&$ Area $10$ $\therefore$ In-Stream Habita $\bigcirc$ Area $\land$ Area $\land$ O $\bigcirc$ Substrate Charac $\bigcirc$ Ool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{15}{15}$                   | Habitat (Available                                                                           | Fish Cover In We                                                  | <u></u>                                                                 | 20                                          | 14.5                           |
| $\&$ Area $10$ $\therefore$ In-Stream Habita $\bigcirc$ Area $\land$ Area $\land$ O $\bigcirc$ Substrate Charac $\bigcirc$ Ool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{15}{15}$                   | Habitat (Available                                                                           | Fish Cover In We                                                  | <u></u>                                                                 | 20                                          | 14.5                           |
| 6 Area $10$ $6$ Area $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $100$ $70$ $100$ $700$ $100$ $700$ $100$ $700$ $100$ $700$ $100$ $700$ $100$ $700$ $100$ $700$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{15}{5(2)} \frac{15}{5(2)}$ | Habitat (Available<br>10 10<br>inant Substrate)<br>$5(2) \leq (2)$<br>sobble(5), GC=Gravel C | Fish Cover In We<br>10 20<br>20<br>5(2) $5(2)coarse(4), GF=Grave$ | <u></u>                                                                 | 20                                          | 14.5                           |
| 6 Area $10$ $6$ Area $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $100$ $70$ $100$ $700$ $100$ $700$ $100$ $700$ $100$ $700$ $100$ $700$ $100$ $700$ $100$ $700$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{15}{15}$                   | Habitat (Available                                                                           | Fish Cover In We<br>10 20<br>20<br>5(2) $5(2)coarse(4), GF=Grave$ | $\frac{15}{5/2}$                                                        | 20<br>20<br>(20)<br>(2)<br>(2), 9C=Silt/(   | 14.5<br>14<br>5) 2<br>Diay(1)  |
| $\&$ Area $10$ $\therefore$ In-Stream Habita $\bigcirc$ Area $\bigcirc$ Area $\land$ Area $\land$ O $\bigcirc$ Substrate Charac $\bigcirc$ O $\bigcirc$ O $\bigcirc$ O $\bigcirc$ Area $\bigcirc$ O $\bigcirc$ Area $\bigcirc$ O $\bigcirc$ Area $\bigcirc$ Area $\bigcirc$ O $\bigcirc$ Area $\bigcirc$ Area $\bigcirc$ O $\bigcirc$ Area $\bigcirc$ Area $\bigcirc$ Area $\bigcirc$ Area </td <td><math display="block">\frac{15}{15}</math></td> <td>Habitat (Available</td> <td>Fish Cover In We<br/>10 20<br/>20<br/>5(2) <math>5(2)<br/>coarse(4), GF=Grave</math></td> <td><u></u></td> <td>20<br/>20<br/>(20)<br/>(2)<br/>(2), 9C=Silt/(</td> <td>14.5</td> | $\frac{15}{15}$                   | Habitat (Available                                                                           | Fish Cover In We<br>10 20<br>20<br>5(2) $5(2)coarse(4), GF=Grave$ | <u></u>                                                                 | 20<br>20<br>(20)<br>(2)<br>(2), 9C=Silt/(   | 14.5                           |
| Area 10<br>In-Stream Habita<br>Area 10<br>Substrate Charac<br>Substrate Charac<br>Resedwork(7), BLD=1<br>Embeddedness (<br>Embeddedness (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{15}{2}$                    | Habitat (Available                                                                           | Fish Cover In We<br>10 20<br>20<br>5(2) $5(2)coarse(4), GF=Grave$ | $\frac{15}{5/2}$                                                        | 20<br>20<br>(20)<br>(2)<br>(2), 9C=Silt/(   | 14.5<br>14<br>14               |
| % Area     10       % Substrate Charac       % Substrate Charac       % R=Bedrock(7), BLD=       . Embeddedness (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{15}{2}$                    | Habitat (Available                                                                           | Fish Cover In We<br>10 20<br>20<br>5(2) $5(2)coarse(4), GF=Grave$ | $\frac{15}{5/2}$                                                        | 20<br>20<br>30<br>5/2)/3<br>1(2), 9C=SIII/( | 14.5<br>14<br>14               |

:

•

.

.

'ow

#### Stream Habitat Assessment (Semi-Quantitative)

| Station #: | 4-2            |        | T                       | Date/Tin | ne: U   | testo         | 15                       |   | Initials | sŁ | 4/5      | R                  |
|------------|----------------|--------|-------------------------|----------|---------|---------------|--------------------------|---|----------|----|----------|--------------------|
| 9. Aquat   | ic Macrophytes | and Pe | oriphyto                | on (Perc | ent Cov | erage)        |                          |   | <u> </u> |    | <u>.</u> |                    |
|            |                |        |                         |          |         |               |                          |   | jud fil  |    |          |                    |
| Riffle     | Macrophytes    |        |                         |          |         |               |                          |   |          |    |          | <u>Mariatina (</u> |
| ·····      | Periphyton     |        |                         |          |         |               |                          |   |          |    |          |                    |
| Pool       | Macrophytes    | 5      | 5                       | 5        | Ø       |               | 5                        | 6 |          |    |          |                    |
|            | Periphyton     | -      | $\overline{\mathbf{C}}$ | 5        | 0       | $\frac{2}{2}$ | $\overline{\mathcal{O}}$ | 0 | 5        |    | 10       | 4.5                |

#### 10. Canopy Cover (Percent Stream Shading)

| and the second |   |
|------------------------------------------------------------------------------------------------------------------|---|
| Shading O                                                                                                        | ŀ |

#### 11. Bank Stability (Score) and Slope (Degrees)

| artistan). |     |     |     | 34<br> |    |    |    |     |    |    | de ter Bergte |
|------------|-----|-----|-----|--------|----|----|----|-----|----|----|---------------|
| Score      | 4   | 5   | 5   | 5      | 6  |    | 6  | 4   |    | 2  | 47            |
| Slope (°)  | 750 | 85  | 70  | 70     | 70 | 80 | 80 | 70  | 70 | 85 | 7/            |
|            |     |     |     |        |    |    |    |     |    |    |               |
| Score      | 5   | 5   | le  | · Q ·  | .4 | le | 3  | : 5 | 2  |    | $\langle 2$   |
| Slope (°)  | 80° | 170 | 700 | 60     | 70 | 80 | 80 | 60  | 50 | 50 | 67            |

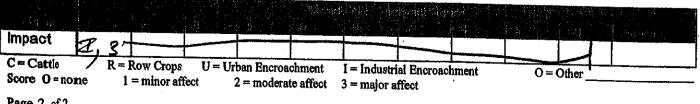
Score 9-10 = Stable, < 5% bank affected.

Score 3-5 = Moderately unstable, 30-59% bank eroding.

Score 6-8 = Moderately stable, 5-29% of bank eroding Score 1-2 = Unstable, 60-100% bank eroding.

٢.

#### 12. Vegetative Protection (Percent Banks Protected)


| THOUGH 2 | 20 |    |    |      |    |    |     |     |     |    |      |
|----------|----|----|----|------|----|----|-----|-----|-----|----|------|
| <b>%</b> | 30 |    | 60 | الدى | 70 | 60 | 70  | 6,1 | HD. | 15 | 54.5 |
| %        | 60 | 80 | 60 | 100  | 50 | 20 | UB. | 20  | 50  | 17 |      |

#### 13. Riparian Vegetative Zone Width

| Score | 0- |              |  |  |   | 1 |  |
|-------|----|--------------|--|--|---|---|--|
|       |    | 2 <b>)</b> . |  |  |   |   |  |
| Score |    |              |  |  | 1 |   |  |

Score 9-10 = Riparian Zone Width > 18 meters Score 3-5 = Riparian Zone Width 11 - 6 meters Score 6-8 =Riparian Zone Width 18 - 12 meters Score 1-2 = Riparian Zone Width < 6 meters

#### 14. Land-Use Stream Impacts



Page 2 of 2 V 2.1

# Habitat Assessment Field Data Sheet (Low Gradient)

| Station I.D: <u>LC-2</u><br>Stream name: | Client:            |
|------------------------------------------|--------------------|
| Location:                                | Date/Time:         |
|                                          | Form Completed By: |
|                                          |                    |

| Habitat<br>Parameter                  |                                                                                                                                                                                                                                      | CATE                                                                                                                                                                                                                                | GORY                                                                                                                                                                                                      |                                                                                                                                                                      |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Epifaunal                          | Optimal                                                                                                                                                                                                                              | Suboptimal                                                                                                                                                                                                                          | Marginal                                                                                                                                                                                                  | Poor                                                                                                                                                                 |
| Substrate /<br>Available<br>Cover     | Greater than 50% of<br>substrate favorable for<br>epifaunal colonization and<br>fish cover; mix of snags,<br>submerged logs, undercut<br>banks, cobble, or other<br>stable habitat; and at a<br>stage to allow full<br>colonization. | 30-50% mix of stable<br>habitat suited for<br>colonization; adequate<br>habitat for maintenance<br>of population; some<br>newfall may be present.                                                                                   | 10-30% mix of stable<br>habitat; habitat<br>availability less than<br>desirable; substrate<br>frequently disturbed.                                                                                       | Less than 10% stable<br>habitat; lack of<br>habitat obvious;<br>substrate lacking                                                                                    |
| SCORE 7                               | 20 19 18 17 16                                                                                                                                                                                                                       | 15 14 13 12 11                                                                                                                                                                                                                      | 10 9 8 7 6                                                                                                                                                                                                |                                                                                                                                                                      |
| 2. Pool Substrate<br>Characterization | Mixture of substrate<br>materials, with gravel and<br>firm sand prevalent; root<br>mats and submerged<br>vegetation common.<br>20 19 18 17 16                                                                                        | Mixture of soft sand,<br>mud, or clay; mud may<br>be dominant; some root<br>mats and submerged<br>vegetation present.                                                                                                               | All mud or clay to sand<br>bottom; little or no root<br>mat; no submerged<br>vegetation.                                                                                                                  | 5 (2) 3 2 1<br>Hard-pan clay or<br>bedrock; no root or<br>vegetation.                                                                                                |
| 3. Pool Variability                   | Even mix of large-shallow,                                                                                                                                                                                                           | 15 14 13 12 11                                                                                                                                                                                                                      | 109876                                                                                                                                                                                                    | 54321                                                                                                                                                                |
|                                       | large-deep small-shallow,<br>small deep pools present.                                                                                                                                                                               | Majority of pools large<br>deep; very few shallow.                                                                                                                                                                                  | Shallow pools much<br>more prevalent than<br>deep pools.                                                                                                                                                  | Majority of pools<br>small-shallow or<br>absent.                                                                                                                     |
| SCORE 0<br>4. Channel                 | 20 19 18 17 16                                                                                                                                                                                                                       | 15 14 13 12 11                                                                                                                                                                                                                      | (10)9876                                                                                                                                                                                                  | 54004                                                                                                                                                                |
| Alteration                            | No channelization or<br>dredging present. Stream<br>channel normal.                                                                                                                                                                  | Some channelization<br>present, usually in areas<br>of bridge abutments;<br>evidence of past<br>channelization, i.e.<br>dredging, (greater than<br>past 20 yrs.) may be<br>present, but recent<br>channelization is not<br>present. | Embankments present<br>on both banks;<br>channelization may be<br>extensive, and 40%-<br>80% of steam reach<br>channelized and<br>disrupted.                                                              | 5 4 3 2 1<br>Extensive<br>channelization;<br>shored with Gabon<br>cement; heavily<br>urbanized areas; in<br>steam habitat greatly<br>altered or removed<br>entirely. |
| 5. Sediment                           | 20 19 18 17 16                                                                                                                                                                                                                       | 15 14 13 12 11                                                                                                                                                                                                                      | 10 9 8 7 6                                                                                                                                                                                                | 5 4 3 (2) 1                                                                                                                                                          |
|                                       | enlargement of islands or point bars.                                                                                                                                                                                                | 20-50% affected; some<br>accumulation;<br>substantial sediment<br>movement only during<br>major storm even; some<br>new increase in bar<br>formation.                                                                               | 50-80% affected;<br>moderate deposition;<br>pools shallow,<br>moderately silted;<br>embankments may be<br>present on both banks;<br>frequent and substantial<br>sediment movement<br>during storm-events. | Heavily silted; >80%<br>affected;<br>movement/shifting of<br>bottom occurs<br>frequently; pools<br>nearly absent due to<br>deposition.                               |
|                                       | 20 19 18 17 16                                                                                                                                                                                                                       | 15 14 13 12 11                                                                                                                                                                                                                      | 10 9 (8) 7 6                                                                                                                                                                                              | 54321                                                                                                                                                                |

### Habitat Assessment Field Data Sheet (Low Gradient Cont.)

| Station I.D: LC-L | Date/Time:         |
|-------------------|--------------------|
| Stream name:      | Form Completed By: |

| Habitat<br>Parameter                    |                                                                                                                                                                                                                | CATE                                                                                                                                                                                                  | GORY                                                                                                                                                                                                                                   |                                                                                                                                                                                                                  |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | Optimal                                                                                                                                                                                                        | Suboptimal                                                                                                                                                                                            | Marginal                                                                                                                                                                                                                               |                                                                                                                                                                                                                  |
| 6. Channel Sinuosity                    | The bends in the<br>stream increase the<br>stream length 3 to 4<br>times longer than it if<br>was in a straight line.<br>20 19 18 17 16                                                                        | The bends in the stream<br>increase the stream<br>length 2 to 3 times<br>longer than if it was in a<br>straight line.                                                                                 | The bends in the<br>stream increase the<br>stream length 1 to 2<br>times longer than if it<br>was in a straight line.                                                                                                                  | Poor<br>Channel straight;<br>waterway has been<br>channelized for a<br>distance.                                                                                                                                 |
| 7. Channel Flow<br>Status               | Water reaches base of<br>both lower banks and<br>minimal amount of<br>channel substrate is<br>exposed.<br>20 19 18 17 (16)                                                                                     | 15 14 13 12 11<br>Water fills >75% of the<br>available channel; or <<br>25% of channel<br>substrate is exposed.                                                                                       | 10 9 8 7 6<br>Water fills 25-75% of<br>the available channel<br>and/or riffle substrates<br>are mostly exposed.                                                                                                                        | 5 4 3(2)1<br>Very little water in<br>channel and mostly<br>present as standing<br>pools.                                                                                                                         |
| 8. Bank Stability                       | Banks stable; no<br>evidence of erosion or<br>bank failure. <5%<br>affected.                                                                                                                                   | 15 14 13 12 11<br>Moderately stable;<br>infrequent, small areas<br>of erosion mostly healed<br>over. 5%-30% affected.                                                                                 | 10 9 8 7 6<br>Moderately unstable; up<br>to 30%-60% of banks in<br>reach show areas of<br>erosion. High erosion<br>potential during floods.                                                                                            | 5 4 3 2 1<br>Unstable; many<br>eroded areas; "raw"<br>areas frequent along<br>straight sections and<br>bends; 60-100% of<br>banks have erosion                                                                   |
| SCORE 5 LB<br>SCORE 5 RB                | Left Bank 10 9<br>Right Bank 10 9                                                                                                                                                                              | <u>876</u><br>876                                                                                                                                                                                     | (5) 4 3<br>(5) 4 3                                                                                                                                                                                                                     | <u>scars.</u><br>2 1<br>2 1                                                                                                                                                                                      |
| 9. Vegetative<br>Protection             | More than 90% of the<br>streambank surfaces<br>and immediate riparian<br>zone covered by<br>vegetation. Vegetation<br>disruption minimal or<br>not evident; almost all<br>plants allowed to grow<br>naturally. | 70-90% of the<br>streambank surfaces<br>covered by vegetation.<br>Disruption minimal or not<br>evident; one group of<br>plants likely not evident.<br>Almost all plants allowed<br>to grow naturally. | 50-70% of the<br>streambank surfaces<br>covered by vegetation.<br>Disruption obvious;<br>patches of bare soil or<br>closely cropped<br>vegetation common;<br>less than one-half of the<br>potential plant stubble<br>height remaining. | 2 1<br>Less than 50% of<br>streambank surfaces<br>covered by vegetation.<br>Disruption of stream<br>bank vegetation very<br>high; vegetation has<br>been removed; 2<br>inches or less average<br>stubble height. |
|                                         | Left Bank 10 9<br>Right Bank 10 9                                                                                                                                                                              | 8 7 6<br>8 77 6                                                                                                                                                                                       | 543                                                                                                                                                                                                                                    | 2 1                                                                                                                                                                                                              |
| 0. Riparlan<br>Vegetative Zone<br>Width | Width of riparian zone<br>>18 meters; human<br>activities (i.e., parking<br>lots, roadbeds,<br>clearcuts, lawns or<br>crops) have not<br>impacted zone.                                                        | 8 (7/ 6<br>Width of riparian zone<br>12-18 meters; human<br>activities have impacted<br>zone only minimally.                                                                                          | 5 4 3<br>Width of riparian zone<br>6-12 meters; human<br>activities have impacted<br>a great deal.                                                                                                                                     | 2 1<br>Width of riparian zone<br><6 meters; little<br>riparian vegetation to<br>human activities.                                                                                                                |
|                                         | Left Bank 10 9                                                                                                                                                                                                 | 8 7 6                                                                                                                                                                                                 | 5 4 3                                                                                                                                                                                                                                  | 2 (1)                                                                                                                                                                                                            |
|                                         | Right Bank 10 9                                                                                                                                                                                                | 8 7 6                                                                                                                                                                                                 | 5 4 3                                                                                                                                                                                                                                  | 2 (1)                                                                                                                                                                                                            |

TOTAL SCORE:

Barbour, M.T. et.al., 1999. Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers.

Page 2 of 3 (Pg.3 optional) GBMc Rev: 1.2

#### FIELD DATA SHEETS - FISH

Waterbody Name: Loutre Creek Client: Lion 011 Project no:\_2160-05-070 Investigators: \$70 EM

110

Date Sample Collected: 4/28/

Habitat Forms Completed Nes / no.

AR Eldorade Location: Union County Ecoregion: Gulf Coasta Weather: Clear 703 er

Form Completed By: BJP/REM.

Form Checked By:\_\_\_\_

Fish Sampling Completed (Ves)/ no

| -                     | Collection Site O                   | bservations                                                                                                      |               |
|-----------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------|
|                       |                                     |                                                                                                                  |               |
| San Sanaka            | Above Station<br>ムレーン               | Below Station                                                                                                    | · · ·         |
|                       |                                     |                                                                                                                  | Additional    |
| Periphyton:           |                                     | and the second | Observations: |
| Filamentous Algae:    | Em - 2 3 4                          | 01234                                                                                                            |               |
| Macrophytes:          |                                     | 01234                                                                                                            |               |
| Slimes:               |                                     | 0 1 2 3 4                                                                                                        |               |
| Macroinvertebrates:   |                                     | 01234                                                                                                            | •             |
| Fish:                 |                                     | 01234                                                                                                            | ,             |
| Other                 | 0 1 2 3 4                           | 01234                                                                                                            |               |
| 0=Not C               | bserved, 1=Rare, 2=Common, 3=Abunda | 01234                                                                                                            |               |
|                       | Melos Hapleusempred avail           | ant, 4=Dominant                                                                                                  |               |
| Riffle/Run:           |                                     |                                                                                                                  | · ·           |
| Shallow Pool:         | 70                                  | · · · · · · · · · · · · · · · · · · ·                                                                            |               |
| Deep Pool:            | 25                                  |                                                                                                                  |               |
| Backwaters:           |                                     | · · · · · · · · · · · · · · · · · · ·                                                                            |               |
| Chanelized:           | * 100%                              |                                                                                                                  |               |
|                       |                                     |                                                                                                                  | •             |
| Woody debris:         | 5                                   |                                                                                                                  |               |
| Emergent Vegatation:  | 20                                  |                                                                                                                  |               |
| Submerged Vegetation: | 10                                  |                                                                                                                  |               |
| Depositional Area:    | 0                                   |                                                                                                                  |               |
| Overhanging Veg:      | BR 65-55                            |                                                                                                                  |               |
| Root Wads:            | 5                                   |                                                                                                                  |               |
| Undercut Banks:       | 5                                   |                                                                                                                  | •             |
| Filamentous algae:    |                                     |                                                                                                                  | -             |
| Leafy debris:         |                                     |                                                                                                                  |               |
|                       | and Sillor in Syne and Solution     |                                                                                                                  | •             |
| Substrate             | Score                               |                                                                                                                  |               |
| Bedrock:              | X0.1                                | Adj. Score                                                                                                       |               |
| Lg. Boulder:          | X 0.1                               | ·····                                                                                                            |               |
| Boulders:             | × 1.0                               |                                                                                                                  | •             |
| Rubble                | 5 × 1.0                             |                                                                                                                  |               |
| Gravel:               | <u>5 X0.5</u>                       |                                                                                                                  |               |
| Sand:                 | 70 ×0.1                             |                                                                                                                  |               |
| Mud/Silt:             | 15 mud / 5 silt × 0.1               |                                                                                                                  |               |
| Score:                | Abundant 11-15, Common 6-10, Sparce |                                                                                                                  |               |

Revision 1.205/28/02 GBMc Assoc. Doc.1 Page 1 of 2

|            | Sampling Gear Type: Electrofishing                                           | Seine Gill nets                              |          |
|------------|------------------------------------------------------------------------------|----------------------------------------------|----------|
|            | Unit of Effort: <u>Above:</u> <del>2201</del> 2301                           | *Below: N/A 1049 1045-113                    | <u>۲</u> |
|            | Quantity of Available Fish Cover:<br>Above Station: Very Abundant, Abundant, | Madarata Com Al                              |          |
|            | Below Station: Very Abundant, Abundant, M                                    |                                              |          |
|            | Site Description & Notes:                                                    |                                              |          |
|            |                                                                              | d sand substrate que has                     | ~ · · ·  |
|            | non woody vegetation, som                                                    | d sand sabstrate, overhan<br>ne woody debris | 5        |
| EVA        | Below Station:                                                               |                                              |          |
| MAP JE S   | 19 <sup>1</sup>                                                              |                                              |          |
| Clear of   | Fish Species                                                                 |                                              | Releas   |
| (76)-      |                                                                              | Below Station # HHT LIT                      |          |
|            |                                                                              | WHIT WHI WHI WHI WHI WHI WHI WHI             | 22       |
|            | Green SmAlb. HT 1                                                            | III 2 new w/ Internal percesited             | ,        |
|            | Loca M. bass 11                                                              | 1 W/ Fin Pot                                 | /        |
|            | Golden Shines                                                                |                                              | ,<br>T   |
| ্ৰু        | Gent Itt HI LHI LHI HIT HIT I                                                |                                              |          |
| - A        | B. bullhol I<br>Spotted Sun LHT III                                          | toy Ein rat                                  |          |
|            | · · · · · · · · · · · · · · · · · · ·                                        |                                              |          |
|            |                                                                              |                                              |          |
|            |                                                                              |                                              |          |
|            |                                                                              |                                              | • • •    |
| •          | ······································                                       | ······································       |          |
|            |                                                                              |                                              |          |
| •          | · · · · · · · · · · · · · · · · · · ·                                        |                                              |          |
| . <b>-</b> |                                                                              |                                              | •        |
| -          |                                                                              |                                              |          |
| -          | ·                                                                            |                                              |          |
| -          |                                                                              |                                              |          |
| · ( )      | Revision 1.2 05/28/02<br>GBM <sup>c</sup> & Assoc. Doc. 1<br>Page 2 of 2     | ;                                            |          |
|            |                                                                              |                                              |          |

### FIELD DATA SHEETS - BENTHIC INVERTEBRATES

| Waterbody Name: Loutre Creek  | , |
|-------------------------------|---|
| Client: Lim Oil               |   |
| Project no: 2160-05-076       |   |
| Investigators: <u>REM</u> BOP |   |
| •• • •                        |   |

Date Sample Collected: <u>4/28/05</u> Habitat Forms Completed: 100 / no

Location: Unin Courly AK Eldorodo Ecoregion: Coastal lain Clear ~ 80° Weather:

Form Completed By: \_\_\_\_\_\_KIM

Fish Sampling Completed Ves / no

| Collectio                                  | n Site Observatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Macroinvertel  | orate Qualitative   | Community of the |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------|------------------|
|                                            | Above Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Below Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Таха           |                     |                  |
|                                            | 10-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Annelida       | Above Station       | Below Station    |
| 新生产的 · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Decapoda       |                     |                  |
| Periphyton:                                | 0 (1) 2 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gastropoda     |                     |                  |
| Filamentous Algae:                         | 0 1 2 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pelecypoda     |                     |                  |
| Macrophytes:                               | 0 (1) 2 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hemiptera      |                     |                  |
| Slimes:                                    | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Coleoptera     |                     | ······           |
| Macroinvertebrates:                        | 0 1 2 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lepidoptera    | ╞─────┤             | ·····            |
| Fish:                                      | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Odonata        | ┨━━━━━╧┨            |                  |
| Other:                                     | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Megaloptera    | ┠╼╍╤╍╍╍╌╸┨          |                  |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Diptera        |                     |                  |
| 0=Not Observed, 1=Rare,                    | 2=Common, 3=Abunda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ant, 4=Dominant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chironomidae   | ·                   |                  |
|                                            | the first of the f |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Plecoptera     |                     |                  |
| Riffle/Run:                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and the second | Ephemeroptera  |                     |                  |
| Shallow Pool:                              | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Trichoptera    |                     |                  |
| Deep Pool:                                 | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Amphipoda      |                     |                  |
| Backwaters:                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                     |                  |
| Chanelized:                                | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                     |                  |
|                                            | dicks Sapralsal Par                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ·              |                     |                  |
| Woody Debris:                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>       |                     |                  |
| Emergent Vegatation:                       | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R=Rare, C=Com  | mon, A=Abundant, D  | Dominant         |
| Submerged Vegetation:                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rare<3, Common | 3-9, Abundant>10, D | ominant>50       |
| Depositional Area:                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Site Descrip   | tion and Observ     | ations:          |
| Overhanging Veg:                           | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · ·            |                     | · · ·            |
| Root Wads:                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •              | •                   |                  |
| Undercut Banks:                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | -                   |                  |
| Filamentous algae:                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                     |                  |
| Leafy Debris:                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                     |                  |
| Other                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | •                   |                  |
| · · · · · · · · · · · · · · · · · · ·      | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                     | ,                |
|                                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                     |                  |

Revision 1.2 05/28/02 GBMc Assoc. Doc.2 Page 1 of 2

### GENERAL PHYSICAL CHARACTERIZATION FIELD FORM

| STATION I.D: LC.                         | -3 LOCATION: /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                          | I A II RIVER BASINI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 Out                                    | LONG: A PROMOTION PROVIDENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| INVESTIGATORS:                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SIM                                      | ABOP DATE/TIME: 4/28/05 (0955) FORM CHECKED BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                          | Now       Past 24-hr       Heavy rain in the last 7 days?       Yes       No         storm (heavy rain)       Image: Storm (heavy rain) |
| Stre<br>U<br>Stre<br>Stre<br>Stre        | eam Subsystem       Stream Type         Perennial       Intermittent       Tidal       Coldwater       Warmwater         eam Origin       Glacial       Spring-fed       Catchment Area:mi²         Montane, non-glacial       Mixture of origins       Stream Order:mi²         Swamp and bog       Other       Other         eam Gradient:       High (≥25ft/mi)       Moderate (10-24 ft/mi)       Low (<10 ft/mi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Flor                                     | ws Flows Measured? Reach: Slope & Sinuosity<br>High 🗌 Moderate 🖾 Low 🗌 None 🖄 Yes 🗍 Noft/mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Pre                                      | dominant Surrounding Landuse Local Watershed NPS Pollution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| i <mark>ک</mark> ر                       | Forest <u>10</u> % Sub-Urban INo evidence Agricultural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| )                                        | Pasture <u>40</u> % Commercial % Industrial Storm Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                          | Row Crops% Industrial% C Urban/Sub-Urban Storm Water<br>Urban% Ø Other%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                          | Mature Forest% Shrub/Sapling U % K Herbs/Grasses 40% Turf%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| an a | Riffle <u>P.8 %</u> KRun <u>24.6 %</u> Pool <u>44.6</u> %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| a shekar a san 🚺 🗖                       | Roads       Bridges       Keipelines       Beaver Dams       Keipelines         Dams       Trash       Cattle Access       Mining       ATV Crossing       Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Loc<br>Cha                               | annelized: Yes Some No<br>al Watershed Erosion: None Minimal XModerate Heavy<br>annel Dynamics: Aggrading XDegrading Widening Headcutting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                          | Vormal/None     Sewage     Slick     Sheen     Globs       Petroleum     Chemical     Flecks     None     Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                          | bidity/Water Clarity (if not measured)<br>Clear Silghtly turbid Turbid<br>Dpaque Stained Other 22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                          | Sediment Deposits       Normal     Sewage     Petroleum     Sludge     Sawdust     Olis       Chemical     Anaerobic     None     Sand     Reliet shells       Other     Other     Other     Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

**,** '

r

| STREAM NAME       Jutre       Creek         AT       LONG         INVESTIGATORS       INTERSTICATORS         FORM COMPLETED BY       Intermediate         Main       Main         WEATHER       Now         CONDITIONS       storm (heavy rain)         Image: Storm (heavy rain)       storm (heavy rain)         Image: Storm (heavy rain)       storm (heavy rain)         Image: Storm (heavy rain)       showers (intermittent         Stream Subsystem       % cloud cover         Image: Stream Subsystem       % cloud cover         Image: Stream Origin       Glacial         Image: Stream Origin       Glacial montane         Stream Origin       Glacial montane         Image: Swamp and bog       High         Image: Mathematical Stream Origin       Image: Swamp and bog         HYDROLOGY       Flows         Image: Propertion of Reach Represed         Image: Swamp and bog       Proportion of Reach Represed         Image: Swamp and bog       Image: Swamp and bog         Image: Swamp and bog       Image                                                                                                                                                      | Catchment Areami <sup>2</sup>                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STREAM NAME       Joutre       Creek         AT       LONG         INVESTIGATORS       B///EM/JB/SKA         FORM COMPLETED BY       B///B         WEATHER       Now         CONDITIONS       storm (heavy rain)         Babase       Storea         Stream Subsystem                                                                                                                                                                                                                                                               | RIVER BASIN   Ouachita   CLIENT   LIENT   LIBN   OI   PATE   Hasthere been a heavy rain in the last 7 days?   hours   Ime   Ogoo   Past 24 Hasthere been a heavy rain in the last 7 days? hours Ime Past 24 Hasthere been a heavy rain in the last 7 days? hours Ime Ime Other Ime Tidal Spring-fed Mixture of origins |
| INVESTIGATORS       Image: Conditional system         FORM COMPLETED BY       Image: Conditional system         Image: Conditional system       Image: Conditional system         Image: Conditio | CLIENT CLION   CLIENT CLION   CLIENT CLION   CATE H28/05   REASON FOR SURVEY     Past 24   Has there been a heavy rain in the last 7 days?   hours   Past 24   Has there been a heavy rain in the last 7 days?   hours   Past 24   Air Temperature   Spring-fed     Warmwater   Catchment Area                         |
| INVESTIGATORS       BM/ECM/3B/SKR         FORM COMPLETED BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DATE #/2005   Past 24 Has there been a heavy rain in the last 7 days?   IME 0.800     Past 24 Has there been a heavy rain in the last 7 days?   hours Image: Stream Type   % Other   Warmwater   Image: Spring-fed     Mixture of origins                                                                              |
| FORM COMPLETED BY         MM         MEATHER       Now         CONDITIONS       storm (heavy rain)         and stream (steady rain)       showers (intermittent         %       %         %       %         %       %         %       %         %       %         %       %         %       %         %       %         %       %         %       %         %       %         %       %         %       %         %       %         %       %         %       %         %       %         %       %         %       %         %       %         %       %         %       %         %       %         %       %         %       %         %       %         %       %         %       %         %       %         %       %         %       %         %       %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IME_0800   IME_0800   Past 24   hours   Image: Spring-fed   Mixture of origins                                                                                                                                                                                                                                         |
| CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Air Temperature                                                                                                                                                                                                                                                                                                        |
| ATTRIBUTES       Perennial       Intermitten         Stream Origin       Glacial         Glacial       Non-glacial montane         Swamp and bog       Swamp and bog         HYDROLOGY       Flows         High       Moderate       It         WATERSHED       Predominant Surrounding L         Forest       Commerce         Field/Pasture       Industrial         Agricultural       Other         Residential       Riffle         INSTREAM       Proportion of Reach Represe         Riffle       20       %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Tidal     Coldwater     Warmwater     Catchment Areami <sup>2</sup> Spring-fed     Mixture of origins                                                                                                                                                                                                                  |
| High       Moderate       I         WATERSHED       Predominant Surrounding L         Features       Predominant Surrounding L         Field/Pasture       Industrial         Agricultural       Other         Residential       Residential         INSTREAM       Proportion of Reach Represe         Field/Pasture       Riffle         20       %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Other                                                                                                                                                                                                                                                                                                                  |
| Forest       Commerce         Field/Pasture       Industrial         Agricultural       Other         Residential       Residential         INSTREAM       Proportion of Reach Represe         FEATURES       Riffle         20       %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Flowe Massured?                                                                                                                                                                                                                                                                                                        |
| FEATURES         Riffle         2.0         %           Run         30         %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ial Ao evidence Some potential sources                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nted by Stream Morphology Types                                                                                                                                                                                                                                                                                        |
| WATER/<br>OBSERVATIONS Water Odors<br>OBSERVATIONS Sewage<br>Petroleum Chemic<br>Fishy Other_<br>Turbidity (if not measured)<br>Clear Slightly<br>Opaque V Stained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | al Priecks None Other                                                                                                                                                                                                                                                                                                  |
| SEDIMENT/<br>OBSERVATIONS       Sediment Odor         OBSERVATIONS       Normal       Sewage         Chemical       Anaerobic         Other       Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | turbid                                                                                                                                                                                                                                                                                                                 |

Page 1 of 1 VI.0 04/00

Ĵ,

| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Station: / / . ?          |                  |                  | (F)      | 6              | - (8     | ()             | 5        |             | 1    |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------|------------------|----------|----------------|----------|----------------|----------|-------------|------|------------|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                  |                  | Distance |                | Depth    | ieų<br>(s)     | (F) (F)  | Method      | 6    | 9.         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Waterbody: Louk           | Corec            |                  | from     |                |          | io ,e          | Velocity | 10)<br>170) | Alea | uisidiarge |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date: リ/23/0 く            |                  |                  | point    |                |          | rocki<br>truct | At Point | 0.6         |      |            |
| End Time: $\partial_{-1}O$ $\partial_{-1}A$ $\partial_{-1}A$ $\partial_{-1}A$ $\partial_{-1}A$ $\partial_{-1}A$ Staff(cage:     Institution     Institution $\partial_{-1}C$ $\partial_{-1}C$ $\partial_{-1}C$ $\partial_{-1}C$ Own:     Method:     No Secs: $\partial_{-1}C$ $\partial_{-1}C$ $\partial_{-1}C$ $\partial_{-1}C$ Own:     Max Vel:     Min Vei: $\partial_{-1}C$ $\partial_{-1}C$ $\partial_{-1}C$ Stores action     Method:     No Secs: $\partial_{-1}C$ $\partial_{-1}C$ $\partial_{-1}C$ Stores action     Weather $\partial_{-1}C$ $\partial_{-1}C$ $\partial_{-1}C$ $\partial_{-1}C$ Stores action     Weather $P_{-1}C$ $D_{-1}C$ $D_{-1}C$ $D_{-1}C$ Stores action     Weather $P_{-1}C$ $D_{-1}C$ $D_{-1}C$ $D_{-1}C$ Stores action     Weathor $P_{-1}C$ | Crew: STH/1927            | Start Time: 1000 | Recorder: SZH    |          | Ś              | ê        | ,sgol          | ε        | 0.8)        | E    | ĝ          |
| Statificage:     Instruction $7.5$ Area: $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | End Time: 1010   |                  | 0.0      | 7.0            | 0<br>0   | *              | 512      |             |      |            |
| 7.5       Arrea:       Velocity:: $4.0$ $1.0$ $0.5$ $1.0$ $0.5$ $1.0$ on:       Max Vel:       No Secs: $4.0$ $0.5$ $0.5$ $1.0$ $0.5$ $1.0$ or:       Max Vel:       Min Vel: $2.0$ $0.5$ $0.5$ $1.5$ ATION:       Boat, Upstream, Side Bridge $1tmi$ , below gage, and $2.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | Staff/Gage:      |                  | 202      | <b>)</b><br>() | ر م<br>م |                |          |             |      | -          |
| ow:     Method:     No Secs:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.5                       | Area:            | elocity:         | 4.0      | 0.             | 0.6      | ╆╍╋            | 4        |             |      |            |
| x:     Max Vel:     Min Vel:       ATION:     ATION:       ATION:     Boat, Upstream, Side Bridge     ftmi,       Boat, Upstream, Downstream, Side Bridge     ftmi,       below gage, and     6.5     6.5       ment rated: excellent good fair poor based on the following       s: Cross section     Vestream       water     *       Air     *       Water     *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           | Method:          | No Secs:         | 10       | • •            | ٩٩       |                | 146      | F           |      |            |
| ATION:<br>Boat, Upstream, Downstream, Side Bridget/mi,<br>below gage, and<br>ment rated: excellent good fair poor based on the following<br>s: Cross section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | Max Vel:         | Min Vet:         | 0<br>rt  | 0.0            | 50       |                | 158      |             |      |            |
| Boat, Upstream, Downstream, Side Bridget/mi,       6.5       0.5       0.4         below gage, and       ment rated:       excellent good fair poor based on the following       6.5       0.5       0.4         ment rated:       excellent good fair poor based on the following       weather       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6                                                                                                                    | ORIENTATION:              |                  |                  | S.S.     | 0              | 5        |                | 1.78     |             |      |            |
| below gage, and     ment rated: excellent good fair poor based on the following       s: Cross section     Weather                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Boat,                     |                  |                  |          | 1              | ,<br>v   | -+-            | h        |             |      |            |
| merrt rated: excellent good fair poor based on the following<br>s: Cross section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | below                     |                  |                  |          |                | 5        |                | ר<br>א   |             |      |            |
| s: Cross section with react on the following Air of R @ Air of R @ Wratter of R @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maseimemant mtad- avoid   |                  |                  |          |                |          |                |          |             |      |            |
| s: Cross section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                  | on the tollowing |          |                |          |                |          |             |      |            |
| Veather Air P @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | conditions: Cross section |                  |                  |          |                | -        |                |          |             |      |            |
| Air F@                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Flow                      | Weather          |                  |          |                |          |                |          |             |      |            |
| Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Other                     | 5                |                  |          |                |          | -              |          |             |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gage                      | _                |                  |          |                |          |                |          |             |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Observer                  |                  |                  |          |                |          | -+             |          |             |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                  |                  |          |                |          |                |          |             |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Control                   |                  |                  |          |                |          |                |          |             |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                  |                  |          |                |          |                |          |             |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                  |                  |          |                |          |                |          | :           |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Remarks                   |                  |                  |          |                |          |                | -+       |             |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                  |                  | TOTALS   |                |          |                |          |             |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                  |                  | -        |                |          | -              | -        | :.          |      |            |

**Discharge/Flow Measurement Form** 

2

1

Reviewed by\_

Completed By\_\_\_\_

Checked by\_

V1.0 1096

| ion Oil          |                |        | date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/28/2005                             |       | Start     | 1000 |
|------------------|----------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------|-----------|------|
| tation:          | LC-3           |        | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |       | Stop<br>T | 1010 |
| Vaterbody:       | Loutre Cree    | k      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · · · · · · · · · · · · · · · · · · · |       | 4         |      |
| rew:             | <b>BJP/SKH</b> |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |       | -         |      |
| Width (ft):      |                | Area:  | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Max Vel:                              | 1.78  | 1         |      |
| Disc/Flow (cfs): |                |        | 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Min Vel:                              | 0     |           |      |
| ·····            |                |        | and the second s |                                       |       | 4         |      |
|                  |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |       | _         |      |
|                  |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |       |           |      |
|                  |                | aloan. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |       |           |      |
|                  |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |       |           |      |
| 1.0              | 1.0            | 0.4    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4                                   | 0     |           |      |
| 2.0              | 1.0            | 0.5    | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5                                   | 0.25  | 1         |      |
| 3.0              | 1.0            | 0.6    | 1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.6                                   | 0.702 | 1         |      |
| 4.0              | 1.0            | 0.6    | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.6                                   | 0.342 | 1         |      |
| 5.0              | 1.0            | 0.5    | 1.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5                                   | 0.73  | 1         | f f  |
| 6.0              | 1.0            | 0.5    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5                                   | 0.5   |           |      |
| 7.0              | 1.0            | 0.5    | 1.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5                                   | 0.79  | 1         |      |
| 8.0              | 1.0            | 0.5    | 1.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5                                   | 0.89  | ]         |      |
| 9.0              | 1.0            | 0.5    | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5                                   | 0.25  |           |      |
| 9.5              | 0.5            | 0.1    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.05                                  | 0     |           |      |
|                  |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |       | 1         |      |
| ·                |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |       |           |      |
|                  |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |       |           |      |
|                  |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |       |           |      |
| <del>-</del>     |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |       |           |      |
| ·                |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |       |           |      |
|                  |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |       |           |      |
| arago.           |                |        | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |       |           |      |

### Stream Habitat Assessment (Semi-Quantitative)

| Station #: LC.                                                                                                                                                                                     | -3               | Stream         | 1 sate                       | Core                                    | k.             | Date/Ti     | me: $\mathcal{U}/\mathcal{Z}$                                                                                  | 3 lac                                            | Analyst:         | (WHI              | 10+2               | ~ <b>_</b> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|------------------------------|-----------------------------------------|----------------|-------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------|-------------------|--------------------|------------|
|                                                                                                                                                                                                    |                  | Location:      | Unib                         | n. Con                                  | ~              | 081         | 1- 09                                                                                                          | 50                                               | - maryot,        | Sprif             | 1501               |            |
| 1. Reach Len                                                                                                                                                                                       | ath Det          | arminatic      |                              | fus                                     | Caro li        | (248.)      | Lot: 5                                                                                                         | 3 11 39                                          |                  | Tar:              | 33 17              | 3-7.       |
|                                                                                                                                                                                                    |                  | Similar        |                              |                                         | Con u          |             | long : "                                                                                                       | 12 40 38                                         | 5.1 <b>~</b> YS  | ing .             | 92 4               | 0 35       |
| Bankfull Width                                                                                                                                                                                     |                  |                |                              |                                         |                |             |                                                                                                                | Mar Inisa                                        |                  | n syn<br>Dei gege |                    |            |
| Bankfull Depth                                                                                                                                                                                     |                  | 7 1            |                              | 19.7                                    | 13.0           | 19.1        | e . 1.                                                                                                         | <u>le 9</u>                                      | 338              | 3                 | 3.81               |            |
| Average widtl                                                                                                                                                                                      | m                | <b>/</b> B / ' | Total                        | <u><u> </u></u>                         | 2.5            | 2.7         | $\frac{5}{1}$                                                                                                  | .95                                              | na               |                   | na                 |            |
| H2O                                                                                                                                                                                                | 1 0.9            | 9 10.          | 9                            | 2.1                                     | Ided by 10     | 11.2        | - /                                                                                                            |                                                  |                  |                   |                    |            |
| 2. Riffle-Pool                                                                                                                                                                                     | Sequen           | Ce             |                              |                                         |                |             |                                                                                                                |                                                  |                  |                   |                    |            |
|                                                                                                                                                                                                    |                  |                |                              |                                         |                |             |                                                                                                                |                                                  |                  |                   |                    |            |
|                                                                                                                                                                                                    | 0+7.8            |                |                              |                                         |                |             | a <u>an an a</u>                                                              | 120                                              |                  |                   | 29.8               | 8.8        |
| Run<br>Pool                                                                                                                                                                                        | 16               | 27             | 20.5                         |                                         | 07.0           |             | 33.8                                                                                                           | 13.0                                             |                  | -                 | 1                  | 24.        |
| Total                                                                                                                                                                                              |                  | <u>L.8</u>     | 83.8                         | 33.8                                    | 33.8           | 33.8        | <u>`</u>                                                                                                       | 8.8                                              | 33.8             | 33.8              | 21.8.4             |            |
| Sequence <sup>1</sup>                                                                                                                                                                              | xxxxxx           |                | mm                           | mm                                      | m              | m           |                                                                                                                |                                                  | and the second   |                   |                    | ] .        |
| <sup>1</sup> Riffle="xxx",                                                                                                                                                                         | Run="            | ", Pool=       | "~~~"                        | l                                       | L              | 1           | L                                                                                                              |                                                  |                  | ~~~~              | <u> </u>           |            |
| 3. Depth and                                                                                                                                                                                       | Width R          | egime          |                              |                                         |                |             |                                                                                                                |                                                  |                  |                   |                    |            |
|                                                                                                                                                                                                    |                  |                |                              | Steel.                                  | NIS.           | Paretaction |                                                                                                                | telefendet.                                      |                  |                   |                    | 1          |
| Diffle Denth                                                                                                                                                                                       | 0.7/             | 04)            |                              | 447                                     |                |             |                                                                                                                |                                                  |                  |                   |                    | hu         |
|                                                                                                                                                                                                    | 8.0              | 5.5            |                              |                                         |                |             | $0.7 p_{0}$                                                                                                    | 0.5                                              |                  |                   | .Ce                | .6         |
|                                                                                                                                                                                                    | 1.1              | 1.5            | 12                           | 2.0                                     | 2.0            | 2.5         | The second s | 0.8                                              | 1.3 1            | .5                | <u>9.0</u><br>1.54 | 5.75       |
| Pool Width                                                                                                                                                                                         | 14.0             | 10.0           | 18.0                         | 20                                      | 15.0           | 18.D        | - 4                                                                                                            |                                                  | 20 1             | 3                 | 5.7                |            |
| 4. Epifaunal S                                                                                                                                                                                     | ۍم و<br>iubstrat | e, Percen      | いっから<br>It Stable            | Verp<br>Habitat (f                      | or Macro       | Inverteb    | (atas)                                                                                                         | w/pol                                            | <u> <u>.</u></u> |                   |                    |            |
|                                                                                                                                                                                                    |                  |                |                              |                                         |                |             | dies)                                                                                                          |                                                  |                  |                   | enne e M           |            |
| % Area 25                                                                                                                                                                                          |                  | 5              | 02                           | 0 2                                     | 0 2            | 5 3         | 2 7                                                                                                            | 03                                               | 0 20             | 22                | .4                 |            |
| 5. in-Stream H                                                                                                                                                                                     | labitat, i       | Percent 8      | Stable Ha                    | bitat (Ava                              | allable Fi     | sh Cover    | in Wette                                                                                                       | d Perime                                         | tor)             |                   |                    |            |
|                                                                                                                                                                                                    |                  |                |                              |                                         | a al ann       | X AUX SU    |                                                                                                                | Politika Suga                                    |                  |                   |                    | •          |
| % Area 30                                                                                                                                                                                          |                  | 01             | 52                           | 014                                     | 0 4            | 0 3         | $\sim$ 2 (                                                                                                     |                                                  |                  |                   |                    |            |
|                                                                                                                                                                                                    |                  |                | ليتبالسلا                    |                                         | <u> </u>       |             | 0 30                                                                                                           | <u> </u>                                         | D   Z            | 2                 | 9                  |            |
| 6. Substrate C                                                                                                                                                                                     | manacte          |                | Dominar                      |                                         |                | lon althe   |                                                                                                                |                                                  |                  |                   |                    |            |
| Riffle </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>이 가지<br/>이 아이 아이</td> <td></td> <td></td> <td>tinan artis</td> <td>Lun</td> |                  |                |                              |                                         |                |             |                                                                                                                | 이 가지<br>이 아이 |                  |                   | tinan artis        | Lun        |
| Pool Sol                                                                                                                                                                                           | 2) 8 2<br>1) 5(  | 50) -          |                              |                                         |                | - 5         | 1) GF                                                                                                          | (3) =                                            | ~                |                   | 2                  | 1.5        |
| BR=Bedrock(7).                                                                                                                                                                                     | BLD=Bo           | ulder(6). C    | <u>C(1) &gt;</u><br>OB=Cobbl | (f) GC=(                                | Sravel Cos     | (h) =       | <u>Sh</u>                                                                                                      |                                                  | 2) 5(2           | 2) /              | 1.4                | ₩          |
| • •                                                                                                                                                                                                |                  | , , , ,        |                              | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | MATH INM       |             | -Giaver Fi                                                                                                     |                                                  |                  | =Silt/Clay        | (1)                |            |
| 7. Embeddedr                                                                                                                                                                                       | iess (Gi         | avel, Co       | bble, Bou                    | liders Pe                               | rcent Em       | bedded)     |                                                                                                                | · - K.UK                                         | YParl            | ng é mga ma       |                    |            |
| % Embedded                                                                                                                                                                                         | $  \setminus$    |                |                              |                                         | +              |             | $\overline{}$                                                                                                  |                                                  |                  |                   |                    |            |
|                                                                                                                                                                                                    | <u>`</u>         | <u>بل</u>      | <u></u>                      | ·                                       | 1              |             |                                                                                                                |                                                  |                  | $\leq$            |                    |            |
| 8. Sediment D                                                                                                                                                                                      | epositio         | on (Perce      | nt of Bot                    | tom Affe                                | 20 TO 10 TO 10 |             |                                                                                                                |                                                  |                  |                   |                    |            |
| % 30                                                                                                                                                                                               | ) 10             | 1              | 5 30                         | s 2                                     | 0 40           | 30          |                                                                                                                |                                                  | 0                |                   |                    |            |
|                                                                                                                                                                                                    | ·                | <u> </u>       |                              |                                         |                |             | ) 20                                                                                                           | ) 30                                             | 2 40             | _ 24              | .5                 |            |

Page 1 of 2 V 2.1

Vov

.

1 :

# Stream Habitat Assessment (Semi-Quantitative)

()

| Station #:                        | Le-                    | 3                       |                | Date/                   | Time: 4    | 1/28/0:                         | 5                        | Ţ                        | Initials:                   | (NII)      | 1200                                            | <u> </u> |
|-----------------------------------|------------------------|-------------------------|----------------|-------------------------|------------|---------------------------------|--------------------------|--------------------------|-----------------------------|------------|-------------------------------------------------|----------|
| 9. Aquat                          | IC Macrop              | hytes a                 | nd Periph      | yton (P                 | ercent Co  |                                 |                          | ···                      |                             | 50711      | 5000                                            |          |
| i a l'al-Hea<br>Distantes de la   |                        |                         |                |                         |            | A second res                    |                          | 1965 <sup>18</sup> 63 18 |                             |            |                                                 |          |
| Riffle                            | Macroph                | ytes                    | 0 \$ 0         | >   _                   |            |                                 |                          |                          |                             |            |                                                 | Ren      |
|                                   | Periphyt               | on 5                    |                |                         |            |                                 |                          | 10                       | 5                           |            | - 2.5                                           | Ray 15   |
| Pool                              | Macroph                |                         | 0 0            | 5                       | 5          | 5                               | 10                       |                          | 5                           | 5 5        |                                                 |          |
|                                   | Periphyt               | on                      | 20 10          |                         | 5          | 5                               | 5                        | L'                       | 3                           | 5 5        | 4.4                                             |          |
| რარა -<br>10. Cano                | py Cover               | (Percen                 | t Stream       | Shadino                 | 1)         |                                 |                          |                          | Rul                         | <u></u>    | - /.2                                           | `        |
| en destrie                        |                        |                         |                |                         |            |                                 | adhai 203                |                          |                             | Prol       |                                                 |          |
| Shading                           | 20                     | 10                      |                | 10                      | 20         |                                 |                          |                          |                             |            | 4. 杨敏雄的 mer.                                    |          |
|                                   | - <u> </u>             | <u> </u>                | 170            |                         |            | 10                              | 120                      | 10                       | 10                          | 10         | 13                                              |          |
| 11. Bank                          | Stability              | (Score) :               | and Slope      | ) (Degre                | <u>es)</u> |                                 |                          |                          |                             | ·          |                                                 |          |
| Software .                        |                        |                         |                | ·<br>·                  |            |                                 |                          |                          |                             |            | h<br>All All All Andreas<br>All All All Andreas |          |
| Score                             | 80.                    | 900                     | $\frac{12}{2}$ | 2                       | 2          | 1                               | 3                        | 3                        | 2                           | 2          | 2.4                                             |          |
| Slope (°)                         | 00                     | 90-                     | 900            | 900                     | ° 90.      | 90                              | 80                       | 80                       | 85°                         | 90         | 86.5                                            |          |
| 行动的动物                             |                        |                         |                |                         |            |                                 |                          |                          |                             |            |                                                 |          |
| Score                             |                        | 8                       | 4              | 2                       | 4          | 7-                              | 2                        | 5                        | ·4                          | 3          | 4.7                                             |          |
| Stope (°)<br>Score 9-10 =         | $\frac{1}{65^{\circ}}$ | 150                     | 180            | <u>90°</u>              | 75         | 80                              | 90                       | 70                       | 80                          | an         | 77                                              | -        |
| Score $3-5 = 1$                   | Moderately             | unstable, 3             | 0-59% bank     | eroding.                |            | Score 6-8<br>Score 1-2          | = Moderate<br>= Unstable | y stable, :<br>60-100%   | 5-29% of bar<br>bank erodin | nk croding |                                                 |          |
| 12. Vegeta                        | ative Prot             | ection (I               | Percent B      | anks Pr                 |            |                                 |                          | ,                        |                             | 6.         |                                                 |          |
|                                   |                        |                         |                |                         |            |                                 |                          |                          |                             |            |                                                 |          |
| %                                 | (0)                    | 30.                     | 30             | 40                      | 26         | .20                             | 1.62                     | · UT                     |                             |            |                                                 |          |
|                                   |                        |                         |                |                         |            |                                 |                          | 17                       | 40                          | 20         | 40                                              |          |
| %                                 | 75                     | 85                      | 50             | 40.                     | re         | 2                               | 110                      |                          |                             |            |                                                 |          |
|                                   |                        |                         |                | 90.                     | 122        | 1                               | 40                       | 33                       | 70                          | 25         | 57                                              | ]        |
| 13. Riparia                       | an vegeta              | tive Zon                | e Width        |                         |            |                                 | a de la come             |                          |                             |            |                                                 | • •      |
|                                   | *7                     |                         |                |                         |            |                                 |                          |                          |                             |            |                                                 |          |
| Score                             | .7                     | -7-                     | ~7-            | a7                      | *7         | 8                               | 7.                       | 5                        | 4                           | 5          | 6.4                                             |          |
| an the s                          |                        |                         |                |                         |            |                                 |                          |                          |                             |            | Not the state                                   |          |
| Score                             | 2                      | 2                       | 2              | 2                       | 3          | 3                               | 3                        | 3                        | 5                           | 5          | 3.0                                             |          |
| Score $9-10 =$<br>Score $3-5 = F$ | Ciparian Zon           | e Width 11              | - 6 metern     |                         | Score 6-8  | = Riparian<br>= Pinarian        | Zone Widt                | h 18 - 12 n              | neters                      | <u> </u>   | 5.0                                             | 1        |
| ALB Riport<br>14. Land-L          | rian is i              | a dana                  | Autor          | -                       | 50010 1-2  | - Mihauau                       | Zone Widt                | n < 6 mete               | rs                          |            |                                                 |          |
|                                   | Jee Orrea              |                         | 18             | У.,                     |            | an é a.                         | wilder fan               |                          |                             |            |                                                 |          |
| Impact                            |                        |                         |                |                         |            |                                 |                          |                          |                             |            |                                                 |          |
| C= Cattle                         | <u>E, [ ]</u>          | Z_/<br>ow Crops         | <u>I</u> I     | <u>I,1</u>              | 21         | I,I                             | I,I                      | F.1                      | II                          | I.1 :      | $\mathcal{I}_{.1}$                              | 1        |
| Score 0 = nor                     |                        | ow Crops<br>= minor aff |                | an Encroac<br>= moderat |            | = Kndustri<br>= major a         | al Encroach              | ment                     | 10=0                        | ther       |                                                 |          |
| Page 2 of 2                       |                        |                         |                |                         |            | · · · · · · · · · · · · · · · · |                          |                          |                             |            |                                                 |          |

### Habitat Assessment Field Data Sheet (Low Gradient)

| Station I.D: LC-3 | Client:            |
|-------------------|--------------------|
| Stream name:      | Date/Time:         |
| Location:         | Form Completed By: |

| Habitat<br>Parameter                              |                                                                                                                                                                                                                                      | CATEGORY                                                                                                                                                                                                                            |                                                                                                                                                                                   |                                                                                                                                                         |  |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                   | Optimal                                                                                                                                                                                                                              | Suboptimal                                                                                                                                                                                                                          | Marginal                                                                                                                                                                          | Poor                                                                                                                                                    |  |
| 1. Epifaunal<br>Substrate /<br>Available<br>Cover | Greater than 50% of<br>substrate favorable for<br>epifaunal colonization and<br>fish cover; mix of snags,<br>submerged logs, undercut<br>banks, cobble, or other<br>stable habitat; and at a<br>stage to allow full<br>colonization. | 30-50% mix of stable<br>habitat suited for<br>colonization; adequate<br>habitat for maintenance<br>of population; some<br>newfall may be present.                                                                                   | 10-30% mix of stable<br>habitat; habitat<br>availability less than<br>desirable; substrate<br>frequently disturbed.                                                               | Less than 10% stable<br>habitat; lack of<br>habitat obvious;<br>substrate lacking                                                                       |  |
|                                                   | 20 19 18 17 16                                                                                                                                                                                                                       | 15 14 13 12 11                                                                                                                                                                                                                      | (10)9876                                                                                                                                                                          | 54321                                                                                                                                                   |  |
| 2. Pool Substrate<br>Characterization             | Mixture of substrate<br>materials, with gravel and<br>firm sand prevalent; root<br>mats and submerged<br>vegetation common.                                                                                                          | Mixture of soft sand,<br>mud, or clay; mud may<br>be dominant; some root<br>mats and submerged<br>vegetation present.                                                                                                               | All mud or clay to sand<br>bottom; little or no root<br>mat; no submerged<br>vegetation.                                                                                          | Hard-pan clay or<br>bedrock; no root or<br>vegetation.                                                                                                  |  |
| 3. Pool Variability                               | 20 19 18 17 16                                                                                                                                                                                                                       | 15 14 13 2 11                                                                                                                                                                                                                       | 109876                                                                                                                                                                            | 54321                                                                                                                                                   |  |
|                                                   | Even mix of large-shallow,<br>large-deep small-shallow,<br>small deep pools present.                                                                                                                                                 | Majority of pools large deep; very few shallow.                                                                                                                                                                                     | Shallow pools much<br>more prevalent than<br>deep pools.                                                                                                                          | Majority of pools<br>small-shallow or<br>absent.                                                                                                        |  |
| SCORE 15                                          | 20 19 18 17 16                                                                                                                                                                                                                       | (15 14 13 12 11                                                                                                                                                                                                                     | 10 9 8 7 6                                                                                                                                                                        | 54321                                                                                                                                                   |  |
| 4. Channel<br>Alteration                          | No channelization or<br>dredging present. Stream<br>channel normal.                                                                                                                                                                  | Some channelization<br>present, usually in areas<br>of bridge abutments;<br>evidence of past<br>channelization, i.e.<br>dredging, (greater than<br>past 20 yrs.) may be<br>present, but recent<br>channelization is not<br>present. | Embankments present<br>on both banks;<br>channelization may be<br>extensive, and 40%-<br>80% of steam reach<br>channelized and<br>disrupted.                                      | Extensive<br>channelization;<br>shored with Gabon<br>cement; heavily<br>urbanized areas; in<br>steam habitat greatly<br>altered or removed<br>entirely. |  |
| 5. Sediment                                       | 20.19 18 17 16                                                                                                                                                                                                                       | 15 14 13 12 11                                                                                                                                                                                                                      | (10)9876                                                                                                                                                                          | 54321                                                                                                                                                   |  |
| o. Seaiment<br>Deposition                         | Less than 20% of bottom<br>affected; minor<br>accumulation of fine and<br>coarse material at snags<br>and submerged<br>vegetation; little or no<br>enlargement of islands or<br>point bars.                                          | 20-50% affected; some<br>accumulation;<br>substantial sediment<br>movement only during<br>major storm even; some<br>new increase in bar<br>formation.                                                                               | 50-80% affected;<br>moderate deposition;<br>pools shallow,<br>moderately silted;<br>embankments may be<br>present on both banks;<br>frequent and substantial<br>sediment movement | Heavily silted; >80%<br>affected;<br>movement/shifting of<br>bottom occurs<br>frequently; pools<br>nearly absent due to<br>deposition.                  |  |
| SCORE 13                                          | 20 19 18 17 16                                                                                                                                                                                                                       | 4E 44 (45 30 44                                                                                                                                                                                                                     | during storm events.                                                                                                                                                              |                                                                                                                                                         |  |
|                                                   | 20 19 10 17 10                                                                                                                                                                                                                       | 15 14 (13) 2 11                                                                                                                                                                                                                     | 10 9 8 7 6                                                                                                                                                                        | 54321                                                                                                                                                   |  |

| Subam name.                                            |                                                                                                                                                                                                                | Form Co                                                                                                                                                                                                        | mpleted By:                                                                                                                                                                                                                            |                                                                                                                                                                                                           |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Habitat                                                |                                                                                                                                                                                                                | CATE                                                                                                                                                                                                           | COPY                                                                                                                                                                                                                                   |                                                                                                                                                                                                           |
| Parameter                                              |                                                                                                                                                                                                                | CATEGORY                                                                                                                                                                                                       |                                                                                                                                                                                                                                        |                                                                                                                                                                                                           |
| 6. Channel Sinuosity                                   | Optimal                                                                                                                                                                                                        | Suboptimal                                                                                                                                                                                                     | Marginal                                                                                                                                                                                                                               | Poor                                                                                                                                                                                                      |
| SCORE 9                                                | The bends in the<br>stream increase the<br>stream length 3 to 4<br>times longer than it if<br>was in a straight line.                                                                                          | The bends in the stream<br>increase the stream<br>length 2 to 3 times<br>longer than if it was in a<br>straight line.                                                                                          | The bends in the<br>stream increase the<br>stream length 1 to 2<br>times longer than if it<br>was in a straight line.                                                                                                                  | Channel straight;<br>waterway has been<br>channelized for a<br>distance.                                                                                                                                  |
| 7. Channel Flow                                        | 20 19 18 17 16<br>Water reaches base of                                                                                                                                                                        | 15 14 13 12 11                                                                                                                                                                                                 | 10 9 8 7 6                                                                                                                                                                                                                             | 54321                                                                                                                                                                                                     |
| Status                                                 | both lower banks and<br>minimal amount of<br>channel substrate is<br>exposed.                                                                                                                                  | Water fills >75% of the<br>available channel; or <<br>25% of channel<br>substrate is exposed.                                                                                                                  | Water fills 25-75% of<br>the available channel<br>and/or riffle substrates<br>are mostly exposed.                                                                                                                                      | Very little water in<br>channel and mostly<br>present as standing<br>pools.                                                                                                                               |
| 8. Bank Stability                                      | 20 19 18 17 16<br>Banks stable; no                                                                                                                                                                             | 15 14 13 12 11                                                                                                                                                                                                 | 10 9 8 7 6                                                                                                                                                                                                                             | 54321                                                                                                                                                                                                     |
|                                                        | evidence of erosion or<br>bank failure. <5%<br>affected.                                                                                                                                                       | Moderately stable;<br>infrequent, small areas<br>of erosion mostly healed<br>over. 5%-30% affected.                                                                                                            | Moderately unstable; up<br>to 30%-60% of banks in<br>reach show areas of<br>erosion. High erosion<br>potential during floods.                                                                                                          | Unstable; many<br>eroded areas; "raw"<br>areas frequent along<br>straight sections and<br>bends; 60-100% of<br>banks have erosion                                                                         |
|                                                        | Left Bank 10 9                                                                                                                                                                                                 | 8 7 6                                                                                                                                                                                                          | 5 4 (3).                                                                                                                                                                                                                               | scars.                                                                                                                                                                                                    |
| SCORE S RB                                             | Right Bank 10 9                                                                                                                                                                                                | 8 7 6                                                                                                                                                                                                          | (5) $(3)$                                                                                                                                                                                                                              | 2 1                                                                                                                                                                                                       |
| 9. Vegetative<br>Protection                            | More than 90% of the<br>streambank surfaces<br>and immediate riparian<br>zone covered by<br>vegetation. Vegetation<br>disruption minimal or<br>not evident; almost all<br>plants allowed to grow<br>naturally. | 70-90% of the<br>streambank surfaces<br>covered by vegetation.<br>Disruption minimal or not<br>evident; one group of<br>plants likely not evident.<br>Almost all plants allowed<br>to grow naturally.<br>8 7 6 | 50-70% of the<br>streambank surfaces<br>covered by vegetation.<br>Disruption obvious;<br>patches of bare soil or<br>closely cropped<br>vegetation common;<br>less than one-half of the<br>potential plant stubble<br>height remaining. | Less than 50% of<br>streambank surfaces<br>covered by vegetation.<br>Disruption of stream<br>bank vegetation very<br>high; vegetation has<br>been removed; 2<br>inches or less average<br>stubble height. |
| SCORE B RB                                             | Right Bank 10 9                                                                                                                                                                                                | 8 7 6                                                                                                                                                                                                          | <u>(5) 4 3</u><br>5 4 3                                                                                                                                                                                                                | $\frac{2}{2}$ 1                                                                                                                                                                                           |
| 10. Riparlan<br>Vegetative Zone<br>Width<br>SCORE 6 LB | Width of riparian zone<br>>18 meters; human<br>activities (i.e., parking<br>lots, roadbeds,<br>clearcuts, lawns or<br>crops) have not<br>impacted zone.                                                        | Width of riparian zone<br>12-18 meters; human<br>activities have impacted<br>zone only minimally.                                                                                                              | Width of riparian zone<br>6-12 meters; human<br>activities have impacted<br>a great deal.                                                                                                                                              | 2 1<br>Width of riparian zone<br><6 meters; little<br>riparian vegetation to<br>human activities.                                                                                                         |
| SCORE 6 LB                                             | Left Bank 10 9                                                                                                                                                                                                 | 8 7 6                                                                                                                                                                                                          | 5 4 3                                                                                                                                                                                                                                  | 2 1                                                                                                                                                                                                       |
|                                                        | Right Bank 10 9                                                                                                                                                                                                | 8 7 6                                                                                                                                                                                                          | 5 4 (3)                                                                                                                                                                                                                                | 2 1                                                                                                                                                                                                       |

# Habitat Assessment Field Data Sheet (Low Gradient Cont.)

Date/Time:

Page 2 of 3 (Pg.3 optional) GBMc Rev: 1.2

114

4

Barbour, M.T. et.al., 1999. Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers.

TOTAL SCORE: AVERAGE SCORE:

Station I.D:

Stroom

-1

#### FIELD DATA SHEETS - FISH

| Waterbody Name: Louter Crock   |
|--------------------------------|
| Client: Lion Oil               |
| Project no: 2060-05-070        |
| Investigators: <u>REM</u> BJP  |
| SEH. JB                        |
| Date Sample Collected: 4/28/05 |

| Location: <u>LC3</u>        |
|-----------------------------|
| Ecoregion: but Coastal      |
| Weather: <u>Gunny Clear</u> |
| Mild                        |
| Form Completed By: AFM 15B. |
| Form Checked By:            |

Habitat Forms Completed: Ves / no

Fish Sampling Completed: Ves / no

|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a completed. (Ves)                                                                                             |               |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------|
|                                                                                                                 | Collection Site Obser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |               |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L c-3                                                                                                          |               |
| The second second second                                                                                        | Above Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Below Station                                                                                                  |               |
|                                                                                                                 | A Hait Carlo Mance vo Amban, spore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                | Additional    |
| Periphyton:                                                                                                     | 0 1 2 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the second s | Observations: |
| Filamentous Algae:                                                                                              | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01234                                                                                                          |               |
| Macrophytes:                                                                                                    | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01234                                                                                                          |               |
| Slimes:                                                                                                         | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01234                                                                                                          |               |
| Macroinvertebrates:                                                                                             | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01234                                                                                                          | Î             |
| Fish:                                                                                                           | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 1 2 3 4                                                                                                      |               |
| Other                                                                                                           | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 1 2 3 4                                                                                                      |               |
| 0=Not Obs                                                                                                       | erved, 1=Rare, 2=Common, 3=Abundant, 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 01234                                                                                                          | 4             |
|                                                                                                                 | And and a second s |                                                                                                                |               |
| Kime/Run:                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |               |
| Shallow Pool:                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5/25                                                                                                           | 4             |
| Deep Pool:                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                             | - · · ·       |
| Backwaters:                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19                                                                                                             | -             |
| Chanelized:                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                | 4             |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                | 6             |
| Noody debris:                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CCP 15                                                                                                         |               |
| Emergent Vegatation:                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                             | 4             |
| Submerged Vegetation:                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                | 4             |
| Depositional Area:                                                                                              | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                                                                                                             | 4             |
| Overhanging Veg:                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                              |               |
| Root Wads:                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20                                                                                                             |               |
| Undercut Banks;                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30                                                                                                             | 1.<br>        |
| ilamentous algae:                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30                                                                                                             | 4             |
| .eafy debris:                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |               |
| the second se | ere Visatsinar indocumbationage in service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                | ļ             |
| Substrate                                                                                                       | Score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |               |
| Bedrock                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Adj. Score                                                                                                     |               |
| g. Boulder:                                                                                                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |               |
| Boulders:                                                                                                       | X 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |               |
| Rubble:                                                                                                         | X1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                |               |
| iravel:                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |               |
| and:                                                                                                            | X 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                             |               |
| fud/Silt:                                                                                                       | X0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                                                                             |               |
|                                                                                                                 | 20.1 x 0.1 youndant 11-15, Common 6-10, Sparce 1-5, /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80 Lord for departe)                                                                                           |               |

Revision 1.2 05/28/02 GBMc Assoc. Doc.1 Page 1 of 2

•

|                  | Sampling Gear Type: Electrofishing      | Seine Gill nets                       |
|------------------|-----------------------------------------|---------------------------------------|
|                  | Unit of Effort: Above:                  | Below: 2267 PDT                       |
| ()               | Quantity of Available Fish Cover:       |                                       |
|                  | Above Station: Very Abundant, Abundant, | Moderate, Sparse, Absent              |
|                  | Below Station: Very Abundant, Abundant, |                                       |
|                  | Site Description & Notes:               |                                       |
|                  | Above Station:                          |                                       |
|                  |                                         | · · · · · · · · · · · · · · · · · · · |
|                  | Below Station: Doutre Creck             |                                       |
| AS . W           | 5/19/05 Eich Small                      | · · · · · · · · · · · · · · · · · · · |
| - Ohakul         | Above Station # // 2                    | es Observed                           |
| ()<br>()         | <u> </u>                                | Below Station #                       |
| (35) -           | Gambusia HI M M M M M M M               |                                       |
| (77)-            |                                         | WIT IN ALW AND ALW ALW AND ALW AND    |
| (i) -            | Grass Pickerel 1                        | MI HI HI HI HI HI HI HI HI HICHI      |
|                  | Spotted Smitish HIT XII 1111            |                                       |
| Z)-              | Green Suntish HIII                      | - 3 w/ internal perasites             |
| $\sim$           | Harriff - Nor                           |                                       |
| 0-               | warmonth Four 1                         |                                       |
|                  |                                         |                                       |
|                  |                                         |                                       |
|                  |                                         |                                       |
|                  |                                         |                                       |
|                  |                                         |                                       |
| •                |                                         |                                       |
|                  |                                         |                                       |
|                  | ·                                       |                                       |
|                  | ······································  |                                       |
|                  |                                         |                                       |
| -                |                                         |                                       |
| $\cdot \bigcirc$ | Revision 1.2 05/28/02                   |                                       |

GBM<sup>c</sup> & Assoc. Doc. 1 Page 2 of 2

## FIELD DATA SHEETS - BENTHIC INVERTEBRATES

Location:

| Waterbody Name: Louter Crack   |
|--------------------------------|
| Client: Lion oil               |
| Project no: 2160 -05-070       |
| Investigators: <u>REM</u> BOP  |
| Stiff JB                       |
| Date Sample Collected: 4/28/05 |

Habitat Forms Completed: yes) / no

Ecoregion: <u>Galt Coestal</u> Weather: <u>Sanny Clear</u> <u>Mild</u> Form Completed By: <u>LEM</u> (JB

LC

Form Checked By: \_\_\_\_

Fish Sampling Completed: yes / no

| Collectio               | Collection Site Observations |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | Macroinvertebrate Qualitative Sample List |                                        |  |  |  |
|-------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------|----------------------------------------|--|--|--|
|                         | LC R:<br>Above Station-      | LC-3<br>Below Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Таха           | Above Station                             | 66-3                                   |  |  |  |
|                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Annelida       |                                           | <u></u>                                |  |  |  |
| Periphyton:             | anterflaget antereth         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Decapoda       |                                           | A                                      |  |  |  |
| Filamentous Algae:      | 01234                        | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gastropoda     |                                           |                                        |  |  |  |
| Macrophytes:            | 01234                        | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pelecypoda     |                                           |                                        |  |  |  |
| Slimes:                 | 01234                        | 0 1 (2) 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hemiptera      |                                           | A                                      |  |  |  |
| Macroinvertebrates:     | 01234                        | <b>(b)</b> 1 <u>2 3 4</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Coleoptera     |                                           |                                        |  |  |  |
| Fish:                   | 01234                        | 0 1 2 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lepidoptera    |                                           | ······································ |  |  |  |
|                         | 01234                        | 01②34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Odonata        |                                           | Ple                                    |  |  |  |
| Other:                  | 01234                        | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Megaloptera    |                                           |                                        |  |  |  |
|                         |                              | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Diptera        |                                           |                                        |  |  |  |
| 0=Not Observed, 1=Rare, | 2=Common, 3=Abund            | ant, 4=Dominant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chironomidae   |                                           |                                        |  |  |  |
|                         | deller Stehneler K           | and the second of the second | Plecoptera     |                                           |                                        |  |  |  |
| Riffle/Run:             |                              | 15135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ephemeroptera  |                                           | ······································ |  |  |  |
| Shallow Pool:           |                              | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Trichoptera    |                                           |                                        |  |  |  |
| Deep Pool:              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Amphipoda      |                                           | Plc                                    |  |  |  |
| Backwaters:             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                                           |                                        |  |  |  |
| Chanelized:             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                                           |                                        |  |  |  |
|                         | ollelis Sene pictor (%)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                                           | ·······                                |  |  |  |
| Woody Debris:           |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R=Rare, C=Con  | imon, A=Abundant, D                       | Dominant                               |  |  |  |
| Emergent Vegatation:    |                              | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rare<3. Common | 3-9, Abundant>10, D                       | Dominant EQ                            |  |  |  |
| Submerged Vegetation:   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Site Descrip   | tion and Obser                            |                                        |  |  |  |
| Depositional Area:      |                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                           | rations:                               |  |  |  |
| Overhanging Veg:        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                                           |                                        |  |  |  |
| Root Wads:              |                              | . 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                                           |                                        |  |  |  |
| Undercut Banks:         |                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                           |                                        |  |  |  |
| Filamentous algae:      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                                           |                                        |  |  |  |
| Leafy Debris:           |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                                           |                                        |  |  |  |
| Other:                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                                           |                                        |  |  |  |
|                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                                           |                                        |  |  |  |
|                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                                           |                                        |  |  |  |

Revision 1.2 05/28/02 GBMc Assoc. Doc.2 Page 1 of 2

| int Source <u></u><br>llector | ABOVE                                  |                                        | Date      |                                        |
|-------------------------------|----------------------------------------|----------------------------------------|-----------|----------------------------------------|
| bitat Description:            | ABOVE                                  | Sediment '                             | ?         |                                        |
|                               |                                        |                                        |           |                                        |
| )                             | BELOW                                  |                                        |           |                                        |
|                               |                                        |                                        |           | ······································ |
| BOVE Station #                | MACROINVE                              | RTEBRATE COMMU                         |           |                                        |
|                               | Taxa Tally                             | BELOW                                  | Station # |                                        |
| 11 Oliçach                    |                                        |                                        | Taxa      | Taliy                                  |
|                               |                                        |                                        | ***       |                                        |
| 8 Comben-                     |                                        |                                        |           |                                        |
| 3 Isopada                     | ///                                    |                                        |           |                                        |
| 2 Palemon                     | notes II                               |                                        |           |                                        |
| 10 CAENIS                     | 1124                                   |                                        |           | •                                      |
| <u>Q</u>                      | IHUMT                                  |                                        |           |                                        |
| 11 Corizide                   | se Miller                              |                                        |           |                                        |
|                               | ······································ |                                        |           |                                        |
| 2 Columbia                    |                                        | ······································ |           |                                        |
| 2 Columber                    | 110- 11                                |                                        |           |                                        |
| 4 Airia                       |                                        |                                        |           |                                        |
| le <u>Enallos</u>             | <u>////</u>                            |                                        |           |                                        |
|                               |                                        |                                        |           |                                        |
|                               |                                        |                                        |           |                                        |
| 3 Stalis                      |                                        |                                        |           |                                        |
| 2 Herator                     | <u>ma 11</u>                           |                                        |           |                                        |
| 2 Weeril                      |                                        |                                        |           |                                        |
| 3 Uvarus                      | <u> </u>                               |                                        |           |                                        |
| 3 Tilula                      |                                        |                                        |           |                                        |
| 5 Chinon                      | idas IM HA HA                          |                                        |           |                                        |
| 11 Jury podi                  | vac IMIMI                              |                                        |           |                                        |
| 4 TAMYta                      | (sin) 1111                             |                                        |           |                                        |
| B Psycode                     |                                        |                                        |           | **                                     |
| 2 Psycode                     | <u></u>                                |                                        |           |                                        |
|                               |                                        |                                        |           |                                        |
| :TOTAL                        |                                        |                                        | 2024      |                                        |
|                               |                                        | unity Structure                        | TOTAL:    |                                        |
|                               | ABOVE BELOW                            | Minty Or UCIUIE                        |           |                                        |
| phem.                         | · · ·                                  | % Odon.                                | ABOVE     | BELOW                                  |
|                               |                                        | % Cole.                                | ·····     |                                        |
| richop.                       |                                        | % Crustacea                            |           |                                        |
| PT                            |                                        |                                        |           |                                        |
| hir.<br>Iptera                | ··                                     | # of Taxa:                             |           |                                        |

'1.1 6/99 'age 2 of 3

| Page |                 | BY:                                  | Notes                                     | Sample Collected 20740<br>CI Sulfale, TDS | 12.            |              | "              |             |              |       |           |      |           |                                                           |     |
|------|-----------------|--------------------------------------|-------------------------------------------|-------------------------------------------|----------------|--------------|----------------|-------------|--------------|-------|-----------|------|-----------|-----------------------------------------------------------|-----|
|      |                 | reviewed by:                         | Sample # of<br>Containers<br>S=Sed. w≓wat |                                           | -              | ~            |                |             | · · ·        |       |           |      |           |                                                           | *** |
| •    | E               |                                      | Turb.                                     | 12.7<br>-                                 | Z.I.Z          | - 0.EI       | 22.0           | 24.0 -      | 13.3         |       |           |      | <br> <br> | -                                                         |     |
|      | ata Fon         |                                      | pH su                                     | 5'9                                       | s.e            | 10.4)        | $\overline{}$  | . •         | いよっ          | · · . |           |      | <b>}</b>  |                                                           |     |
|      | Field Data Form | (20/                                 | Sp. Cond.<br>uS                           | 475                                       | 4279           | 564          | 2788           | 2874        |              | •     | <br> <br> |      |           |                                                           |     |
|      |                 | 17-                                  | DO mg/l                                   | 75.2%                                     | 34%.<br>8.5m/h | 7. Sand      | 53.0%<br>4.4mg |             |              |       |           |      | <br>      |                                                           | ·   |
|      |                 | ate                                  | င <sup>ိ</sup>                            | 14'9°C                                    | 16.50          | 1.4°C        | 23.6%          | 26.40       | 21.12        |       | <u>``</u> |      | <br>      |                                                           | •   |
|      | •               | CORD (D                              | Field<br>Crew                             | 1/2 the ortes bill                        | ANS -          | ser          | <u>v</u>       | 45/ha5      | Sua/<br>Inns |       |           | <br> | <br>      | nade                                                      |     |
|      |                 | INT RE                               | Time                                      | 0755-                                     | 971            | Bes          | 0800           | Shal        | Q/h]         |       |           |      |           | ick was i                                                 |     |
|      |                 | UREME                                | Date                                      | 4127h                                     | on uspert      | 4/20/05 1505 | 1/28/05 0800   | Upalos 1045 | 4/24/0× 1410 |       |           |      |           | ation che                                                 |     |
| ()   |                 | FIELD MEASUREMENT RECORD (Date 1/27- | Station/Depth                             | 4TA-2                                     | t-dra-4        | UNA-5        | 5-27           | 10-2        |              |       |           |      |           | * Indicates calibration check was made<br>V1.2 04/18/2004 |     |

.

<u>ب</u>ور:

May 5, 2005 Control No. 89880 Page 2 of 6

www.americaninterplex.com

#### Mc & Associates, Inc. Brown Lane bryant, AR 72022

#### CASE NARRATIVE

#### SAMPLE RECEIPT

Received Temperature: 1°C

| Receipt Verification: | Complete Chain of Custody      | v   |
|-----------------------|--------------------------------|-----|
|                       | Sample ID on Sample Labels     | . V |
|                       | Date and Time on Semala Labels |     |
|                       | Date and Time on Sample Labels | Y   |
|                       | Proper Sample Containers       | Y   |
|                       | Within Holding Times           | Y   |
|                       | Adequate Sample Volume         | Ý   |
|                       | Sample Integrity               | Ý   |
|                       | Proper Temperature             | Ý   |
|                       | Proper Preservative            | Ý   |

#### **QUALIFIERS**

| AIC Sample No.                           | Qualifiers | Definition                                                                                                                                                                           |
|------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 89880-2<br>89880-3<br>89880-5<br>89880-6 | D          | Result is from a secondary dilution factor<br>Result is from a secondary dilution factor<br>Result is from a secondary dilution factor<br>Result is from a secondary dilution factor |

#### **Prences**:

"Methods for Chemical Analysis of Water and Wastes", EPA/600/4-79-020 (Mar 1983) with updates and supplements EPA/600/5-91-010 (Jun 1991), EPA/600/R-92-129 (Aug 1992) and EPA/600/R-93-100 (Aug 1993).

"Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846)", Third Edition.

"Standard Methods for the Examination of Water and Wastewaters", 20th edition, 1998.

"American Society for Testing and Materials" (ASTM).

"Association of Analytical Chemists" (AOAC).





Mc & Associates, Inc. Brown Lane bryant, AR 72022

## ANALYTICAL RESULTS

| AIC No. 89880-1                              |             |                                                                                                                 |               |        |                   |           |
|----------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------|---------------|--------|-------------------|-----------|
| Sample Identification: UTA-2 4-27<br>Analyte | •           |                                                                                                                 |               |        |                   |           |
| Total Dissolved Solids                       | Method      | Result                                                                                                          | RL            | Units  | Batch             | Qualifie  |
| Chloride                                     | EPA 160.1   | 280                                                                                                             | 10            | mg/l   | W13814            |           |
| Sulfate                                      | EPA 300.0   | 79                                                                                                              | 0.2           | mg/l   | S15746            |           |
|                                              | EPA 300.0   | 12                                                                                                              | 0.2           | mg/l   | S15746            |           |
| AIC No. 89880-2                              |             |                                                                                                                 |               |        |                   |           |
| Sample Identification: UTA-3 4-27            | ′-05 (1505) |                                                                                                                 |               |        |                   |           |
| Analyte                                      | Method      | Result                                                                                                          |               | 1 Late |                   |           |
| Total Dissolved Solids                       | EPA 160.1   | the second se | <u>RL</u>     | Units  | Batch             | Qualifier |
| Chloride                                     | EPA 300.0   | 300                                                                                                             | 10            | mg/l   | W13814            |           |
| Sulfate                                      | EPA 300.0   | 100                                                                                                             | 2             | mg/l   | S15746            | D         |
|                                              | C: A 000:0  | 15                                                                                                              | 0.2           | mg/l   | S15746            |           |
| AIC No. 89880-3                              |             |                                                                                                                 |               |        |                   |           |
| Sample Identification: UTA-4 4-27            | -05 (1140)  |                                                                                                                 |               |        |                   |           |
| Analyte                                      | Method      | Result                                                                                                          | DI            | 1.1    |                   |           |
| Total Dissolved Solids                       | EPA 160.1   | 2000                                                                                                            | <u>RL</u>     | Units  | Batch             | Qualifier |
| Chloride                                     | EPA 300.0   | 1200                                                                                                            | 10            | mg/l   | W13814            |           |
| ···lfate                                     | EPA 300.0   | 1200                                                                                                            | 20            | mg/l   | S15746            | D         |
|                                              | =: /: 000:0 | 11                                                                                                              | 0.2           | mg/i   | S15746            |           |
| A)-No. 89880-4                               |             |                                                                                                                 |               |        |                   |           |
| Sample Identification: LC-1 4-28-0           | 5 (1440)    |                                                                                                                 |               |        |                   |           |
| Analyte                                      | Method      | Result                                                                                                          | -             |        |                   |           |
| <b>Fotal Dissolved Solids</b>                | EPA 160.1   |                                                                                                                 |               | Units  | Batch             | Qualifier |
| Chloride                                     | EPA 300.0   | 190                                                                                                             | 10            | mg/l   | W13817            |           |
| Sulfate                                      | EPA 300.0   | 70                                                                                                              | 0.2           | mg/l   | S15746            |           |
|                                              | EFA 300.0   | 4.4                                                                                                             | 0.2           | mg/l   | S15746            |           |
| NC No. 89880-5                               |             |                                                                                                                 |               |        |                   |           |
| Sample Identification: LC-2 4-28-0           | 5 1045      |                                                                                                                 |               |        |                   |           |
| Analyte                                      | Method      | Result                                                                                                          | ы             | f 1    |                   |           |
| otal Dissolved Solids                        | EPA 160.1   | 1800                                                                                                            | <u>RL</u>     | Units  | Batch             | Qualifier |
| Chloride                                     | EPA 300.0   | 220                                                                                                             | 10            | mg/l   | W13817            |           |
| Sulfate                                      | EPA 300.0   | 960                                                                                                             | 2<br>2        | mg/i   | S15746            | D         |
|                                              |             | 200                                                                                                             | 2             | mg/i   | S15746            | Ð         |
| NC No. 89880-6                               |             |                                                                                                                 |               |        |                   |           |
| Sample Identification: LC-3 4-28-05          | 5 (0800)    |                                                                                                                 |               |        |                   |           |
| <u>Inalyte</u>                               | Method      | Desult                                                                                                          | <b>1</b> 11 1 |        |                   |           |
| otal Dissolved Solids                        | EPA 160.1   | Result                                                                                                          | <u></u>       | Units  | Batch             | Qualifier |
| hloride                                      |             | 1800                                                                                                            | 10            | mg/i   | W13817            |           |
| ulfate                                       | EPA 300.0   | 220                                                                                                             | 2             | mg/l   | S15746            | D         |
| ,                                            | EPA 300.0   | 950                                                                                                             | 2             | mg/i   | S15746            | Ď         |
| •                                            |             |                                                                                                                 |               | •      | - · · · · · · · · |           |

8600 Kanls Road · Little Rock, AR 72204

www.americaninterplex.com

501-224-5060 · FAX 501-224-5072

.

www.americaninterplex.com

#### Mc & Associates, Inc. Brown Lane bryant, AR 72022

## SAMPLE PREPARATION REPORT

| AIC No. 89880-1<br><u>Analyte</u><br>Total Dissolved Solids      | Date/Time<br>Prepared By             | Date/Time                                                | Dilution | Batch                                      | Out                   |
|------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|----------|--------------------------------------------|-----------------------|
| Chloride<br>Sulfate                                              | 29APR05 1557 252<br>29APR05 1557 252 | 03MAY05 0926 22<br>29APR05 2116 25                       | 3.       | W13814<br>S15746<br>S15746                 | Qualifier             |
| AIC No. 89880-2<br>Analyte<br>Total Dissolved Solids             | Date/Time<br>Prepared By             | Date/Time                                                | Dilution | Batch                                      | 0                     |
| Chloride<br>Sulfate                                              | 29APR05 1557 252<br>29APR05 1557 252 | 03MAY05 0926 223<br>29APR05 2132 252                     | 10       | W13814<br>S15746<br>S15746                 | Qualifier<br>D        |
| AIC No. 89880-3<br>Analyte<br>Total Dissolved Solids             | Date/Time<br>Prepared By             | Date/Time<br>Analyzed By                                 | Dilution |                                            | •                     |
| Chloride<br>Sulfate                                              | 29APR05 1557 252<br>29APR05 1557 252 | 03MAY05 0926 223<br>02MAY05 0956 253                     | 100      | <u>Batch</u><br>W13814<br>S15746<br>S15746 | <u>Qualifier</u><br>D |
| AIC No. 89880-4<br>Vte<br>Dissolved Solids<br>Chloride           | Date/Time<br>Prepared By             | Date/Time<br>Analyzed By<br>03MAY05 1246 223             | Dilution | Batch                                      | Qualifier             |
| Sulfate                                                          | 29APR05 1657 252<br>29APR05 1557 252 | 294PR05 2245 250                                         |          | W13817<br>S15746<br>S15746                 |                       |
| AIC No. 89880-5<br>Analyte<br>Total Dissolved Solids<br>Chloride | Date/Time<br>Prepared By             | Date/Time<br>Analyzed By<br>03MAY05 1246 223             | Dilution | Batch                                      | Qualifier             |
| Sulfate                                                          | 29APR05 1557 252                     | 30APR05 0001 252<br>30APR05 0001 252                     | 10       | W13817<br>S15746<br>S15746                 | D<br>D                |
| AIC No. 89880-6<br>Analyte<br>Total Dissolved Solids             | Date/Time<br>Prepared By             | Date/Time<br>Analyzed By                                 | Dilution | Batch                                      | Qualifier             |
| Chloride<br>Sulfate                                              | 29APR05 1557 252 3                   | 03MAY05 1246 223<br>30APR05 0032 252<br>30APR05 0032 252 | 10       | W13817<br>S15746<br>S15746                 | DDD                   |





May 5, 2005 Control No. 89880 Page 5 of 6

#### BMc & Associates, Inc. 9 Brown Lane Tyant, AR 72022

# LABORATORY CONTROL SAMPLE RESULTS

| Analyte<br>Total Dissolved Solids<br>Total Dissolved Solids<br>Chloride<br>Sulfate | Spike<br><u>Amount</u><br>250 mg/l<br>250 mg/l<br>10 mg/l<br>30 mg/l | %<br><u>Recovery</u><br>101/102<br>104/103<br>97.1/95.2<br>99.8/100 | % Recovery<br>Limits<br>85-115<br>85-115<br>90-110<br>90-110 | <u>RPD</u><br>0.791<br>0.193<br>2.01<br>0.180 | RPD<br>Limit<br>10<br>10<br>10<br>10 | Batch Qua<br>W13814<br>W13817<br>S15746<br>S15746 | <u>alifier</u> |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|--------------------------------------|---------------------------------------------------|----------------|
|------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|--------------------------------------|---------------------------------------------------|----------------|

## MATRIX SPIKE SAMPLE RESULTS

| Analyte Al<br>Chloride | Spike         %           mount         Recove           10 mg/l         94.5/97           30 mg/l         97.9/98 | 5 80-120 2.64 | RPD<br>Limit Bato<br>10 S157<br>10 S157 | 46 |
|------------------------|--------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------|----|
|------------------------|--------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------|----|

## LABORATORY BLANK RESULTS

| Analyte<br>tal Dissolved Solids<br>I Dissolved Solids<br>Coride<br>Sulfate | Method<br>EPA 160.1<br>EPA 160.1<br>EPA 300.0<br>EPA 300.0 | <u>Result</u><br>< 10<br>< 10<br>< 0.2<br>< 0.2 | Units<br>mg/l<br>mg/l<br>mg/l<br>mg/l | RL<br>10<br>10<br>0.2<br>0.2 | QC<br>Sample<br>W13814-1<br>W13817-1<br>S15746-1<br>S15746-1 | Qualifier |
|----------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------|---------------------------------------|------------------------------|--------------------------------------------------------------|-----------|
|----------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------|---------------------------------------|------------------------------|--------------------------------------------------------------|-----------|

#### May 5, 2005 Control No. 89880 Page 6 of 6

Ac & Associates, Inc. Brown Lane Bryant, AR 72022

•••

## QUALITY CONTROL PREPARATION REPORT

## LABORATORY CONTROL SAMPLES

| Analyte                                                                                                                                            | Date/Time<br>Prepared By                                                                                                   | Date/Time<br>Analyzed By                                                                                                                                     | Dilution | QC<br>Sample                                                                                 | Qualifier       |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------|-----------------|
| Total Dissolved Solids<br>Total Dissolved Solids<br>Total Dissolved Solids<br>Total Dissolved Solids<br>Chloride<br>Chloride<br>Sulfate<br>Sulfate | -<br>29APR05 1132 252<br>29APR05 1132 252<br>29APR05 1132 252<br>29APR05 1132 252<br>29APR05 1132 252<br>MATRIX SPIKE SAME | 03MAY05 0926 223<br>03MAY05 0926 223<br>03MAY05 1246 223<br>03MAY05 1246 223<br>29APR05 1333 252<br>29APR05 1400 252<br>29APR05 1333 252<br>29APR05 1400 252 |          | W13814-2<br>W13814-3<br>W13817-2<br>W13817-3<br>S15746-2<br>S15746-3<br>S15746-2<br>S15746-3 | <u>wuailler</u> |

#### 

| Analyte             | Date/Time Prepared By                | Date/Time                                                | QC                               |
|---------------------|--------------------------------------|----------------------------------------------------------|----------------------------------|
| Chloride            |                                      | Analyzed By                                              | Dilution Sample Qualifier        |
| Chloride<br>Sulfate | 29APR05 1132 252<br>29APR05 1132 252 | 29APR05142725229APR05145925229APR05142725229APR051459252 | S15746-4<br>S15746-5<br>S15746-5 |

#### LABORATORY BLANKS

| Analyte                            | Date/Time   | Date/Time                                                                    | QC                               |
|------------------------------------|-------------|------------------------------------------------------------------------------|----------------------------------|
| Total Dissolved Solids             | Prepared By | Analyzed By                                                                  | Dilution Sample Qualifier        |
| Total Dissolved Solids<br>Chloride | -           | 03MAY05 0926 223<br>03MAY05 1246 223<br>29APR05 1319 252<br>29APR05 1319 252 | W13814-1<br>W13817-1<br>S15746 1 |



LABORATORIES

AMC & Associates Serveric Environmental Services 219 Brown Ln. Bryant, AR 72022 X

(501) 847-7077 Fax (501) 847-7943

# **Chain of Custody**

(0000)

• • •

+

|    |                                                   |                     |                                            |            |                                 |                            |               |           | 8988                 | Q                 |        |
|----|---------------------------------------------------|---------------------|--------------------------------------------|------------|---------------------------------|----------------------------|---------------|-----------|----------------------|-------------------|--------|
|    |                                                   |                     |                                            |            | NI-SIA NO.                      | SURMERICON                 |               | の日本である作品の | NEART BEAT BUILDE    | SUCCESSION STATES | 100000 |
|    | Cuttpatry.                                        | -1-                 | H.SSUCIATes                                |            |                                 |                            |               | Contart   | Read Philling        |                   | 8      |
|    | Project Name/No.:                                 | 2160-25-070         | 020-22-02-02                               | Company:   |                                 |                            |               | I.        | ciliul no ici        | U AVE             |        |
|    | Send Report To:                                   | Rother M            | McDanje/                                   | Address:   | Clip                            | 404                        |               | TATACON 1 | With any guestions @ | 11ms. @           |        |
|    | Address:                                          | 219 Strown Lane     | n Lane                                     |            | Tafa                            | Toformation                |               | -140-100  | 1071                 |                   |        |
|    |                                                   | Bryant AR 72077     | K 72022                                    | Phone No.: | -                               | 10/10/1/                   |               |           |                      | Methods           |        |
|    | Phone/Fax No.:                                    |                     |                                            | Fax No.:   |                                 |                            |               |           |                      |                   | _      |
|    | Sample ID                                         | Sample Description  | Date                                       | Time       | Matrix<br>S=Sed/Soit<br>W≐Water | Number<br>of<br>Containers | Composite 50  | 507       |                      |                   |        |
| 6  | 414-2                                             | -                   | 4/m/nC                                     | 0740       | (*)                             | -                          |               |           |                      |                   | _      |
| Q  | 2                                                 |                     | 20/00/12                                   | 141        | 3                               |                            | K<br>X        |           |                      | · · ·             |        |
| 3  | 479-4                                             |                     | 24/26/17                                   | 140        | 3 3                             |                            | ر<br>۲        |           |                      |                   |        |
| Ð( | 1-27                                              |                     | 4/28/05                                    | 0///       | 3 3                             |                            | 27<br>20      |           |                      |                   |        |
| SK | ╤┶                                                |                     | 4/28/02                                    | 1045       | 3                               |                            |               |           |                      |                   |        |
| 9  | 5-37                                              |                     | 4/28/05                                    | 0800       | ß                               |                            |               |           |                      |                   |        |
|    |                                                   |                     | _                                          |            |                                 |                            | 2             |           |                      |                   |        |
|    |                                                   |                     |                                            |            |                                 |                            |               |           |                      | _                 |        |
|    |                                                   |                     |                                            |            |                                 |                            |               |           |                      |                   |        |
|    | Preservative                                      | ( Sulfuric a        | (Sulfuric acid =S, Nitric acid =N. NaOH =B | cid =N, N  |                                 |                            |               |           |                      |                   |        |
|    | Sampler(s): BJP/S/HH/JB                           | 5KH/JJB             | Shipment Met                               | hod: 6.R.I | Shipment Method: C/R//C //////  | :}                         |               |           |                      |                   |        |
|    | COC Completed by Milling                          | allala.             | Data: 4/100                                | (hading =  | 1000                            | ╺┼╼╼╸                      |               | 1         | 112                  |                   |        |
|    |                                                   | 0 0                 |                                            |            |                                 |                            | in new        | A A       | Date: 7/2 7/05       | Time: /235        |        |
|    | Relinquished by: XV north, 4 11 May Date: 4/79/05 | 120 a. J. 11 10 400 | Date: 7/79                                 | ,          | Time; /3/5                      | Received by:               | by:           |           | Date:                | Time:             |        |
|    | Relinquished by:                                  |                     | Date:                                      | Time:      | 1e:                             | Received in lab by:        | n lab by: LLA | front     | Date: 4-29-05        | Time: 1315        |        |
|    |                                                   |                     |                                            |            |                                 | 01                         |               | Series -  |                      |                   |        |

V1.3 04/14/04

# Appendix E Field Data Sheets

# GENERAL PHYSICAL CHARACTERIZATION FIELD FORM

| STATION I.D: (-C-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LOCATION:                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STREAM NAME: Loutre Couck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RIVER BASIN: WS of Lion 0.1                                                                                                                                                         |
| LAT: 33 12 5.4 LONG: 92,43,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                     |
| LAT: 33 12 54 LONG: 92,43,1<br>INVESTIGATORS: SHA / JB DATE/TIME:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Glass FORM CHECKED BY:                                                                                                                                                              |
| 507703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FORM CHECKED BY:                                                                                                                                                                    |
| storm (heavy rain)<br>rain (steady rain)<br>showers (intermittent)<br>%<br>%<br>clear/sunny<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24-hr       Heavy rain in the last 7 days?       Yes       No         Air Temperature       °C/°F         %       Other                                                             |
| Stream Origin<br>☐ Glacial<br>☐ Montane, non-glacial<br>☐ Swamp and bog<br>Stream Gradient: ☐ High (≥25ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Stream Type         Tidal       Coldwater         Spring-fed       Catchment Area:mi <sup>2</sup> Mixture of origins       Stream Order:         Other       Moderate (10-24 ft/mi) |
| Flows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Flows,Measured?       Reach:       Slope       & Sinuosity         None       Yes       No      ft/mi                                                                               |
| Predominant Surrounding Land         ✓ Forest 50 %       □ Sub-Ur         □ Pasture%       □ Comme         □ Row Crops%       □ Industr         ✓ Urban 50 %       □ Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Local Watershed NPS Pollution       ban     No evidence [] Agricultural       ercial%     Industrial Storm Water                                                                    |
| Imature Forest 10 %       Imature Forest 10 %         Imature Forest 10 %       Imature Forest 10 % <th>b/Sapling 10% Herbs/Grasses% Turf%</th> | b/Sapling 10% Herbs/Grasses% Turf%                                                                                                                                                  |
| Channelized:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                     |
| Turbidity/Water Clarity (if not me         Clear       Slightly turb         Opaque       Stained         Sediment Odor       Normal         Chemical       Anaerobic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | asured)       13.3 NTU         Did       Turbid         Other         Sediment Deposits         Petroleum       Sludge         None       Sand         Relict shells                |
| Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DKOther Silt/Dirt                                                                                                                                                                   |

| GENERAL PHYSICAL | CHARACTERIZATION FIELD | FORM |
|------------------|------------------------|------|
|------------------|------------------------|------|

| STATION I.D.              | LC-1                                                                                                       | LOCATION Union, AK: Eldurado                                                                                                                                           |
|---------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STREAM NAME               | Loutre Creek                                                                                               | RIVER BASIN Quachita                                                                                                                                                   |
| LAT                       | LONG                                                                                                       | CLIENT LIGA GIT                                                                                                                                                        |
| INVESTIGATORS             |                                                                                                            | JB.                                                                                                                                                                    |
| B7                        |                                                                                                            | DATE 4/2805 REASON FOR SURVEY<br>TIME 7500                                                                                                                             |
| WEATHER<br>CONDITIONS     | Now<br>storm (heavy rain)<br>rain (steady rain)<br>showers (intermittent<br>% % cloud cover<br>clear/sunny | Air Temperature 80 COR                                                                                                                                                 |
| STREAM<br>ATTRIBUTES      | Stream Subsystem                                                                                           | nt 🗍 Tidal Stream Type<br>Coldwater 🛃 Warmwater                                                                                                                        |
|                           | Stream Origin<br>Glacial<br>Non-glacial montane<br>Swamp and bog                                           | Catchment Areami <sup>2</sup>                                                                                                                                          |
| HYDROLOGY                 | Flows                                                                                                      |                                                                                                                                                                        |
| FEATURES                  | Predominant Surrounding L<br>Forest Commen<br>Field/Pasture Industria<br>Agricultural Other<br>Residential | al Divious sources                                                                                                                                                     |
| INSTREAM<br>FEATURES      | Riffie 30 %<br>Run 20 %<br>Pool <u>50 %</u><br>Channelized Yes [<br>Dam Present Yes [                      | sented by Stream Morphology Types                                                                                                                                      |
| WATER/<br>OBSERVATIONS    | Water Odors         V Normal/None       Sewag         Petroleum       Chemic         Fishy       Other_    |                                                                                                                                                                        |
| 000.000                   | Turbidity (if not measured)         Clear       Slightly         Opaque       Stained                      | ed Other                                                                                                                                                               |
| SEDIMENT/<br>OBSERVATIONS | Sediment Odor<br>Normal Sewage<br>Chemical Anaerobic<br>Other                                              | Sediment Deposits         Petroleum       Sludge       Sawdust       Oils         None       Sand       Relict shells         Other       Official (Color)       Other |

S.C.,

| rement Form  |  |
|--------------|--|
| e/Flow Measu |  |
| Discharg     |  |

 $\left( \right)$ 

| Station: $\angle C < 1$           |                                   |                  | ( <del>;</del> ) | (2)          | (2)            |             | <del>(</del> )   | Method     | (2)         | (8)       |
|-----------------------------------|-----------------------------------|------------------|------------------|--------------|----------------|-------------|------------------|------------|-------------|-----------|
| Waterbody. Loutin Court           | Corek                             |                  | from             | Width        | Depth          |             | Avg.<br>Velocity | Depth      | Area        | Discharge |
| 21/2                              |                                   |                  | initial<br>point |              |                | · · · · · · | At Point         | 9          |             |           |
| Crew: 5/4 1-5-8                   | Start Time: 1555                  | Recorder: 524    |                  | £            | ê              | sdO<br>sdO  | ε                | 6.0        | Ś           | (Ċ)       |
| <b>a</b>                          | End Time:                         | GH. Change:      | 50               | 0.5          | 20             | U<br>U      | QN               |            |             |           |
|                                   | Staff/Gage:                       | E SF             | 1.0              | $\downarrow$ | 505            |             | 61.0             |            |             |           |
| Width: 5.0                        | Area:                             | Velocity:        | 20               |              | <u>ه،</u><br>ک |             | 150              |            |             |           |
| Disch/Flow:                       | Method:                           | No Secs:         | 200              | 7            | 28             |             | 275              |            |             |           |
| Meter No:                         | Max Vel:                          | Min Vel:         | 200              |              | 0.2            |             | 0.29             |            |             |           |
| ORIENTATION:                      |                                   |                  | 6.2              | -4           | 1.0            |             | 10               |            |             |           |
| Wading, Boat, Upstre              | Upstream, Downstream, Side Bridge | doe<br>A/mi      |                  |              | \$             |             |                  |            |             |           |
| below g                           |                                   |                  | >                |              | 2              |             |                  |            |             |           |
| Measurement rated: excellent good | llent good fair poor based on th  | on the following |                  |              |                |             |                  |            |             |           |
| conditions: Cross section         |                                   |                  |                  |              |                | +           |                  |            | -           |           |
| Flow                              | Weather                           |                  |                  |              |                |             |                  |            | <br>·  <br> | T         |
| Other                             | Air F                             |                  |                  |              |                |             |                  |            |             |           |
| Gage                              |                                   |                  |                  |              |                | - <u> </u>  |                  |            |             |           |
| Observer                          |                                   |                  |                  |              | •              |             |                  |            |             |           |
|                                   |                                   |                  |                  | ╋            |                |             |                  |            |             |           |
| Control                           |                                   |                  |                  |              |                |             |                  |            |             |           |
|                                   |                                   |                  |                  |              |                |             |                  |            |             |           |
|                                   |                                   |                  |                  |              |                |             |                  | . <u>.</u> |             |           |
| Remarks                           |                                   |                  |                  |              |                | _           |                  |            |             |           |
|                                   |                                   |                  | TOTALS           |              | -              |             |                  |            |             |           |
|                                   |                                   |                  |                  |              |                |             |                  |            |             | ]         |
|                                   | -                                 |                  |                  |              |                |             |                  |            |             |           |
|                                   |                                   |                  | •                |              |                |             |                  |            |             |           |

Completed By

Checked by\_

Reviewed by\_\_\_

:

V1.0 1096

| Lion Oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |         | date                             | 4/28/2005 |                | Start<br>Stop | 1555 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|----------------------------------|-----------|----------------|---------------|------|
| Station:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LC-1           |         |                                  |           |                | J             | 1605 |
| Waterbody:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Loutre Cree    | ek      |                                  |           |                | -             |      |
| Crew:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>BJP/SKH</b> |         |                                  |           |                | -             |      |
| Width (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | Area:   | 1.5                              | Max Vel:  | 0.51           | -             |      |
| Disc/Flow (cfs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         | 025                              | Min Vel:  |                | -             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |                                  |           | 0              | 1             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |                                  |           |                |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         | er stelle stelle<br>System i Kan |           |                |               |      |
| nin veron nëbit<br>(Ni - Villen llettit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |         |                                  |           |                |               |      |
| 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5            | 0.2     | 0                                | 0.1       | 0              |               |      |
| 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5            | 0.5     | 0.19                             | 0.1       | 0.0475         | -             |      |
| 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5            | 0.5     | 0.31                             | 0.25      | 0.0475         |               |      |
| 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5            | 0.5     | 0.51                             | 0.25      | 0.1275         | 4             |      |
| 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5            | 0.4     | 0.47                             | 0.2       | 0.094          | 1             |      |
| 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5            | 0.4     | 0.4                              | 0.2       | 0.08           | 4             |      |
| 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5            | 0.3     | 0.29                             | 0.15      | 0.0435         | ł             |      |
| 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5            | 0.1     | 0.1                              | 0.05      | 0.005          | ł             |      |
| 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0            | 0       | 0                                | 0         | 0              | 1             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |                                  |           |                | ł             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |                                  |           |                |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |                                  |           |                |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |                                  |           |                |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |                                  |           |                |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |                                  |           |                |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |                                  |           |                |               |      |
| a series and the series of the |                |         |                                  |           |                |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 23.910. | C 2227 - 24                      |           | s si û dista d |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |                                  |           |                |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |                                  |           |                |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |                                  |           |                |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |                                  |           |                |               |      |

 $\partial$ 

# Stream Habitat Assessment (Semi-Quantitative)

| Station # | #: <u>4C-1</u>   |               | ]        | Date/Ti  | me: 4/      | 2.870   | 5 |          | Initials |                                       | at a  |          |
|-----------|------------------|---------------|----------|----------|-------------|---------|---|----------|----------|---------------------------------------|-------|----------|
| 9. Aqua   | ttic Macrophytes | and Pe        | erlphyto | on (Perc | ent Cov     | verage) |   |          |          | 01                                    | -17/0 | 0        |
|           |                  |               |          |          | 1           |         |   | ann an s |          |                                       |       |          |
| Riffle    | Macrophytes      | ·             |          | 0        | <u>سر ا</u> |         |   |          |          |                                       |       | LAW-ROLL |
|           | Periphyton       | -             |          | 0        | -           |         |   | 0        | 0        | **                                    |       | 0        |
| Pool      | Macrophytes      | 15            | C        | 0        |             |         | · | 0        | 6        | · · · · · · · · · · · · · · · · · · · | ·     | 0        |
|           | Periphyton       | $\mathcal{D}$ | 0        | 0        | 0           | 0       | 0 | 4        | -        | 0                                     |       | 2.9      |

## 10. Canopy Cover (Percent Stream Shading)

| act the gas a set of the |        |       |       |    |      |    | ł |
|--------------------------|--------|-------|-------|----|------|----|---|
| Shading 50               | 80 90. | 90 90 | 90 90 | 90 | 90 9 | () |   |

# 11. Bank Stability (Score) and Slope (Degrees)

| leering.             |              |             |       |    | - 4 | - 19<br>- 19 |          |     |    |    | H. H.S. Harrison |
|----------------------|--------------|-------------|-------|----|-----|--------------|----------|-----|----|----|------------------|
| Score                | 8            | 10          | .7    | 8  | 8   |              | 0        | 1.0 |    |    | Val Corre        |
| Slope (°)            | 80°          | 900         | 700   | 90 | 85  | Ro-          | Ten      | 20  | 8  | 6  | 7.5              |
| ्यतः<br>अवविधियस्य स |              |             |       |    | 6   |              |          | 40  | 00 | 08 | 79               |
| Score                | 8            | 7           | P     | 4  | 1.  |              | 4        |     |    |    |                  |
| Slope (°)            | 80°          | Po'         | 80    | 50 | (10 | 32 A         | 60       | 20  | Y  | 7  | 7.3              |
| Score $9-10 = 3$     | Stable, < 59 | % bank affe | cted. |    |     | Score 6.8 -  | <u> </u> | 10  | 10 | 80 | 73               |

Score 3-5 = Moderately unstable, 30-59% bank eroding.

Score 6-8 = Moderately stable, 5-29% of bank eroding Score 1-2 = Unstable, 60-100% bank eroding.

## 12. Vegetative Protection (Percent Banks Protected)

| 的精神的空气    |    |    |    |    | 3  | 100 |    |     | 19.35 |    |    |
|-----------|----|----|----|----|----|-----|----|-----|-------|----|----|
| %         | 90 | 60 | 20 | 60 | 40 | 5   | 40 | 100 |       |    |    |
| - 時代 基本公司 |    |    |    |    |    |     |    |     | 10    | 70 | 54 |
| %         | 80 | 46 | 10 | 35 | 25 | 57) |    | 40  |       |    |    |

## 13. Riparian Vegetative Zone Width

| · 特别的              |             |             |             |    |          |      |   |             |   |   |     |
|--------------------|-------------|-------------|-------------|----|----------|------|---|-------------|---|---|-----|
| Score              | 7           | 8           | 8           | -0 | 8        | 8    | 8 | <b>\$</b> . | D | 8 |     |
|                    |             |             |             |    |          |      |   |             |   |   |     |
| Score              | 8           | 8           | 8           | 9  | 8        | 8    | 7 | V           | X |   |     |
| Score $9 - 10 = 1$ | Riparian Zo | one Width : | > 18 meters |    | Second 6 | D' i |   |             | 0 | 0 | 8.1 |

Score 3-5 = Riparian Zone Width 11 - 6 meters

Score 6-8 = Riparian Zone Width 18 - 12 meters Score 1-2 = Riparian Zone Width < 6 meters

## 14. Land-Use Stream Impacts

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |   |      |                  |    |       |     |                    | 1. | 唐·司兰之皇                     | a area   | Argua   |    |    |         |        |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|------|------------------|----|-------|-----|--------------------|----|----------------------------|----------|---------|----|----|---------|--------|----------|
| Head and the second sec |    |   | 1. C |                  |    |       |     |                    |    |                            |          |         |    |    |         |        |          |
| Impact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U  | 9 | u    |                  | U. | 10    | 4 / | u                  | 1  | 1                          |          |         |    |    |         | dia an |          |
| C = Cattle<br>Score $0 = nc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ne |   |      | Crops<br>nor aff | U  | Urbar |     | achmer<br>ate affe |    | I = Industr<br>3 = major a | ial Encr | oachmei | nt | 0: | = Other | и, 1   | <u> </u> |
| Page 2 of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |   |      |                  |    |       |     |                    |    |                            |          |         |    |    |         |        |          |

| · ·                         |                        |                   | •                  |                                       |                            |                                                 |                                               |                                         |                              |                  |                 | A              | $\sim$                       |              |
|-----------------------------|------------------------|-------------------|--------------------|---------------------------------------|----------------------------|-------------------------------------------------|-----------------------------------------------|-----------------------------------------|------------------------------|------------------|-----------------|----------------|------------------------------|--------------|
|                             |                        |                   |                    | Strea                                 | ım Ha                      | abitat /                                        | Asses                                         | sment (S                                | Semi-Q                       | uantitat         | ive)            | Long.          | /                            |              |
| Station #:                  | 10-                    | -1                | Stream             | 1: 100                                | white                      | Cree                                            | K                                             | Date/1                                  | Time:                        | 58/05            | Analyst         | c 2011         | Z                            |              |
| [                           | -                      |                   | Locati             | on: Un                                | cr Lo                      | the                                             | Fast &                                        | Ever 14                                 | 20-71                        | 2943             | - Filalyst,     | _27            | 015                          | -            |
| 1. Reach                    | Longe                  | h Det             |                    |                                       |                            |                                                 | 200 1                                         |                                         |                              | 23               |                 | <u> </u>       |                              |              |
| I A Long                    | CONSC                  | 11 Def            | <b>ALIUIN</b>      | ation                                 | har visi                   | ni<br>Bishina i                                 | Parata (1                                     | - A W                                   | 20ph                         | Q.               |                 |                |                              |              |
| Denkfull                    | 12.444                 |                   |                    |                                       |                            |                                                 |                                               | s.<br>Kata                              |                              | switt aborties   |                 |                | ant se partir.<br>Se a Sunas | . 1          |
| Bankfull V<br>Bankfull D    |                        | 10                | 5                  | 11.5                                  |                            | 0.6                                             | 13                                            | B12.5 18                                | 351                          | 2.7-             | 25              | 1 2            | $\leq \omega'$               |              |
| Average                     |                        | <u> </u>          | 8                  | 2.4                                   | 4                          | 2.8                                             | 2                                             | € 1 4                                   | .5                           | 1.4              | na              |                | na <u>-7 -</u>               | 1            |
|                             |                        | 1.1               | 2                  | 1.90                                  | otal Ler                   | <b>γ</b> αthγdivi                               | ded K?                                        | to lat                                  | 3.5                          |                  | 352,1:          | 1 at .         | 37'12'                       | _ <br>*_~~ " |
| 2. Riffle-P                 | ool S                  | equer             | ICe (              |                                       |                            | Cino 4                                          | 253                                           | pzy.                                    | 22 110 4                     | 3.5              | 9/5             | -              | 12°43'                       | •            |
| - 문왕 정영있<br>- 문일한 김 영양      |                        |                   |                    |                                       |                            |                                                 | oser ès                                       |                                         |                              |                  |                 |                | - <sub>()</sub>              |              |
| Riffle                      |                        |                   | egara kare 2000    |                                       | 2.4                        | <u>an an a</u> |                                               |                                         |                              |                  |                 |                | <u>h adar</u>                |              |
| Run                         | _                      |                   |                    | 1                                     | <b></b>                    |                                                 |                                               | _                                       | 25.4                         | 25.4             |                 |                | 642                          | 125          |
| Pool<br>Total               | _2                     | <u> ૬ ત</u>       | 25.                | 1 12                                  |                            | 25.4                                            | 25,0                                          | 1 25.4                                  |                              | +                | 25.4            | 25.4           | 187.8                        | 12.1         |
| Sequence                    |                        | ,                 |                    | _                                     | <u> </u>                   |                                                 |                                               | ·                                       | 1                            |                  |                 | <u>, 63. 7</u> | 101.0                        | 77.          |
| <sup>1</sup> Riffle="xx     |                        | $\sim$            | " Do               | $\frac{1}{2}$                         | with the second            | $\sim$                                          | $\sim$                                        | <b>Ipaas</b>                            | SCIENCIA                     | XXXXXX           | in              | m              | J                            |              |
|                             |                        |                   | •.                 |                                       |                            |                                                 |                                               | •                                       |                              |                  | 2               |                |                              | 1            |
| 3. Depth a                  |                        | dth R             | <u>egime</u>       |                                       |                            |                                                 | 950 KA (444)                                  | · مــــــــــــــــــــــــــــــــــــ | and the factor of the second | T                | is from         | ficer B        | rest )                       |              |
|                             |                        |                   |                    |                                       |                            |                                                 |                                               | el (Gie) Citil<br>Sé                    |                              | ulâlin (tê)<br>M | 2               |                |                              |              |
| Riffle Dept<br>Riffle Widtl |                        |                   |                    | 0.                                    | 4/                         | -1,1                                            | <u>,                                     </u> | -Xx                                     | 0.2-                         | 02               |                 |                |                              |              |
| Pool Depth                  |                        |                   | ·                  | 5                                     | -                          | <i>P</i> 10                                     |                                               | -48                                     | 605                          | O CESE           |                 | - 3            |                              |              |
| Pool Width                  |                        | . <u>8</u><br>1.0 | $\frac{1.1}{12.0}$ | 0.0                                   | 7//                        |                                                 | 2.50                                          | /.8                                     | 2-                           | 27               | 1.4             | 1.3            | 1.7                          | 3            |
|                             |                        |                   |                    | · · · · · · · · · · · · · · · · · · · | N/                         | 7.8                                             | Shall                                         |                                         | <u> </u>                     | SPO              | 11.0 0          | 7.0            | 8.8                          |              |
| 4. Eplfaun                  | al Sub                 | strate            | e, Perc            | ent Sta                               | ble Ha                     | bitat (fe                                       | or Macro                                      | nverteb                                 | rates) '                     |                  |                 |                |                              |              |
| % Area                      | 60                     | 4                 | 0                  | 30                                    | 35                         | Ŧ                                               | Allen                                         | 65ª 2                                   |                              |                  | A               |                |                              |              |
|                             |                        |                   |                    |                                       |                            |                                                 |                                               |                                         |                              | 0 4              |                 | ) 4            | 4.5                          |              |
| 5. In-Strea                 | m Hab                  | itat, F           | Percen             | t Stable                              | Habi                       | tat (Ava                                        | ilable F                                      | ish Cover                               | in Wette                     | d Perime         | ter)            |                |                              |              |
| Barket 1                    | istetik<br><u>Line</u> |                   |                    |                                       |                            |                                                 |                                               |                                         |                              |                  |                 |                |                              | ·            |
| % Area.                     | <u>70</u>              | 5                 | 0                  | 30                                    | 40                         | 70                                              | PT TO                                         | ) 42                                    | 0 2                          | 0 5              | 5. 1.           |                |                              |              |
| 6. Substrat                 | te Cha                 | racte             | rizatio            | n (Dom                                | inant s                    | Substra                                         |                                               |                                         | <u> </u>                     |                  | <u>).</u> (60   |                | <del>3</del> 0               |              |
|                             |                        |                   |                    |                                       |                            | Rate                                            |                                               | Que North                               | 1:5332-04                    |                  |                 |                |                              |              |
| Riffle                      | -                      |                   |                    |                                       |                            |                                                 |                                               |                                         |                              |                  |                 |                |                              |              |
| Pool .                      | 5(2)                   | 1                 | 2)                 | 6/21                                  | 5(2                        | 5(2                                             |                                               |                                         |                              |                  |                 |                |                              |              |
| BR=Bedrock                  | (7), BL                | D=Bou             | ilder(6),          | COB=C                                 | <u>&gt; / /</u><br>obble(5 | ), GC=G                                         | navel Coa                                     | 2) <u></u> (4) GF                       | 2) 5<br>=Gravel Fi           | 2) 5             | $ \nu  \leq (2$ | $) \leq ($     | $\overline{\mathbf{X}}$      |              |
| 7. Embedd                   | ednee                  | s (Gr             | avel C             | obbla                                 | اداریم                     |                                                 |                                               |                                         |                              |                  | anu(2), SC      | =Silt/Clay(    | 1) 1                         |              |
| and the second              |                        |                   |                    | Coble,                                | Bould                      | ala Loi(                                        | ent Em                                        | bedded)                                 |                              |                  |                 |                |                              |              |
| % Embedd                    | ed                     |                   |                    |                                       |                            | $ \rightarrow $                                 |                                               |                                         |                              |                  |                 |                |                              |              |
| 0 0 e el 2                  |                        | l                 |                    |                                       | L                          | <u> </u>                                        |                                               | <u> </u>                                |                              |                  | L               |                |                              |              |
| 8. Sedimen                  | it Depo                | ositio            | n (Perc            | cent of                               | Bottor                     | n Affect                                        | ed)                                           |                                         |                              |                  | <u> </u>        |                |                              | •.           |
|                             | 30                     | .4                | 0                  | 50                                    | 25                         | 50                                              | 7                                             | 0 20                                    |                              |                  |                 |                | 9-1-1                        |              |
| Page 1 of 2                 |                        | 1                 |                    |                                       | -0                         | 100                                             | 7                                             | 20 20                                   | 20                           | 20               | 50              | 37.            | 5                            |              |
| V 2.1                       |                        |                   |                    |                                       |                            |                                                 |                                               |                                         |                              |                  |                 |                |                              |              |

2.00

. .

| Stream name: Lower Creek |                                           | Date/Tim                                                                                                        |                                              |                                              |  |  |  |  |  |  |
|--------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|--|--|--|--|--|--|
| <u></u>                  | ENTRE LATEN                               | Form Co                                                                                                         | mpleted By:                                  |                                              |  |  |  |  |  |  |
| Habitat                  |                                           |                                                                                                                 |                                              |                                              |  |  |  |  |  |  |
| Parameter                |                                           | CATEGORY                                                                                                        |                                              |                                              |  |  |  |  |  |  |
|                          | Optimal                                   | Suboptimal                                                                                                      |                                              |                                              |  |  |  |  |  |  |
| 6. Channel Sinuosity     | The bends in the                          | The bends in the stream                                                                                         | Marginal                                     | Poor                                         |  |  |  |  |  |  |
| ·                        | stream increase the                       | increase the stream                                                                                             | The bends in the stream increase the         | Channel straight;                            |  |  |  |  |  |  |
|                          | stream length 3 to 4                      | length 2 to 3 times                                                                                             | stream length 1 to 2                         | waterway has been                            |  |  |  |  |  |  |
|                          | times longer than it if                   | longer than if it was in a                                                                                      | times longer than if it                      | channelized for a distance.                  |  |  |  |  |  |  |
| SCORE 13                 | was in a straight line.<br>20 19 18 17 16 | straight line.                                                                                                  | was in a straight line.                      | distance,                                    |  |  |  |  |  |  |
| 7. Channel Flow          | Water reaches base of                     | 15 14(13')2 11                                                                                                  | 109876                                       | 54321                                        |  |  |  |  |  |  |
| Status                   | both lower banks and                      | Water fills >75% of the available channel; or <                                                                 | Water fills 25-75% of                        | Very little water in                         |  |  |  |  |  |  |
|                          | minimal amount of                         | 25% of channel                                                                                                  | the available channel                        | channel and mostly                           |  |  |  |  |  |  |
|                          | channel substrate is                      | substrate is exposed.                                                                                           | and/or riffle substrates are mostly exposed. | present as standing                          |  |  |  |  |  |  |
| SCORE 17-                | exposed.<br>20 19 18(17)16                |                                                                                                                 | sie meedy expeded.                           | pools.                                       |  |  |  |  |  |  |
| 8. Bank Stability        | Banks stable; no                          | 15 14 13 12 11                                                                                                  | 109876                                       | 54321                                        |  |  |  |  |  |  |
|                          | evidence of erosion or                    | Moderately stable;<br>infrequent, small areas                                                                   | Moderately unstable; up                      | Unstable: many                               |  |  |  |  |  |  |
|                          | bank failure. <5%                         | of erosion mostly healed                                                                                        | to 30%-60% of banks in                       | eroded areas: "raw"                          |  |  |  |  |  |  |
|                          | affected.                                 | over. 5%-30% affected.                                                                                          | reach show areas of<br>erosion. High erosion | areas frequent along                         |  |  |  |  |  |  |
|                          |                                           |                                                                                                                 | potential during floods.                     | straight sections and bends; 60-100% of      |  |  |  |  |  |  |
| X                        |                                           |                                                                                                                 |                                              | banks have erosion                           |  |  |  |  |  |  |
| SCORE $\mathcal{X}_{LB}$ | Left Bank 10 9                            | 8 7 6                                                                                                           |                                              | scars.                                       |  |  |  |  |  |  |
| SCORE 7 RB               | Right Bank 10 9                           | 8 (7) 6                                                                                                         | <u>543</u><br>543                            | 2 1                                          |  |  |  |  |  |  |
| . Vegetative             | More than 90% of the                      | 70-90% of the                                                                                                   | 5 4 3<br>50-70% of the                       | 2 1                                          |  |  |  |  |  |  |
| Protection               | streambank surfaces                       | streambank surfaces                                                                                             | streambank surfaces                          | Less than 50% of                             |  |  |  |  |  |  |
|                          | and immediate riparian zone covered by    | covered by vegetation.                                                                                          | covered by vegetation.                       | streambank surfaces<br>covered by vegetation |  |  |  |  |  |  |
|                          | vegetation. Vegetation                    | Disruption minimal or not evident; one group of                                                                 | Disruption obvious:                          | Disruption of stream                         |  |  |  |  |  |  |
|                          | disruption minimal or                     | plants likely not evident.                                                                                      | patches of bare soil or<br>closely cropped   | bank vegetation verv                         |  |  |  |  |  |  |
| •                        | not evident; aimost all                   | Almost all plants allowed                                                                                       | vegetation common;                           | high; vegetation has                         |  |  |  |  |  |  |
|                          | plants allowed to grow naturally.         | to grow naturally.                                                                                              | less than one-half of the                    | been removed; 2<br>inches or less average    |  |  |  |  |  |  |
| _                        | natarany.                                 |                                                                                                                 | potential plant stubble                      | stubble height.                              |  |  |  |  |  |  |
| CORE 7 LB                | Left Bank 10 9                            | 8 0 6                                                                                                           | height remaining.                            |                                              |  |  |  |  |  |  |
| CORE 5 RB                | Right Bank 10 9                           | 8 7 6                                                                                                           | 5 4 3<br>(5) 4 3                             | 2 1                                          |  |  |  |  |  |  |
| 0. Riparian              | Width of riparian zone                    | Width of riparian zone                                                                                          | Width of riparian zone                       | 2 1                                          |  |  |  |  |  |  |
| Vegetative Zone<br>Width | >18 meters; human                         | 12-18 meters; human                                                                                             | 6-12 meters: human                           | Width of riparian zone <6 meters; little     |  |  |  |  |  |  |
|                          | activities (i.e., parking lots, roadbeds, | activities have impacted                                                                                        | activities have impacted                     | riparian vegetation to                       |  |  |  |  |  |  |
| 1                        | clearcuts, lawns or                       | zone only minimally.                                                                                            | a great deal.                                | human activities.                            |  |  |  |  |  |  |
|                          | crops) have not                           |                                                                                                                 |                                              |                                              |  |  |  |  |  |  |
|                          | Impacted zone.                            |                                                                                                                 |                                              |                                              |  |  |  |  |  |  |
|                          |                                           | the second se | •                                            |                                              |  |  |  |  |  |  |
|                          | Left Bank 10 9<br>Right Bank 10 9         | (8) 7 6<br>(8) 7 6                                                                                              | 5 4 3                                        | 2 1                                          |  |  |  |  |  |  |

# Habitat Assessment Field Data Sheet (Low Gradient Cont.)

Date/Time:

Page 2 of 3 (Pg.3 optional) GBMc Rev: 1.2

14

Barbour, M.T. et.al., 1999. Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers.

TOTAL SCORE: AVERAGE SCORE:

Station I.D:

LC-1

# Habitat Assessment Field Data Sheet (Low Gradient)

| Station I.D: LC-1         | Client: Gian 6,1            |
|---------------------------|-----------------------------|
| Stream name: Loutre Creek | Date/Time: 1/28/05          |
| Location:                 | Form Completed By: JBB /SKH |

| Habitat<br>Parameter                              | CATEGORY                                                                                                                                                                                                            |                                                                                                                                                                                                                                     |                                                                                                                                                                                                           |                                                                                                                                                         |  |  |  |  |  |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                   | Optimal                                                                                                                                                                                                             | Suboptimal                                                                                                                                                                                                                          | Marginal                                                                                                                                                                                                  | Poor                                                                                                                                                    |  |  |  |  |  |
| 1. Epifaunal<br>Substrate /<br>Available<br>Cover | Greater than 50% of<br>substrate favorable for<br>epifaunal colonization and<br>fish cover; mix of snags,<br>submerged logs, undercut<br>banks, cobble, or other<br>stable habitat; and at a<br>stage to allow full | 30-50% mix of stable<br>habitat suited for<br>colonization; adequate<br>habitat for maintenance<br>of population; some<br>newfall may be present.                                                                                   | 10-30% mix of stable<br>habitat; habitat<br>availability less than<br>desirable; substrate<br>frequently disturbed.                                                                                       | Less than 10% stable<br>habitat; lack of<br>habitat obvious;<br>substrate lacking                                                                       |  |  |  |  |  |
| SCORE                                             | colonization.                                                                                                                                                                                                       |                                                                                                                                                                                                                                     |                                                                                                                                                                                                           |                                                                                                                                                         |  |  |  |  |  |
| 2. Pool Substrate                                 | 20 19 18 17 16<br>Mixture of substrate                                                                                                                                                                              | 15 14 13 12 11                                                                                                                                                                                                                      | 10 9/11/ 6                                                                                                                                                                                                | 54321                                                                                                                                                   |  |  |  |  |  |
| Characterization                                  | materials, with gravel and<br>firm sand prevalent; root<br>mats and submerged<br>vegetation common.                                                                                                                 | Mixture of soft sand,<br>mud, or clay; mud may<br>be dominant; some root<br>mats and submerged<br>vegetation present.                                                                                                               | All mud or clay to sand<br>bottom; little or no root<br>mat; no submerged<br>vegetation.                                                                                                                  | Hard-pan clay or<br>bedrock; no root or<br>vegetation.                                                                                                  |  |  |  |  |  |
| SCORE 10                                          | 20 19 18 17 16                                                                                                                                                                                                      | 15 14 13 12 11                                                                                                                                                                                                                      | (10) 9 8 7 6                                                                                                                                                                                              | 54321                                                                                                                                                   |  |  |  |  |  |
| 3. Pool Variability                               | Even mix of large-shallow,<br>large-deep small-shallow,<br>small deep pools present.                                                                                                                                | Majority of pools large deep; very few shallow.                                                                                                                                                                                     | Shallow pools much<br>more prevalent than<br>deep pools.                                                                                                                                                  | Majority of pools<br>small-shallow or<br>absent.                                                                                                        |  |  |  |  |  |
| SCORE 13                                          | 20 19 18 17 16                                                                                                                                                                                                      | 15 14/13 12 11                                                                                                                                                                                                                      | 10 9 8 7 6                                                                                                                                                                                                | 54321                                                                                                                                                   |  |  |  |  |  |
| 4. Channel<br>Alteration                          | No channelization or<br>dredging present. Stream<br>channel normal.                                                                                                                                                 | Some channelization<br>present, usually in areas<br>of bridge abutments;<br>evidence of past<br>channelization, i.e.<br>dredging, (greater than<br>past 20 yrs.) may be<br>present, but recent<br>channelization is not<br>present. | Embankments present<br>on both banks;<br>channelization may be<br>extensive, and 40%-<br>80% of steam reach<br>channelized and<br>disrupted.                                                              | Extensive<br>channelization;<br>shored with Gabon<br>cement; heavily<br>urbanized areas; in<br>steam habitat greatly<br>altered or removed<br>entirely. |  |  |  |  |  |
| OOONL 1                                           | 20 19 (18) 17 16                                                                                                                                                                                                    | 15 14 13 12 11                                                                                                                                                                                                                      | 10 9 8 7 6                                                                                                                                                                                                | 54321                                                                                                                                                   |  |  |  |  |  |
| 5. Sediment<br>Deposition<br>SCORE                | Less than 20% of bottom<br>affected; minor<br>accumulation of fine and<br>coarse material at snags<br>and submerged<br>vegetation; little or no<br>enlargement of islands or<br>point bars.                         | 20-50% affected; some<br>accumulation;<br>substantial sediment<br>movement only during<br>major storm even; some<br>new increase in bar<br>formation.                                                                               | 50-80% affected;<br>moderate deposition;<br>pools shallow,<br>moderately silted;<br>embankments may be<br>present on both banks;<br>frequent and substantial<br>sediment movement<br>during storm events. | Heavily silted; >80%<br>affected;<br>movement/shifting of<br>bottom occurs<br>frequently; pools<br>nearly absent due to<br>deposition.                  |  |  |  |  |  |
| SCORE                                             | 20 19 18 17 16                                                                                                                                                                                                      | 15 (14) 13 12 11                                                                                                                                                                                                                    | 10 9 8 7 6                                                                                                                                                                                                | 54321                                                                                                                                                   |  |  |  |  |  |

•

2

Page 1 of 3 (Pg.3 optional) GBMc Rev: 1.2

## FIELD DATA SHEETS - FISH

Waterbody Name: Loutre Creek (UC-1) Client: <u>LIM</u> BI Project no: 2160-05-070. (EM. Investigators: STP

Date Sample Collected: <u>4/28/05</u> Habitat Forms Completed: yes y no

Location: Union Eldorado Ecoregion: Culf 'n Weather: Ca Niba

Form Completed By: Form Checked By:\_

Fish Sampling Completed

|                              | Collection Site Observed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ervations                                                                                                       | ·             |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------|
|                              | Above Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Below Station                                                                                                   | Additional    |
|                              | EXPERIMENTAL HERE OF A GUARDER BOOK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | Observations: |
| Periphyton:                  | 0 (0 2 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01234                                                                                                           |               |
| Filamentous Algae:           | 0 1 2 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01234                                                                                                           |               |
| Macrophytes:                 | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01234                                                                                                           | · ·           |
| Slimes:                      | <b>()</b> 1 2 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 1 2 3 4                                                                                                       |               |
| Macroinvertebrates:<br>Fish: | 012(3)4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01234                                                                                                           |               |
|                              | 0 1 2 (3) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01234                                                                                                           | · ·           |
| Other:                       | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 1 2 2 4                                                                                                       |               |
| 0=Not Ob                     | served, 1=Rare, 2=Common, 3=Abundant,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4=Dominant                                                                                                      |               |
| Riffle/Run:                  | A STATE OF THE PROPERTY OF THE |                                                                                                                 |               |
| Shallow Pool:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |               |
| Deep Pool:                   | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · · · · · · · · · · · · · · · · · ·                                                                           | •             |
| Backwaters:                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |               |
|                              | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |               |
| Chanelized:                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |               |
| Woody debris:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |               |
|                              | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |               |
| Emergent Vegatation:         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |               |
| Submerged Vegetation:        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |               |
| Depositional Area:           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |               |
| Overhanging Veg:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | •             |
| Root Wads:                   | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |               |
| Undercut Banks:              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ······                                                                                                          |               |
| Filamentous algae:           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |               |
| Leafy debris:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ······································                                                                          |               |
|                              | and a state of the state of the states                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The second s  | • •           |
| Substrate                    | Score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a de la la companya de la companya d |               |
| Bedrock:                     | X 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Adj. Score                                                                                                      | · .           |
| .g. Boulder:                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |               |
| Boulders:                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·                                                                           |               |
| Rubble:                      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |               |
| Gravel:                      | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 | ,             |
| Sand:                        | <u>X0.5</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |               |
| Mud/Silt: 20/20              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |               |
|                              | 4/0 X 0.1<br>bundant 11-15, Common 6-10, Sparce 1-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | •             |

Revision 1.2 05/28/02 GBMc Assoc. Doc.1 Page 1 of 2

|                | Sampling Gear Type: Electrofishing Seine Gill nets                       |               |
|----------------|--------------------------------------------------------------------------|---------------|
| -              | Unit of Effort: Above MT 2-1692 -Below:-                                 |               |
| $\bigcirc$     | Quantity of Available Fish Cover:                                        |               |
| •              | Above Station: Very Abundant Abundant, Moderate, Sparse, Absent          |               |
|                | Below Station: Very Abundant, Abundant, Moderate, Sparse, Absent         |               |
|                | Site Description & Notes:                                                | ·             |
|                | Above Station: <u>Canopy cover prolifiz</u> , sediment depas<br>abundant | Thin          |
| 51 M05         | Below Station:                                                           |               |
| AB chut        | Fish Species Observed                                                    | Keleose       |
| (A)            | Above Station # 4C-1 Below Station #                                     | 1 .           |
| 68)-           | Long ear Un                       | ( · · ·       |
| 46)-           | Gampusta un un un un un un un                                            |               |
| (1)<br>A       | Golden shiner 1100                                                       | 1             |
| 3.             | Colden top minnow 111<br>Pirak Perch                                     |               |
| <u> </u>       | Blue A Not Frank                                                         | $\mathcal{O}$ |
| <b>以</b> 一.    | Notropis 1 Notropis emiliae (Pugnose Minnow)                             |               |
| <u></u>        | Spottic surfish 111                                                      | • • •         |
| ()             | broen 1                                                                  |               |
| -              |                                                                          |               |
| -              |                                                                          | • •           |
|                |                                                                          |               |
| \$<br>←        |                                                                          | •             |
| . <del>-</del> |                                                                          | •             |
| -              |                                                                          | · .           |
| . –            |                                                                          |               |
| -              |                                                                          |               |
| -              |                                                                          |               |
|                |                                                                          |               |
|                | Revision 1.2 05/28/02<br>GBM <sup>°</sup> & Assoc. Doc. 1<br>Page 2 of 2 |               |
|                |                                                                          |               |

# FIELD DATA SHEETS - BENTHIC INVERTEBRATES

Waterbody Name: Loutre Creek (2C-1) Client: / 100 Project no: \_\_\_\_\_\_0-05-070 Investigators: BJP CEM

Date Sample Collected: <u>9/28/0</u> Habitat Forms Completed: yes / no

Location: AR. Eldred min CA Ecoregion: Gu, Weather: Clear Wing

Form Completed By: <u>Stroked</u> Form Checked By: \_\_\_\_\_ Fish Sampling Completed; <u>yes</u>/ no

| Collecti               | on Site Observatio                                                                                              | ons                                  |                |                     | · ·                                   |
|------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------|---------------------|---------------------------------------|
|                        |                                                                                                                 | T                                    | Macroinvertet  | orate Qualitative   | Sample List                           |
|                        | Above Station                                                                                                   | Below Station                        | Таха           | Above Station       |                                       |
| Barinhuteau            | a la la la la carlo de la c |                                      | Annelida       |                     |                                       |
| Periphyton:            | 0 (1) 2 3 4                                                                                                     |                                      | Decapoda       |                     |                                       |
| Filamentous Algae:     | 01234                                                                                                           | 01234                                | Gastropoda     |                     |                                       |
| Macrophytes:           | (01234                                                                                                          | 01234                                | Pelecypoda     | · · ·               |                                       |
| Slimes:                |                                                                                                                 | 01234                                | Hemiptera      |                     |                                       |
| Macroinvertebrates:    | 01234                                                                                                           | 01234                                | Coleoptera     |                     |                                       |
| Fish:                  | 0 1 2 3 4                                                                                                       | 01234                                | Lepidoptera    |                     | · · · · · · · · · · · · · · · · · · · |
| Other                  | 012(3)4                                                                                                         |                                      | Odonata        |                     | · ·                                   |
|                        | 01234                                                                                                           | 01234                                | Megaloptera    |                     |                                       |
|                        |                                                                                                                 |                                      | Diptera        |                     |                                       |
| 0=Not Observed, 1=Rare | , 2=Common, 3=Abund                                                                                             | ant, 4=Dominant                      | Chironomidae   |                     |                                       |
|                        | Ribillan Semana en 195                                                                                          |                                      | Plecoptera     |                     |                                       |
|                        | 10 r 145                                                                                                        |                                      | Ephemeroptera  |                     |                                       |
| Shallow Pool:          | 70                                                                                                              |                                      | Trichoptera    |                     |                                       |
| Deep Pool:             | 20                                                                                                              |                                      | Amphipoda      | ·                   |                                       |
| Backwaters:            |                                                                                                                 |                                      |                |                     |                                       |
| Chanelized:            |                                                                                                                 |                                      |                |                     |                                       |
| Western Street         | Male Schooler etc.                                                                                              |                                      |                |                     |                                       |
| Woody Debris:          | .50                                                                                                             | <u>an an Alastin (1997), per 199</u> | l              | · .                 |                                       |
| Emergent Vegatation:   | 0                                                                                                               |                                      | R=Rare, C=Comr | non, A=Abundant, D: | =Dominant                             |
| Submerged Vegetation:  | 0                                                                                                               |                                      | Rare<3, Common | 3-9, Abundant>10, D | ominant>50                            |
| Depositional Area:     |                                                                                                                 |                                      | Site Descript  | lion and Observ     | ations:                               |
| Overhanging Veg:       | 10                                                                                                              | ·····                                |                |                     |                                       |
| Root Wads:             | 30                                                                                                              |                                      |                |                     |                                       |
| Undercut Banks:        | the second s  |                                      |                |                     |                                       |
| Filamentous algae:     | 10                                                                                                              |                                      |                |                     |                                       |
| A an ionious aigae:    |                                                                                                                 |                                      |                |                     | ·                                     |
| Leafy Debris:          | · •••                                                                                                           |                                      |                |                     |                                       |
| Other:                 |                                                                                                                 |                                      |                |                     |                                       |
|                        |                                                                                                                 |                                      |                |                     | • •                                   |

Revision 1.2 05/28/02 GBMc Assoc. Doc.2 Page 1 of 2

nid Di D,

|                                        | Sample Technique  | Sedimen                                | t?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ate <u>5/5/05</u>             |
|----------------------------------------|-------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| tat Description: ABC                   | DVE Reach 6 c-1   |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| DEL                                    | OWN A LIGAT       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| DCL                                    | OW Reach LC-2     | ······································ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                                        | MACROINVERTE      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| OVE Station #                          | MACROINVERTE      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                             |
| t. Taxa                                | Tally             |                                        | V Station #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |
| 9 Oligochater                          | HI HA HA HA HA HI | Cnt                                    | Taxa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tally                         |
| 1 Lecohe (moorbl                       |                   |                                        | Oliso.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MMM111                        |
| 3 Gray borning                         | W/                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 1 Amphipoda                            |                   | 1_                                     | CinyFish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>W7//</u>                   |
| 3 Contricula                           | 1107 1147 111     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 1 Belostomin                           | <u>µ1µ1111</u>    |                                        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |
| Ania                                   | /                 |                                        | Belastona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |
| Likellulia                             |                   |                                        | Avia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |
| The Ale                                |                   |                                        | Libellula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _ /                           |
| Anopheles                              |                   |                                        | 1 exatama                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - //                          |
| Bittacanosphe-                         |                   |                                        | Marquito                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _ #                           |
|                                        |                   |                                        | Contraid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| _ Conthemin                            |                   |                                        | Corixidan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |
| ······································ | · · ·             |                                        | and the second distance of the second distanc | + RB                          |
| _ Chiconomidae                         |                   |                                        | ENallAquia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |
| 5 Chirononimue                         | WAT WIT MI        | 28                                     | Chirorowidow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and the case (1) of 1/16 ( 1) |
| 5 TANY pod, Nas                        | un un den den per | 14                                     | TANY DECIMAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HT MI WI (1/ 1/1/1/1          |
| 7 tonyforsini                          | WT11              |                                        | Tanytarsin1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WI IHI III                    |
| · · · · · · · · · · · · · · · · · · ·  |                   |                                        | Jan Jan Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1871111                       |
|                                        |                   |                                        | Gauxidoan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m                             |
| Probezza                               | _ /               | 2                                      | Probuckia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - K                           |
|                                        |                   |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| Diseutis                               |                   |                                        | Herntoma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| leurodytes                             |                   | 2                                      | Tipula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <i>i</i> )                    |
|                                        |                   |                                        | Dytions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                             |
| Tipula                                 |                   |                                        | indiacon thus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |
|                                        |                   |                                        | Hydrochus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . <u>1</u>                    |
| ·····                                  |                   |                                        | UNAINI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BII                           |
|                                        |                   |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| :TOTAL:                                |                   |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                             |
|                                        |                   |                                        | :TOTAL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |
|                                        | Community         | <u>/ Structure</u>                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| ABOV                                   | E BELOW           |                                        | ABOVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BELOW                         |
| Эсор.                                  |                   | % Odon.                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>                       |
| chop.                                  |                   | % Cole.                                | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |
| т                                      |                   | % Crustacea                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                                        |                   |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |

1.1 6/99 age 2 of 3

•

# GENERAL PHYSICAL CHARACTERIZATION FIELD FORM

| STATION I.D:   | 1-2                                                                                                              |                                                                           | LOCATION                                |                                                    | <u> </u>                                                                                |                         |          |
|----------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------|----------|
| STREAM NAME:   | outry Amer                                                                                                       |                                                                           |                                         | LION                                               | Oil                                                                                     |                         | ······   |
| , LAT:         | LONG:                                                                                                            | ······                                                                    | PROJECT:                                | <u> </u>                                           | chich the                                                                               |                         |          |
| INVESTIGATORS: | SKH/JB                                                                                                           | DATE/TIME:                                                                |                                         |                                                    | FORM CHECKED                                                                            | BY:                     |          |
|                |                                                                                                                  | · ·                                                                       | **************************************  |                                                    | <u> </u>                                                                                | ·                       |          |
|                | └│ rain (ste<br>└│ showers (i<br>%□ % clou<br>☑  clean                                                           | eavy rain) [<br>pady rain) [<br>intermittent) [<br>id cover [<br>/sunny ] | 24-hr<br>]<br>]%                        |                                                    | In the last 7 days<br>rature                                                            | ? X Yes<br>•C/ºF        | s 🛄 No   |
|                | Stream Subsyster<br>Perennial<br>Stream Origin<br>Glacial<br>Montane, non-g<br>Swamp and bog<br>Stream Gradient: | Intermittent                                                              |                                         | lins                                               | Stream Type<br>Coldwater Area:<br>Catchment Area:<br>Stream Order:<br>ft/mi) X Low (<10 |                         |          |
|                | Flows High [] Modera                                                                                             |                                                                           | A                                       |                                                    |                                                                                         |                         | inuosity |
|                | Predominant Surr  Forest% Pasture% Row Crops% Urban%                                                             | ounding Land<br>Sub-Urt<br>Comme                                          | use<br>oan<br>rcial%<br>al <u>/00</u> % |                                                    | al Watershed NPS I<br>No evidence [] Age<br>Industrial Storm Wat<br>Jrban/Sub-Urban St  | ricultural<br>ter       | r        |
|                | 24Riffle _/%                                                                                                     | 🗌 Run                                                                     | % 🛛 Pool 4                              | 79 %                                               | os/Grasses 100%                                                                         | <b></b>                 | %        |
|                | Roads 🖾 Bridg<br>X Dams 🔲 Trash                                                                                  | es Pipelines                                                              | Bea<br>Cess C Min                       | iver Dams<br>ing 🔲 ATV                             | Crossing Other                                                                          | Source                  |          |
|                | Channelized:<br>Local Watershed E<br><u>Channel Dynamics</u><br>Water Odors<br>Normal/None<br>Petroleum<br>Fishy | irosion: 🗍 No                                                             | s 🗌 Som<br>ne 🔲 Minir<br>grading 🕅      | e In<br>nal M<br>Degrading<br>Water Surfa<br>Slick | No<br>Moderate 🔲 Hea                                                                    | ivy<br>leadcuttin<br>os | g        |
|                | _ Opaque                                                                                                         | arity (If not mea<br>Slightly turb<br>Stained                             | id 1                                    | Furbid<br>Dther                                    | 24.0 A                                                                                  | AU                      |          |
|                |                                                                                                                  | Sewage 🛛                                                                  | Petroleum<br>None                       | Sedime<br>Sludg<br>Sand<br>Other                   |                                                                                         | ⊠ Olls                  |          |

l

١

|                          | GENERAL PHYSIC                                                                                            | AL CHARACTER              | ZATION FIELD FORM                                                                                  |
|--------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------|
| STATION I.D.             | C-2                                                                                                       | LOCATION                  | Union, AR; Eldorado                                                                                |
| STREAM NAME              | Loutre Creet                                                                                              | RIVER BASIN               | Wachilz ZIOOrado                                                                                   |
| LAT                      | LONG                                                                                                      | CLIENT LIUM               |                                                                                                    |
| INVESTIGATORS            |                                                                                                           | B                         |                                                                                                    |
| FORM COMPLET             | еd вү<br>/ <i>J73</i>                                                                                     | DATE 4/21/05<br>TIME 1900 | REASON FOR SURVEY                                                                                  |
| WEATHER                  | Now                                                                                                       | Past 24                   | Has there been a heavy rain in the last 7 days?                                                    |
| CONDITIONS               |                                                                                                           | nours                     | Yes No                                                                                             |
|                          | storm (heavy rain)<br>rain (steady rain)<br>showers (intermitten<br>% % cloud cover<br>clear/sunny        | at)                       | Air Temperature <i>N_SU</i> °C <i>P</i> F<br>Other                                                 |
| STREAM<br>ATTRIBUTES     | Stream Subsystem                                                                                          |                           | Stream Type                                                                                        |
| ATTROUCO                 | Perennial 🗍 Intermitte                                                                                    | nt 🔲 Tidal                | Coldwater GWarmwater                                                                               |
|                          | Stream Origin<br>Glacial<br>Non-glacial montane<br>Swamp and bog                                          | Spring-fed                |                                                                                                    |
| HYDROLOGY                | Flows                                                                                                     | tend to be                | Flow's Measured?                                                                                   |
| WATERSHED<br>FEATURES    | Predominant Surrounding  <br>Forest Omme<br>Field/Pasture Industria<br>Agricultural Other_<br>Residential | rcial                     | Local Watershed NPS Pollution                                                                      |
|                          |                                                                                                           |                           | None Moderate Heavy                                                                                |
| INSTREAM<br>FEATURES     | Proportion of Reach Repres                                                                                | sented by Stream I        |                                                                                                    |
|                          | Channelized Yes [                                                                                         | Some No                   | •                                                                                                  |
| NATED                    | Dam Present  Ves [                                                                                        | Some No                   |                                                                                                    |
| NATER/<br>DBSERVATIONS   | Water Odors         Normal/None       Sewage         Petroleum       Chemil         Fishy       Other     | je j                      | Water Surface Øils         Slick       Sheen         Globs         Flecks       None         Other |
|                          | Turbidity (if not measured)         Clear       Visightly         Opaque       Staine                     |                           | urbid<br>ther                                                                                      |
| EDIMENT/<br>DBSERVATIONS | Sediment Odor                                                                                             | Petroleum                 | Sediment Deposits Sludge Sawdust Oils Sand Relict shells Other                                     |

.

Page 1 of 1 VI.0 04/00

ſ

**Discharge/Flow Measurement Form** 

.

| Cotton: 1 A C             |                                            |                  |                        |          | ŀ                | ŀ            |                  |              |      |           |
|---------------------------|--------------------------------------------|------------------|------------------------|----------|------------------|--------------|------------------|--------------|------|-----------|
|                           |                                            |                  | Distance               |          | Denth            |              | ( <del>4</del> ) | Method       | 6    | ©.        |
| Waterbody: Low            | Deec                                       | •                | from                   |          |                  | <u> </u>     | Velocity         | (0.2<br>(0.2 | Area | uischarge |
| Date: 1/128/              |                                            |                  | point                  |          | <u> </u>         |              | tt Point         | 0.6<br>or    |      |           |
| Crew: Shit / or is        | Start Time: /220                           | Recorder: SWH    |                        | (M)      | ê                | 'sßoj<br>OPi | ε                | 0.8)         | È    | ð         |
| ~                         | End Time: 1, 3, 4,                         | GH. Chánge:      | 20                     | 2.0      | 0.3              | o.           | 28.              |              |      |           |
|                           | 1 C 30                                     |                  | 57.0                   | 2.0      | 1                | 0            | E 1              | •            |      |           |
|                           | Staff/Gage:                                | hrs.             | 0, Ŋ                   | 2        | 6,9              | 0            | .89              |              |      |           |
| Width: 17.0               | Area:                                      | Velocity:        |                        |          | 5.0              | 4            |                  |              |      |           |
| Disch/Flow:               | Method:                                    | No Secs:         | 0.07                   | ٩,       | <u>ين</u><br>مرد | é            | 8 2.             |              |      |           |
| Meter No:                 | Max Vel:                                   | Min Vel:         | 14.0                   |          | 2.0              | 0 4          | 0.80             | +-           |      |           |
|                           |                                            |                  | 10-21                  | 2.0      |                  |              | 108              |              |      |           |
|                           | Ø                                          |                  | 44                     | 1 0 1    | 0.2              |              | Ą                |              |      |           |
| Wading, Boat, Upstre      | Upstream, pownstream, Side Bridge          | geft/mi,         |                        |          |                  |              |                  |              |      |           |
| above, below gage,        | and                                        |                  |                        |          |                  |              |                  |              |      |           |
|                           |                                            |                  |                        |          |                  | -            |                  |              |      |           |
|                           | ment good rair poor pased on the following | on the following |                        |          |                  |              |                  |              |      |           |
| conditions: Cross section |                                            |                  |                        |          |                  | -            |                  |              |      |           |
| Flow                      | Weather                                    |                  |                        |          |                  | -            |                  |              |      |           |
| Other                     | Air<br>°F@                                 |                  |                        |          |                  |              |                  | -            |      | •         |
| Gade                      |                                            |                  |                        |          |                  | ╞            |                  |              |      |           |
|                           |                                            |                  |                        |          |                  |              | -                |              |      |           |
| Observer                  |                                            |                  |                        |          |                  | +            | +                |              |      |           |
|                           |                                            |                  | · ·                    |          |                  |              |                  |              |      |           |
| Control                   |                                            |                  |                        | •        |                  |              |                  |              |      |           |
|                           |                                            |                  |                        |          |                  |              |                  |              |      |           |
|                           |                                            |                  |                        |          |                  | _            |                  |              |      |           |
| Remarks                   | -                                          |                  |                        | -        | ╋                | +            | +                |              |      |           |
|                           |                                            |                  | TOTALS                 |          |                  | _            |                  |              |      |           |
|                           |                                            |                  | I OI MES               | -        | ┦                | ÷            |                  | ·            |      |           |
|                           |                                            |                  | Converte Batton ( plat | e Botton | (44)             |              |                  | ш.,          |      |           |
|                           | -<br>-<br>-                                |                  |                        |          |                  |              |                  |              |      |           |

V1.0 1096

Checked by

Completed By\_\_\_\_

Reviewed by

| Lion Oil         |                                                                                                                 |           | date             | 4/28/2005    |             | Start | 1220 |
|------------------|-----------------------------------------------------------------------------------------------------------------|-----------|------------------|--------------|-------------|-------|------|
|                  | · · · · · · · · · · · · · · · · · · ·                                                                           |           |                  |              |             | Stop  | 1230 |
| Station:         | LC-2                                                                                                            |           |                  |              |             | ]     | 1200 |
| Waterbody:       | Loutre Cree                                                                                                     | k         |                  |              |             | 1     |      |
| Crew:            | BJP/SKH                                                                                                         |           |                  |              | ······      | 4     |      |
| Width (ft):      | 17.0                                                                                                            | Area:     | 5.1              | Max Vel:     | 1.01        | 1     |      |
| Disc/Flow (cfs): | 4 1 9                                                                                                           | Velocity: | 0.78             | Min Vel:     | 0           | -     |      |
|                  |                                                                                                                 |           |                  |              |             | 3     |      |
|                  |                                                                                                                 |           |                  |              |             |       |      |
|                  |                                                                                                                 |           | No.              |              |             | Ĩ     |      |
|                  |                                                                                                                 |           | wys)icielliszeni |              |             |       |      |
|                  | i wana in                                                                                                       |           | a deilean a'     | ander doer - | Ustra para  |       |      |
|                  | the second se |           |                  |              | 查到公司        |       |      |
| 2.0              | 2.0                                                                                                             | 0.3       | 0.82             | 0.6          | 0.492       |       |      |
| 4.0              | 2.0                                                                                                             | 0.3       | 0.92             | 0.6          | 0.552       |       |      |
| 6.0              | 2.0                                                                                                             | 0.3       | 0.89             | 0.6          | 0.534       |       |      |
| 8.0              | 2.0                                                                                                             | 0.3       | 1.01             | 0.6          | 0.606       |       |      |
| 10.0             | 2.0                                                                                                             | 0.3       | 0.78             | 0.6          | 0.468       |       |      |
| 12.0             | 2.0                                                                                                             | 0.3       | 0.8              | 0.6          | 0.48        |       |      |
| 14.0             | 2.0                                                                                                             | 0.3       | 0.96             | 0.6          | 0.576       |       |      |
| 16.0             | 2.0                                                                                                             | 0.3       | 0.8              | 0.6          | 0.48        |       |      |
| 17.0             | 1.0                                                                                                             | 0.3       | 0                | 0.3          | 0           |       |      |
|                  |                                                                                                                 |           |                  |              |             |       |      |
|                  |                                                                                                                 |           |                  |              |             |       |      |
|                  |                                                                                                                 |           |                  |              |             |       |      |
|                  |                                                                                                                 |           |                  |              |             |       |      |
|                  |                                                                                                                 |           |                  |              |             |       |      |
|                  |                                                                                                                 |           |                  |              |             |       | 1    |
| ————             |                                                                                                                 |           |                  |              |             |       |      |
|                  |                                                                                                                 |           |                  |              |             |       |      |
|                  |                                                                                                                 |           |                  |              | n ar Ase. a |       |      |
| TAUCOR STATE     | <u>Re (現例に)的</u> 性                                                                                              | SO 0      |                  |              |             |       |      |

. .

.

.

| Station #: LC2                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stream: Cov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m Habitat Asses                                                                              | Date/Time: 4                                                      |                                                                         |                                             | X11/08                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------|-------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Location: Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - Conty                                                                                      | 0 10 50-1                                                         | 205                                                                     | <u>_</u>                                    |                               |
| 1. Reach Length D                                                                                                                                                                                                                                                                                                                                                                                                                                     | etermination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pur                                                                                          | Purlamo LIS                                                       | flat: 33                                                                | 11 46                                       | 8 de                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                              |                                                                   |                                                                         |                                             |                               |
| Bankfull Width                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                              | NGIN CASANS I S                                                   | Service and the service of the                                          |                                             |                               |
| Bankfull Depth                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20 25.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                              | 2 \$ 19.9                                                         | 21,2 "                                                                  | 124 (                                       | 42.4                          |
| Average width time                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2 3.1'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                              | 2/21/                                                             | 2.2                                                                     | na                                          | na                            |
| H20 0                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .9 1 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tal Length divided by                                                                        |                                                                   |                                                                         |                                             |                               |
| 2. Riffle-Pool Sequ                                                                                                                                                                                                                                                                                                                                                                                                                                   | ence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                              |                                                                   |                                                                         |                                             |                               |
| 에 가장에 있는 것을 가지 않는다.<br>이 가장에서 가지 않는 것을 하는 것을                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.1.1111月1日)。<br>1.111日日(111日日)<br>1.111日日日日日日日日日日日日日日日日日日日日日日日日日日日日                         |                                                                   |                                                                         |                                             |                               |
| Riffle                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                              |                                                                   | usid attraction of the                                                  |                                             | <u>in a lineal</u>            |
| Run                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                              |                                                                   |                                                                         |                                             |                               |
| Pool 42.4                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 42.4 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.7 42.4 42.                                                                                 | 4 42.4 42.                                                        | 4 42.4 4                                                                | 2.4 4/2                                     | .4                            |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                              |                                                                   |                                                                         | <u> </u>                                    |                               |
| Sequence m                                                                                                                                                                                                                                                                                                                                                                                                                                            | mon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | marp                                                                                         | m                                                                 | m                                                                       | ~~~                                         | ~                             |
| "Riffle≈"xxx", Run="<br>Mo≪+ ∩ +                                                                                                                                                                                                                                                                                                                                                                                                                      | ", Pool="~~~<br>~ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | is chandled                                                                                  | Pod/Run                                                           | NUTE: Str                                                               | in Hall.                                    | 1 Rifth                       |
| 3. Depth and Width                                                                                                                                                                                                                                                                                                                                                                                                                                    | Regime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                              |                                                                   | Files                                                                   | , if Brita                                  | Evenih                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Concension of                                                                                | vo) etge (vo) (to (ag)                                            |                                                                         |                                             |                               |
| Riffle Depth                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                              |                                                                   |                                                                         | f                                           |                               |
| Riffle Width                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                              | <u>  _  </u>                                                      |                                                                         |                                             | · · ·                         |
| Pool Depth 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.1 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 0.7 1.2                                                                                    | 1.0 0.8                                                           | 0.9 0.3                                                                 | 7 1.1                                       | .99                           |
| Pool Width 28.0                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 18 20                                                                                      | 18 71                                                             | 18 20                                                                   | 19                                          | 19.9                          |
| I. Epifaunal Substr                                                                                                                                                                                                                                                                                                                                                                                                                                   | ate, Percent Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Shallow Bo<br>ble Habitat (for Mac                                                           | ris no Deip                                                       |                                                                         |                                             | ┛━҂ <u>_ぽ<sub>╅╹</sub>┊</u>   |
| BORNE THE SAME                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                              |                                                                   |                                                                         |                                             |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                              |                                                                   |                                                                         | 1. 出一组织后的是否相关                               | CAN 2 AND STOLED 1 C          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{1}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 10                                                                                        | 15 20                                                             | 15 15                                                                   | 20                                          | 14.5                          |
| % Area 10                                                                                                                                                                                                                                                                                                                                                                                                                                             | t, Percent Stable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                              |                                                                   | <u>15 - 75</u>                                                          | 20                                          |                               |
| <u>% Area 10</u><br>5. In-Stream Habita                                                                                                                                                                                                                                                                                                                                                                                                               | t, Percent Stable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pabitat (Available                                                                           |                                                                   | 15 15                                                                   | 20                                          |                               |
| <u>% Area 10</u><br>5. In-Stream Habita                                                                                                                                                                                                                                                                                                                                                                                                               | t, Percent Stable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e Habitat (Available                                                                         | Fish Cover in We                                                  | 15 15<br>Itted Perimeter                                                | 20                                          |                               |
| % Area 10<br>5. In-Stream Habita<br>% Area 10                                                                                                                                                                                                                                                                                                                                                                                                         | 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Habitat (Available                                                                           |                                                                   | 15 - 15<br>htted Perimeter<br>15 - 15                                   | 20                                          | <u>14.5</u>                   |
| <u>Area</u> 10<br>In-Stream Habita<br>Million<br>Area 10<br>Substrate Charac                                                                                                                                                                                                                                                                                                                                                                          | 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Habitat (Available                                                                           | Fish Cover In We                                                  | <u>15</u> <u>15</u><br>tted Perimeter<br>15 <u>15</u>                   | 20                                          | 14.5                          |
| <u>Area</u> 10<br>In-Stream Habita<br>Area 10<br>Substrate Charac                                                                                                                                                                                                                                                                                                                                                                                     | 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Habitat (Available                                                                           | Fish Cover in We                                                  | 15 15<br>Atted Perimeter<br>15 15                                       | 20                                          | <u>14.5</u><br>:<br>14        |
| <u>Area</u> 10<br>In-Stream Habita<br>Area <u>10</u>                                                                                                                                                                                                                                                                                                                                                                                                  | 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Habitat (Available                                                                           | Fish Cover In We                                                  | <u>15</u> . <u>15</u><br><b>Sted Perimeter</b><br><u>15</u> . <u>15</u> | 20                                          | 14.5                          |
| $\&$ Area $10$ $\therefore$ In-Stream Habita $\bigcirc$ Area $\land$ Area $\land$ O $\bigcirc$ Substrate Charac $\bigcirc$ Ool                                                                                                                                                                                                                                                                                                                        | $\frac{15}{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Habitat (Available                                                                           | Fish Cover In We                                                  | <u></u>                                                                 | 20                                          | 14.5                          |
| $\&$ Area $10$ $\therefore$ In-Stream Habita $\bigcirc$ Area $\land$ Area $\land$ O $\bigcirc$ Substrate Charac $\bigcirc$ Ool                                                                                                                                                                                                                                                                                                                        | $\frac{15}{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Habitat (Available                                                                           | Fish Cover In We                                                  | <u></u>                                                                 | 20                                          | 14.5                          |
| 6 Area $10$ $6$ Area $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $100$ $70$ $100$ $700$ $100$ $700$ $100$ $700$ $100$ $700$ $100$ $700$ $100$ $700$ $100$ $700$ $100$   | $\frac{15}{5(2)} \frac{15}{5(2)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Habitat (Available<br>10 10<br>inant Substrate)<br>$5(2) \leq (2)$<br>sobble(5), GC=Gravel C | Fish Cover In We<br>10 20<br>20<br>5(2) $5(2)coarse(4), GF=Grave$ | <u></u>                                                                 | 20                                          | 14.5                          |
| 6 Area $10$ $6$ Area $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $10$ $70$ $100$ $70$ $100$ $700$ $100$ $700$ $100$ $700$ $100$ $700$ $100$ $700$ $100$ $700$ $100$ $700$ $100$   | <u>15</u><br><u>Cterization (Dom</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u> | Habitat (Available                                                                           | Fish Cover In We<br>10 20<br>20<br>5(2) $5(2)coarse(4), GF=Grave$ | $\frac{15}{5/2}$                                                        | 20<br>20<br>(20)<br>(2)<br>(2), 9C=Silt/(   | 14.5<br>14<br>5) 2<br>Diay(1) |
| % Area       10         % Substrate Character       10         % Bedrock(7), BLD=1       10         % Embeddedness (       10 | <u>15</u><br><u>Cterization (Dom</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u><br><u>()</u> | Habitat (Available                                                                           | Fish Cover In We<br>10 20<br>20<br>5(2) $5(2)coarse(4), GF=Grave$ | <u></u>                                                                 | 20<br>20<br>(20)<br>(2)<br>(2), 9C=Silt/(   | 14.5                          |
| Area 10<br>In-Stream Habita<br>Area 10<br>Substrate Charac<br>Substrate Charac<br>Refile                                                                                                                                                                                                                                                                                                                                                              | $\frac{15}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Habitat (Available                                                                           | Fish Cover In We<br>10 20<br>20<br>5(2) $5(2)coarse(4), GF=Grave$ | $\frac{15}{5/2}$                                                        | 20<br>20<br>(20)<br>(2)<br>(2), 9C=Silt/(   | 14.5<br>14<br>14              |
| % Area     10       % Substrate Charac       % Substrate Charac       % R=Bedrock(7), BLD=       . Embeddedness (                                                                                                                                                                                                                                 | $\frac{15}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Habitat (Available                                                                           | Fish Cover In We<br>10 20<br>20<br>5(2) $5(2)coarse(4), GF=Grave$ | $\frac{15}{5/2}$                                                        | 20<br>20<br>30<br>5/2)/3<br>1(2), 9C=SIII/( | 14.5<br>14<br>14              |

:

•

.

.

'ow

## Stream Habitat Assessment (Semi-Quantitative)

| Station #: | 4-2            |        | T                       | Date/Tin | ne: U   | testo         | 15                       |   | Initials | sŁ | 4/5      | R                   |
|------------|----------------|--------|-------------------------|----------|---------|---------------|--------------------------|---|----------|----|----------|---------------------|
| 9. Aquat   | ic Macrophytes | and Pe | oriphyto                | on (Perc | ent Cov | erage)        |                          |   | <u> </u> |    | <u>.</u> |                     |
|            |                |        |                         |          |         |               |                          |   | jud fil  |    |          |                     |
| Riffle     | Macrophytes    |        |                         |          |         |               |                          |   |          |    |          | <u>Mariationale</u> |
| ·····      | Periphyton     |        |                         |          |         |               |                          |   |          |    |          |                     |
| Pool       | Macrophytes    | 5      | 5                       | 5        | Ø       |               | 5                        | 6 |          |    |          |                     |
|            | Periphyton     | -      | $\overline{\mathbf{C}}$ | 5        | 0       | $\frac{2}{2}$ | $\overline{\mathcal{O}}$ | 0 | 5        |    | 10       | 4.5                 |

## 10. Canopy Cover (Percent Stream Shading)

| and the second |   |
|------------------------------------------------------------------------------------------------------------------|---|
| Shading O                                                                                                        | ŀ |

## 11. Bank Stability (Score) and Slope (Degrees)

| artistan). |     |     |     | 34<br> |    |    |    |     |    |    | de ter Bergte |
|------------|-----|-----|-----|--------|----|----|----|-----|----|----|---------------|
| Score      | 4   | 5   | 5   | 5      | 6  |    | 6  | 4   |    | 2  | 47            |
| Slope (°)  | 750 | 85  | 70  | 70     | 70 | 80 | 80 | 70  | 70 | 85 | 7/            |
|            |     |     |     |        |    |    |    |     |    |    |               |
| Score      | 5   | 5   | le  | · Q ·  | .4 | le | 3  | : 5 | 2  |    | $\langle 2$   |
| Slope (°)  | 80° | 170 | 700 | 60     | 70 | 80 | 80 | 60  | 50 | 50 | 67            |

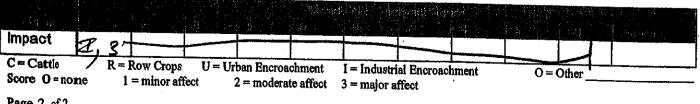
Score 9-10 = Stable, < 5% bank affected.

Score 3-5 = Moderately unstable, 30-59% bank eroding.

Score 6-8 = Moderately stable, 5-29% of bank eroding Score 1-2 = Unstable, 60-100% bank eroding.

٢.

## 12. Vegetative Protection (Percent Banks Protected)


| THOUGH 2 | 20 |    |    |      |    |    |    |     |     |    |      |
|----------|----|----|----|------|----|----|----|-----|-----|----|------|
| <b>%</b> | 30 |    | 60 | الدى | 70 | 60 | 70 | 6,1 | HD. | 15 | 54.5 |
| %        | 60 | 80 | 60 | 100  | 50 | 20 | 4B | 20  | 50  | 17 |      |

#### 13. Riparian Vegetative Zone Width

| Score | 0- |              |  |  |   | 1 |  |
|-------|----|--------------|--|--|---|---|--|
|       |    | 2 <b>)</b> . |  |  |   |   |  |
| Score |    |              |  |  | 1 |   |  |

Score 9-10 = Riparian Zone Width > 18 meters Score 3-5 = Riparian Zone Width 11 - 6 meters Score 6-8 =Riparian Zone Width 18 - 12 meters Score 1-2 = Riparian Zone Width < 6 meters

#### 14. Land-Use Stream Impacts



Page 2 of 2 V 2.1

# Habitat Assessment Field Data Sheet (Low Gradient)

| Station I.D: <u>LC-2</u><br>Stream name: | Client:            |
|------------------------------------------|--------------------|
| Location:                                | Date/Time:         |
|                                          | Form Completed By: |
|                                          |                    |

| Habitat<br>Parameter                  |                                                                                                                                                                                                                                      | CATE                                                                                                                                                                                                                                | GORY                                                                                                                                                                                                      |                                                                                                                                                                      |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Epifaunal                          | Optimal                                                                                                                                                                                                                              | Suboptimal                                                                                                                                                                                                                          | Marginal                                                                                                                                                                                                  | Poor                                                                                                                                                                 |
| Substrate /<br>Available<br>Cover     | Greater than 50% of<br>substrate favorable for<br>epifaunal colonization and<br>fish cover; mix of snags,<br>submerged logs, undercut<br>banks, cobble, or other<br>stable habitat; and at a<br>stage to allow full<br>colonization. | 30-50% mix of stable<br>habitat suited for<br>colonization; adequate<br>habitat for maintenance<br>of population; some<br>newfall may be present.                                                                                   | 10-30% mix of stable<br>habitat; habitat<br>availability less than<br>desirable; substrate<br>frequently disturbed.                                                                                       | Less than 10% stable<br>habitat; lack of<br>habitat obvious;<br>substrate lacking                                                                                    |
| SCORE 7                               | 20 19 18 17 16                                                                                                                                                                                                                       | 15 14 13 12 11                                                                                                                                                                                                                      | 10 9 8 7 6                                                                                                                                                                                                |                                                                                                                                                                      |
| 2. Pool Substrate<br>Characterization | Mixture of substrate<br>materials, with gravel and<br>firm sand prevalent; root<br>mats and submerged<br>vegetation common.<br>20 19 18 17 16                                                                                        | Mixture of soft sand,<br>mud, or clay; mud may<br>be dominant; some root<br>mats and submerged<br>vegetation present.                                                                                                               | All mud or clay to sand<br>bottom; little or no root<br>mat; no submerged<br>vegetation.                                                                                                                  | 5 (2) 3 2 1<br>Hard-pan clay or<br>bedrock; no root or<br>vegetation.                                                                                                |
| 3. Pool Variability                   | Even mix of large-shallow,                                                                                                                                                                                                           | 15 14 13 12 11                                                                                                                                                                                                                      | 109876                                                                                                                                                                                                    | 54321                                                                                                                                                                |
|                                       | large-deep small-shallow,<br>small deep pools present.                                                                                                                                                                               | Majority of pools large<br>deep; very few shallow.                                                                                                                                                                                  | Shallow pools much<br>more prevalent than<br>deep pools.                                                                                                                                                  | Majority of pools<br>small-shallow or<br>absent.                                                                                                                     |
| SCORE 0<br>4. Channel                 | 20 19 18 17 16                                                                                                                                                                                                                       | 15 14 13 12 11                                                                                                                                                                                                                      | (10)9876                                                                                                                                                                                                  | 54004                                                                                                                                                                |
| Alteration                            | No channelization or<br>dredging present. Stream<br>channel normal.                                                                                                                                                                  | Some channelization<br>present, usually in areas<br>of bridge abutments;<br>evidence of past<br>channelization, i.e.<br>dredging, (greater than<br>past 20 yrs.) may be<br>present, but recent<br>channelization is not<br>present. | Embankments present<br>on both banks;<br>channelization may be<br>extensive, and 40%-<br>80% of steam reach<br>channelized and<br>disrupted.                                                              | 5 4 3 2 1<br>Extensive<br>channelization;<br>shored with Gabon<br>cement; heavily<br>urbanized areas; in<br>steam habitat greatly<br>altered or removed<br>entirely. |
| 5. Sediment                           | 20 19 18 17 16                                                                                                                                                                                                                       | 15 14 13 12 11                                                                                                                                                                                                                      | 10 9 8 7 6                                                                                                                                                                                                | 5 4 3 (2) 1                                                                                                                                                          |
|                                       | enlargement of islands or point bars.                                                                                                                                                                                                | 20-50% affected; some<br>accumulation;<br>substantial sediment<br>movement only during<br>major storm even; some<br>new increase in bar<br>formation.                                                                               | 50-80% affected;<br>moderate deposition;<br>pools shallow,<br>moderately silted;<br>embankments may be<br>present on both banks;<br>frequent and substantial<br>sediment movement<br>during storm-events. | Heavily silted; >80%<br>affected;<br>movement/shifting of<br>bottom occurs<br>frequently; pools<br>nearly absent due to<br>deposition.                               |
|                                       | 20 19 18 17 16                                                                                                                                                                                                                       | 15 14 13 12 11                                                                                                                                                                                                                      | 10 9 (8) 7 6                                                                                                                                                                                              | 54321                                                                                                                                                                |

# Habitat Assessment Field Data Sheet (Low Gradient Cont.)

| Station I.D: LC-L | Date/Time:         |
|-------------------|--------------------|
| Stream name:      | Form Completed By: |

| Habitat<br>Parameter                    | CATEGORY                                                                                                                                                                                                       |                                                                                                                                                                                                       |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                  |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | Optimal                                                                                                                                                                                                        | Suboptimal                                                                                                                                                                                            | Marginal                                                                                                                                                                                                                               |                                                                                                                                                                                                                  |
| 6. Channel Sinuosity                    | The bends in the<br>stream increase the<br>stream length 3 to 4<br>times longer than it if<br>was in a straight line.<br>20 19 18 17 16                                                                        | The bends in the stream<br>increase the stream<br>length 2 to 3 times<br>longer than if it was in a<br>straight line.                                                                                 | The bends in the<br>stream increase the<br>stream length 1 to 2<br>times longer than if it<br>was in a straight line.                                                                                                                  | Poor<br>Channel straight;<br>waterway has been<br>channelized for a<br>distance.                                                                                                                                 |
| 7. Channel Flow<br>Status               | Water reaches base of<br>both lower banks and<br>minimal amount of<br>channel substrate is<br>exposed.<br>20 19 18 17 (16)                                                                                     | 15 14 13 12 11<br>Water fills >75% of the<br>available channel; or <<br>25% of channel<br>substrate is exposed.                                                                                       | 10 9 8 7 6<br>Water fills 25-75% of<br>the available channel<br>and/or riffle substrates<br>are mostly exposed.                                                                                                                        | 5 4 3(2)1<br>Very little water in<br>channel and mostly<br>present as standing<br>pools.                                                                                                                         |
| 8. Bank Stability                       | Banks stable; no<br>evidence of erosion or<br>bank failure. <5%<br>affected.                                                                                                                                   | 15 14 13 12 11<br>Moderately stable;<br>infrequent, small areas<br>of erosion mostly healed<br>over. 5%-30% affected.                                                                                 | 10 9 8 7 6<br>Moderately unstable; up<br>to 30%-60% of banks in<br>reach show areas of<br>erosion. High erosion<br>potential during floods.                                                                                            | 5 4 3 2 1<br>Unstable; many<br>eroded areas; "raw"<br>areas frequent along<br>straight sections and<br>bends; 60-100% of<br>banks have erosion                                                                   |
| SCORE 5 LB<br>SCORE 5 RB                | Left Bank 10 9<br>Right Bank 10 9                                                                                                                                                                              | <u>876</u><br>876                                                                                                                                                                                     | (5) 4 3<br>(5) 4 3                                                                                                                                                                                                                     | <u>scars.</u><br>2 1<br>2 1                                                                                                                                                                                      |
| 9. Vegetative<br>Protection             | More than 90% of the<br>streambank surfaces<br>and immediate riparian<br>zone covered by<br>vegetation. Vegetation<br>disruption minimal or<br>not evident; almost all<br>plants allowed to grow<br>naturally. | 70-90% of the<br>streambank surfaces<br>covered by vegetation.<br>Disruption minimal or not<br>evident; one group of<br>plants likely not evident.<br>Almost all plants allowed<br>to grow naturally. | 50-70% of the<br>streambank surfaces<br>covered by vegetation.<br>Disruption obvious;<br>patches of bare soil or<br>closely cropped<br>vegetation common;<br>less than one-half of the<br>potential plant stubble<br>height remaining. | 2 1<br>Less than 50% of<br>streambank surfaces<br>covered by vegetation.<br>Disruption of stream<br>bank vegetation very<br>high; vegetation has<br>been removed; 2<br>inches or less average<br>stubble height. |
|                                         | Left Bank 10 9<br>Right Bank 10 9                                                                                                                                                                              | 8 7 6<br>8 77 6                                                                                                                                                                                       | 543                                                                                                                                                                                                                                    | 2 1                                                                                                                                                                                                              |
| 0. Riparlan<br>Vegetative Zone<br>Width | Width of riparian zone<br>>18 meters; human<br>activities (i.e., parking<br>lots, roadbeds,<br>clearcuts, lawns or<br>crops) have not<br>impacted zone.                                                        | 8 (1/ 6<br>Width of riparian zone<br>12-18 meters; human<br>activities have impacted<br>zone only minimally.                                                                                          | 5 4 3<br>Width of riparian zone<br>6-12 meters; human<br>activities have impacted<br>a great deal.                                                                                                                                     | 2 1<br>Width of riparian zone<br><6 meters; little<br>riparian vegetation to<br>human activities.                                                                                                                |
|                                         | Left Bank 10 9                                                                                                                                                                                                 | 8 7 6                                                                                                                                                                                                 | 5 4 3                                                                                                                                                                                                                                  | 2 (1)                                                                                                                                                                                                            |
|                                         | Right Bank 10 9                                                                                                                                                                                                | 8 7 6                                                                                                                                                                                                 | 5 4 3                                                                                                                                                                                                                                  | 2 (1)                                                                                                                                                                                                            |

TOTAL SCORE:

Barbour, M.T. et.al., 1999. Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers.

Page 2 of 3 (Pg.3 optional) GBMc Rev: 1.2

## FIELD DATA SHEETS - FISH

Waterbody Name: Loutre Creek Client: Lion 011 Project no:\_2160-05-070 Investigators: \$70 EM

110

Date Sample Collected: 4/28/

Habitat Forms Completed Wes / no.

AR Eldorade Location: Union County Ecoregion: Gulf Coasta Weather: Clear 703 er

Form Completed By: BJP/REM.

Form Checked By:\_\_\_\_

Fish Sampling Completed (Ves)/ no

| -                     | Collection Site O                    | bservations                                                                                                    |               |
|-----------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------|
|                       |                                      |                                                                                                                |               |
| San Sanaka            | Above Station<br>ムレーン                | Below Station                                                                                                  | · · ·         |
|                       |                                      |                                                                                                                | Additional    |
| Periphyton:           |                                      | and a second | Observations: |
| Filamentous Algae:    | Em - 2 3 4                           | 01234                                                                                                          |               |
| Macrophytes:          |                                      | 01234                                                                                                          |               |
| Slimes:               |                                      | 0 1 2 3 4                                                                                                      |               |
| Macroinvertebrates:   |                                      | 01234                                                                                                          | •             |
| Fish:                 |                                      | 01234                                                                                                          | ,             |
| Other                 | 0 1 2 3 4                            | 01234                                                                                                          |               |
| 0=Not C               | bserved, 1=Rare, 2=Common, 3=Abunda  | 01234                                                                                                          |               |
|                       | Melos Hapleusempred avail            | ant, 4=Dominant                                                                                                |               |
| Riffle/Run:           |                                      |                                                                                                                | · ·           |
| Shallow Pool:         | 70                                   | · · · · · · · · · · · · · · · · · · ·                                                                          |               |
| Deep Pool:            | 25                                   |                                                                                                                |               |
| Backwaters:           |                                      | · · · · · · · · · · · · · · · · · · ·                                                                          |               |
| Chanelized:           | * 100%                               |                                                                                                                |               |
|                       |                                      |                                                                                                                | •             |
| Woody debris:         | 5                                    |                                                                                                                |               |
| Emergent Vegatation:  | 20                                   |                                                                                                                |               |
| Submerged Vegetation: | 10                                   |                                                                                                                |               |
| Depositional Area:    | 0                                    |                                                                                                                |               |
| Overhanging Veg:      | BR 65-55                             |                                                                                                                |               |
| Root Wads:            | 5                                    |                                                                                                                |               |
| Undercut Banks:       | 5                                    |                                                                                                                | •             |
| Filamentous algae:    |                                      |                                                                                                                | -             |
| Leafy debris:         |                                      |                                                                                                                |               |
|                       | and Stilleringle Syne-airet Solicies |                                                                                                                | •             |
| Substrate             | Score                                |                                                                                                                |               |
| Bedrock:              | X0.1                                 | Adj. Score                                                                                                     |               |
| Lg. Boulder:          | X 0.1                                | ·····                                                                                                          |               |
| Boulders:             | × 1.0                                |                                                                                                                | •             |
| Rubble                | 5 × 1.0                              |                                                                                                                |               |
| Gravel:               | <u>5 X0.5</u>                        | ······································                                                                         |               |
| Sand:                 | 70 ×0.1                              |                                                                                                                |               |
| Mud/Silt:             | 15 mud / 5 silt × 0.1                |                                                                                                                |               |
| Score:                | Abundant 11-15, Common 6-10, Sparce  |                                                                                                                |               |

Revision 1.205/28/02 GBMc Assoc. Doc.1 Page 1 of 2

| •        | Sampling Gear Type: Electrofishing                                             | Seine Gill nets                              |                                         |
|----------|--------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------|
|          | Unit of Effort: <u>Above:</u> <del>2201</del> 2301                             | *Below: N/A 1045-113                         | <u>۲</u>                                |
|          | Quantity of Available Fish Cover:<br>Above Station: Very Abundant, Abundant, I | Madanata Color Al                            |                                         |
|          | Below Station: Very Abundant, Abundant, N                                      |                                              |                                         |
|          | Site Description & Notes:                                                      | iouorate, oparse, Ausent                     |                                         |
|          |                                                                                | I sand substrate marken                      | ~ / Å                                   |
|          | non woody vegetation, som                                                      | I sand substrate, overhan<br>ne woody debris | 5,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| (W)      | Below Station:                                                                 |                                              |                                         |
| MAP JE S | 11/K                                                                           |                                              |                                         |
| Clear of | Fish Species                                                                   |                                              | Releas                                  |
| (76)-    |                                                                                | Below Station # HAT UH HAT UH                |                                         |
|          |                                                                                | WAT THE USE WAT THE THE HAT LAST             | 22                                      |
|          | Green smhith HT 1                                                              | III 2 nounand w/ Internal percesting         | ,                                       |
|          | Loca M. bass 11                                                                | 1 W/ Fin Pot                                 | /                                       |
|          | Solden Shines                                                                  |                                              | ,<br>                                   |
| . ુર્જી  | Gent In HI HI IH IH IH                                                         |                                              |                                         |
| g        | B. bullhol 1<br>Spotted Sun LHT 111                                            | toy Ein Part                                 |                                         |
|          |                                                                                |                                              |                                         |
| -        |                                                                                |                                              |                                         |
|          |                                                                                |                                              |                                         |
|          |                                                                                |                                              | • • •                                   |
| -        | ······································                                         |                                              |                                         |
| •        |                                                                                |                                              |                                         |
| •        |                                                                                |                                              | •                                       |
|          |                                                                                |                                              | •                                       |
| -        |                                                                                | ,                                            |                                         |
| -        | · · · · · · · · · · · · · · · · · · ·                                          |                                              |                                         |
| -        | ·                                                                              |                                              |                                         |
|          | Revision 1.2 05/28/02<br>GBM <sup>c</sup> & Assoc. Doc. 1<br>Page 2 of 2       | ;                                            |                                         |
|          | •                                                                              |                                              |                                         |

# FIELD DATA SHEETS - BENTHIC INVERTEBRATES

| Waterbody Name: Loutre Creek  | , |
|-------------------------------|---|
| Client: Lim Oil               |   |
| Project no: 2160-05-076       |   |
| Investigators: <u>REM</u> BOP |   |
| •• • •                        |   |

Date Sample Collected: <u>4/28/05</u> Habitat Forms Completed: 100 / no

Location: Unin Courly AK Eldorodo Ecoregion: Coastal lain Clear ~ 80° Weather:

Form Completed By: \_\_\_\_\_\_KIM

Fish Sampling Completed Ves / no

| Collectio                                  | n Site Observatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Macroinvertel                         | orate Qualitative   | Community of the |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------|------------------|
|                                            | Above Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Below Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Таха                                  |                     |                  |
|                                            | 10-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Annelida                              | Above Station       | Below Station    |
| 新生产的 · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Decapoda                              |                     |                  |
| Periphyton:                                | 0 (1) 2 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gastropoda                            |                     |                  |
| Filamentous Algae:                         | 0 1 2 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pelecypoda                            |                     |                  |
| Macrophytes:                               | 0 (1) 2 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hemiptera                             |                     |                  |
| Slimes:                                    | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Coleoptera                            |                     | ······           |
| Macroinvertebrates:                        | 0 1 2 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lepidoptera                           | ╞─────┤             | ·····            |
| Fish:                                      | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Odonata                               | ┨━━━━━╧┨            |                  |
| Other:                                     | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Megaloptera                           | <u> </u>            |                  |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Diptera                               |                     |                  |
| 0=Not Observed, 1=Rare,                    | 2=Common, 3=Abunda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ant, 4=Dominant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chironomidae                          | ·                   |                  |
|                                            | the liter of the state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Plecoptera                            |                     |                  |
| Riffle/Run:                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and the second | Ephemeroptera                         |                     |                  |
| Shallow Pool:                              | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Trichoptera                           |                     |                  |
| Deep Pool:                                 | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Amphipoda                             |                     |                  |
| Backwaters:                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                     |                  |
| Chanelized:                                | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                     |                  |
| Microine                                   | dicks Sapralsal Par                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · · · · · · · · · · · · · · · · · · · |                     |                  |
| Woody Debris:                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>                              |                     |                  |
| Emergent Vegatation:                       | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R=Rare, C=Com                         | mon, A=Abundant, D  | Dominant         |
| Submerged Vegetation:                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rare<3, Common                        | 3-9, Abundant>10, D | ominant>50       |
| Depositional Area:                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Site Descrip                          | tion and Observ     | ations:          |
| Overhanging Veg:                           | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · ·                                   |                     | · · ·            |
| Root Wads:                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                     | •                   |                  |
| Undercut Banks:                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | -                   |                  |
| Filamentous algae:                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                     |                  |
| Leafy Debris:                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                     |                  |
| Other                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | •                   |                  |
| · · · · · · · · · · · · · · · · · · ·      | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                     | ,                |
|                                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                     |                  |

Revision 1.2 05/28/02 GBMc Assoc. Doc.2 Page 1 of 2

# GENERAL PHYSICAL CHARACTERIZATION FIELD FORM

| STATION I.D:                                                                                                                                                                                                                        | C-3 LOCATION: / HOLD A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                     | RIVER BASIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1                                                                                                                                                                                                                                   | h LONG: an DRO MORE CARCELINE FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| INVESTIGATORS:                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                     | AM/BOP DATE/TIME: 4128/05 (0955) FORM CHECKED BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                     | Now       Past 24-hr       Heavy rain in the last 7 days?       Yes       No         storm (heavy rain)       Image: Storm (heavy rain) |
|                                                                                                                                                                                                                                     | Stream Subsystem       Stream Type         Perennial       Intermittent       Tidal         Stream Origin       □ Coldwater       □ Warmwater         Glacial       □ Spring-fed       Catchment Area:mi²         Montane, non-glacial       ☑ Mixture of origins       Stream Order:mi²         Swamp and bog       □ Other       Other         Stream Gradient:       □ High (≥25ft/mi)       □ Moderate (10-24 ft/mi)       ☑ Low (<10 ft/mi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                     | Flows       Flows Measured?       Reach: Slope       & Sinuosity         High       Moderate       Low       None       Yes       No      ft/mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                     | Predominant Surrounding Landuse Local Watershed NPS Pollution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ľ                                                                                                                                                                                                                                   | Forest 10_% Sub-Urban No evidence Agricultural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| )                                                                                                                                                                                                                                   | Pasture <u>40</u> % Commercial % Industrial Storm Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                     | Row Crops%       %       Industrial 20%       Urban/Sub-Urban Storm Water         Urban%       Ø       Urban/Sub-Urban Storm Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     | Mature Forest% Shrub/Sapling W% K Herbs/Grasses 40% Turf%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| an a                                                                                                                                                                                            | XRiffle <u>P.8 %</u> XRun <u>24.4 %</u> X Pool <u>44.6</u> %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| a state of the second                                                                                                                    | Roads       Bridges       Keipelines       Beaver Dams       Keipelines         Dams       Trash       Cattle Access       Mining       ATV Crossing       Kother                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                     | Channelized: Yes Some No<br>Local Watershed Erosion: None Minimal Moderate Heavy<br>Channel Dynamics: Aggrading Degrading Widening Headcutting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ) (see all for the second s<br>(second second | Water Odors     Water Surface Oils       Normal/None     Sewage     Slick     Sheen     Globs       Petroleum     Chemical     Flecks     None     Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                     | Turbidity/Water Clarity (if not measured)         Clear       Slightly turbid         Opaque       Stained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ) - Sector (                                                                                                                                                                                                                        | Sediment Odor     Sediment Deposits       Normal     Sewage     Petroleum     Sludge     Sawdust     Olls       Chemical     Anaerobic     None     Sand     Religt shells       Other     Other     Start     Start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

**,** '

r

| i na pl                   | GENERAL PHYSIC                                                                                                 | CAL CHARACTERIZATION FIELD FORM                                                                                                                                                  |
|---------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STATION I.D.              | .C-3                                                                                                           | LOCATION //                                                                                                                                                                      |
| STREAM NAME               | outre Creek                                                                                                    | RIVER BASIN ON AND Eldorado                                                                                                                                                      |
| - MAT                     | LONG                                                                                                           | CLIENT Quachità                                                                                                                                                                  |
| INVESTIGATORS             | RM/15M/ TK/SVA                                                                                                 | LIBA OIL                                                                                                                                                                         |
| FORM COMPLETE             | DBY                                                                                                            | DATE 4/28/05<br>TIME 0800                                                                                                                                                        |
| WEATHER<br>CONDITIONS     | Now<br>storm (heavy rain<br>rain (steady rain)<br>showers (intermitted<br>%<br>%<br>cloud cover<br>clear/sunny | n) Air Temperature <u>65</u> °C/pF)                                                                                                                                              |
| STREAM<br>ATTRIBUTES      | Stream Subsystem<br>Perennial Intermitte<br>Stream Origin<br>Glacial<br>Non-glacial montane<br>Swamp and bog   | Stream Type         Itent       Tidal       Coldwater       Warmwater         Catchment Area       mi <sup>2</sup> Spring-fed       Mixture of origins         Other       Other |
| HYDROLOGY                 | Flows                                                                                                          | Flowe Massured?                                                                                                                                                                  |
| WATERSHED                 | Predominant Surrounding<br>Porest Comme<br>Field/Pasture Industri<br>Agricultural Other<br>Residential         | nercial Ao evidence Some potential sources                                                                                                                                       |
| INSTREAM<br>FEATURES      | Riffle 20 %<br>Run 30 %<br>Pool 50 %<br>Channelized Yes<br>Dam Present Yes                                     | esented by Stream Morphology Types<br>□ Some □ No<br>□ Some □ No                                                                                                                 |
| WATER/<br>OBSERVATIONS    | Fishy Other                                                                                                    | mical Piecks None Other                                                                                                                                                          |
| SEDIMENT/<br>OBSERVATIONS | Sediment Odor<br>Normal Sewage<br>Chemical Anaerobic                                                           |                                                                                                                                                                                  |

Page 1 of 1 VI.0 04/00

Ĵ,

| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Station: / / . ?          |                  |                  | (F)      | 6              | - (8     | ()             | 5        |             | 1    |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------|------------------|----------|----------------|----------|----------------|----------|-------------|------|------------|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                  |                  | Distance |                | Denth    | ieų<br>(s)     | (F)      | Method      | 6    | 9.         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Waterbody: Louk           | Corec            |                  | from     |                |          | io ,e          | Velocity | 10)<br>170) | Alea | uisidiarge |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Date: リ/23/0 く            |                  |                  | point    |                |          | rocki<br>truct | At Point | 0.6         |      |            |
| End Time: $\partial_{-1}O$ $\partial_{-1}A$ $\partial_{-1}A$ $\partial_{-1}A$ $\partial_{-1}A$ $\partial_{-1}A$ Staff(cage:     Institution     Institution $\partial_{-1}C$ $\partial_{-1}C$ $\partial_{-1}C$ $\partial_{-1}C$ Own:     Method:     No Secs: $\partial_{-1}C$ $\partial_{-1}C$ $\partial_{-1}C$ $\partial_{-1}C$ Own:     Max Vel:     Min Vei: $\partial_{-1}C$ $\partial_{-1}C$ $\partial_{-1}C$ Stores action     Method:     No $\partial_{-1}C$ $\partial_{-1}C$ $\partial_{-1}C$ Stores action     Weather $P_{-1}C$ $D_{-1}C$ $D_{-1}C$ $D_{-1}C$ Stores action     Weather $P_{-1}C$ $D_{-1}C$ $D_{-1}C$ $D_{-1}C$ Stores action     Weather $P_{-1}C$ $D_{-1}C$ $D_{-1}C$ $D_{-1}C$ Stores action     Weather $P_{-1}C$ | Crew: STH/1927            | Start Time: 1000 | Recorder: SZH    |          | Ś              | ê        | ,sgol          | ε        | 0.8)        | E    | ĝ          |
| Statificage:     Instruction $7.5$ Area: $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$ $7.5$ $9.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           | End Time: 1010   |                  | 0.0      | 7.0            | 0<br>0   | *              | 512      |             |      |            |
| 7.5       Arrea:       Velocity:: $4.0$ $1.0$ $0.5$ $1.0$ $0.5$ $1.0$ on:       Max Vel:       No Secs: $4.0$ $0.5$ $0.5$ $1.0$ $0.5$ $1.0$ or:       Max Vel:       Min Vel: $2.0$ $0.5$ $0.5$ $1.5$ ATION:       Boat, Upstream, Side Bridge $1tmi$ , below gage, and $2.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           | Staff/Gage:      |                  | 202      | <b>)</b><br>() | ر م<br>م |                |          |             |      | -          |
| ow:     Method:     No Secs:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.5                       | Area:            | elocity:         | 4.0      | 0.             | 0.6      | ╆╍╋            | 4        |             |      |            |
| or     Max Vel:     Min Vel:       ATION:     ATION:       ATION:     Boat, Upstream, Side Bridge     ftmi,       Boat, Upstream, Downstream, Side Bridge     ftmi,       below gage, and     6.5     6.5       ment rated: excellent good fair poor based on the following       s: Cross section     Vestream       water     *       Air     *       Mater     *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | Method:          | No Secs:         | 10       | • •            | ٩٩       |                | 146      | ľ           |      |            |
| ATION:<br>Boat, Upstream, Downstream, Side Bridget/mi,<br>below gage, and<br>ment rated: excellent good fair poor based on the following<br>s: Cross section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           | Max Vel:         | Min Vet:         | 0<br>rt  | 0.0            | 50       |                | 158      |             |      |            |
| Boat, Upstream, Downstream, Side Bridge       f/mi,         below gage, and       6.5         ment rated: excellent good fair poor based on the following         s: Cross section       Weather         Air       * @         Air       * @         Water       ° F @         Variation       Water         Yorks       ° F @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ORIENTATION:              |                  |                  | S.S.     | 0              | 5        |                | 1.78     |             |      |            |
| below gage, and     ment rated: excellent good fair poor based on the following       s: Cross section     Weather                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Boat,                     |                  |                  |          | 1              | ,<br>v   | -+-            | h        |             |      |            |
| merrt rated: excellent good fair poor based on the following<br>s: Cross section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | below                     |                  |                  |          |                | 5        |                | ר<br>א   |             |      |            |
| s: Cross section with react on the following Air of R @ Air of R @ Wratter of R @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Maseimemant mtad- avoid   |                  |                  |          |                |          |                |          |             |      |            |
| s: Cross section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                  | on the tollowing |          |                |          |                |          |             |      |            |
| Veather Air P @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | conditions: Cross section |                  |                  |          |                | -        |                |          |             |      |            |
| Air F@                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Flow                      | Weather          |                  |          |                |          |                |          |             |      |            |
| Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Other                     | 5                |                  |          |                |          | -              |          |             |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gage                      | _                |                  |          |                |          |                |          |             |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Observer                  |                  |                  |          |                |          | -+             |          |             |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                  |                  |          |                |          |                |          |             |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Control                   |                  |                  |          |                |          |                |          |             |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                  |                  |          |                |          |                |          |             |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                  |                  |          |                |          |                |          | :           |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Remarks                   |                  |                  |          |                |          |                | -+       |             |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                  |                  | TOTALS   |                |          |                |          |             |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                  |                  | -        |                |          | -              | -        | :.          |      |            |

**Discharge/Flow Measurement Form** 

2

1

Reviewed by\_

Completed By\_\_\_\_

Checked by\_

V1.0 1096

| ion Oil          |                |        | date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4/28/2005                             |       | Start     | 1000 |
|------------------|----------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------|-----------|------|
| tation:          | LC-3           |        | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |       | Stop<br>T | 1010 |
| Vaterbody:       | Loutre Cree    | k      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · · |       | 4         |      |
| rew:             | <b>BJP/SKH</b> |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |       | -         |      |
| Width (ft):      |                | Area:  | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Max Vel:                              | 1.78  | 1         |      |
| Disc/Flow (cfs): |                |        | 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Min Vel:                              | 0     |           |      |
| ·····            |                |        | and the second sec |                                       |       | 4         |      |
|                  |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |       | _         |      |
|                  |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |       |           |      |
|                  |                | aloan. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |       |           |      |
|                  |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |       |           |      |
| 1.0              | 1.0            | 0.4    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.4                                   | 0     |           |      |
| 2.0              | 1.0            | 0.5    | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5                                   | 0.25  | 1         |      |
| 3.0              | 1.0            | 0.6    | 1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.6                                   | 0.702 | 1         |      |
| 4.0              | 1.0            | 0.6    | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.6                                   | 0.342 | 1         |      |
| 5.0              | 1.0            | 0.5    | 1.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5                                   | 0.73  | 1         | f f  |
| 6.0              | 1.0            | 0.5    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5                                   | 0.5   |           |      |
| 7.0              | 1.0            | 0.5    | 1.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5                                   | 0.79  | 1         |      |
| 8.0              | 1.0            | 0.5    | 1.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5                                   | 0.89  | ]         |      |
| 9.0              | 1.0            | 0.5    | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5                                   | 0.25  |           |      |
| 9.5              | 0.5            | 0.1    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.05                                  | 0     |           |      |
|                  |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |       | 1         |      |
| ·                |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |       |           |      |
|                  |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |       |           |      |
|                  |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |       |           |      |
| <del>-</del>     |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |       |           |      |
| ·                |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |       |           |      |
|                  |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |       |           |      |
| arago.           |                |        | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |       |           |      |

# Stream Habitat Assessment (Semi-Quantitative)

| Station #: L C.                                                                                                                                                                                  | -3               | Stream         | 1 sate                       | Con                                      | k.             | Date/Ti     | me: $\mathcal{U}/\mathcal{Z}$                                                                                  | 3 lac                                            | Analyst:        | (WHI             | 10+2               | ~ <b>_</b> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|------------------------------|------------------------------------------|----------------|-------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------|------------------|--------------------|------------|
|                                                                                                                                                                                                  |                  | Location:      | Unib                         | n. Con                                   | ~              | 081         | 1- 09                                                                                                          | 50                                               | - maryot,       | Sprif            | 1501               |            |
| 1. Reach Len                                                                                                                                                                                     | ath Det          | arminatic      |                              | fus                                      | Caro li        | (248.)      | Lot: 5                                                                                                         | 3 11 39                                          |                 | Tar:             | 33 17              | 3-7.       |
|                                                                                                                                                                                                  |                  | Similar        |                              |                                          | Con u          |             | long : "                                                                                                       | 12 40 38                                         | 5.1 <b>~</b> YS | ing .            | 92 4               | 0 35       |
| Bankfull Width                                                                                                                                                                                   |                  |                |                              |                                          |                |             |                                                                                                                | Mar Inisa                                        |                 | n syn<br>Dei geg |                    |            |
| Bankfull Depth                                                                                                                                                                                   |                  | 7 1            |                              | 19.7                                     | 13.0           | 19.1        | e . 1.                                                                                                         | <u>le 9</u>                                      | 338             | 3                | 3.81               |            |
| Average widtl                                                                                                                                                                                    | m                | <b>/</b> B / ' | Total                        | <u><u> </u></u>                          | 2.5            | 2.7         | $\frac{3}{1}$                                                                                                  | .95                                              | na              |                  | na                 |            |
| H2O                                                                                                                                                                                              | 1 0.9            | 9 10.          | 9                            | 2.1                                      | Ided by 10     | 11.2        | - /                                                                                                            |                                                  |                 |                  |                    |            |
| 2. Riffle-Pool                                                                                                                                                                                   | Sequen           | Ce             |                              |                                          |                |             |                                                                                                                |                                                  |                 |                  |                    |            |
|                                                                                                                                                                                                  |                  |                |                              |                                          |                |             |                                                                                                                |                                                  |                 |                  |                    |            |
|                                                                                                                                                                                                  | 0+7.8            |                |                              |                                          |                |             | a <u>an an a</u>                                                              | 120                                              |                 |                  | 29.8               | 8.8        |
| Run<br>Pool                                                                                                                                                                                      | 16               | 27             | 20.5                         |                                          | 07.0           |             | 33.8                                                                                                           | 13.0                                             |                 | -                | 1                  | 24.        |
| Total                                                                                                                                                                                            |                  | <u>L.8</u>     | 83.8                         | 33.8                                     | 33.8           | 33.8        | <u>`</u>                                                                                                       | 8.8                                              | 33.8            | 33.8             | 21.8.4             |            |
| Sequence <sup>1</sup>                                                                                                                                                                            | xxxxxx           |                | mm                           | mm                                       | m              | m           |                                                                                                                |                                                  | and the second  |                  |                    | ] .        |
| <sup>1</sup> Riffle="xxx",                                                                                                                                                                       | Run="            | ", Pool=       | "~~~"                        | l                                        | L              | 1           | L                                                                                                              |                                                  |                 | ~~~~             | <u> </u>           |            |
| 3. Depth and                                                                                                                                                                                     | Width R          | egime          |                              |                                          |                |             |                                                                                                                |                                                  |                 |                  |                    |            |
|                                                                                                                                                                                                  |                  |                |                              | Steel.                                   | NIS.           | Paretaction |                                                                                                                | telefendet.                                      |                 |                  |                    | 1          |
| Diffle Denth                                                                                                                                                                                     | 0.7/             | 04)            |                              | 44 / A / A / A / A / A / A / A / A / A / |                |             |                                                                                                                |                                                  |                 |                  |                    | hu         |
|                                                                                                                                                                                                  | 8.0              | 5.5            |                              |                                          |                |             | $0.7 p_{0}$                                                                                                    | 0.5                                              |                 |                  | .Ce                | .6         |
|                                                                                                                                                                                                  | 1.1              | 1.5            | 12                           | 2.0                                      | 2.0            | 2.5         | The second s | 0.8                                              | 1.3 1           | .5               | <u>9.0</u><br>1.54 | 5.75       |
| Pool Width                                                                                                                                                                                       | 14.0             | 10.0           | 18.0                         | 20                                       | 15.0           | 18.D        | - 4                                                                                                            |                                                  | 201             | 3                | 5.7                |            |
| 4. Epifaunal S                                                                                                                                                                                   | ۍم و<br>iubstrat | e, Percen      | いっから<br>It Stable            | Verp<br>Habitat (f                       | or Macro       | Inverteb    | (atas)                                                                                                         | w/pol                                            | <u></u>         |                  |                    |            |
|                                                                                                                                                                                                  |                  |                |                              |                                          |                |             | dies)                                                                                                          |                                                  |                 |                  | enne e M           |            |
| % Area 25                                                                                                                                                                                        |                  | 5              | 02                           | 0 2                                      | 0 2            | 5 3         | 2 7                                                                                                            | 03                                               | 0 20            | 22               | .4                 |            |
| 5. in-Stream H                                                                                                                                                                                   | labitat, i       | Percent 8      | Stable Ha                    | bitat (Ava                               | allable Fi     | sh Cover    | in Wette                                                                                                       | d Perime                                         | tor)            |                  |                    |            |
|                                                                                                                                                                                                  |                  |                |                              |                                          | a al ann       | X AUX SU    |                                                                                                                | Politika Suga                                    |                 |                  |                    | •          |
| % Area 30                                                                                                                                                                                        |                  | 01             | 52                           | 014                                      | 0 4            | 0 3         | $\sim$ 2 (                                                                                                     |                                                  |                 |                  |                    |            |
|                                                                                                                                                                                                  |                  |                | ليتبالسلا                    |                                          | <u> </u>       |             | 0 30                                                                                                           | <u> </u>                                         | D   Z           | 2                | 9                  |            |
| 6. Substrate C                                                                                                                                                                                   | manacte          |                | Dominar                      |                                          |                | lon althe   |                                                                                                                |                                                  |                 |                  |                    |            |
| Riffle </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>이 가지<br/>이 아이 아이</td> <td></td> <td></td> <td>tinin a d</td> <td>Lun</td> |                  |                |                              |                                          |                |             |                                                                                                                | 이 가지<br>이 아이 |                 |                  | tinin a d          | Lun        |
| Pool Sol                                                                                                                                                                                         | 2) 8 2<br>1) 5(  | 50) -          |                              |                                          |                | - 5         | 1) GF                                                                                                          | (3) =                                            | ~               |                  | 2                  | 1.5        |
| BR=Bedrock(7).                                                                                                                                                                                   | BLD=Bo           | ulder(6). C    | <u>C(1) &gt;</u><br>OB=Cobbl | (1) GC=(                                 | Sravel Cos     | (h) =       | <u>Sh</u>                                                                                                      |                                                  | 2) 5(2          | 2) /             | 1.4                | ₩          |
| • •                                                                                                                                                                                              |                  | , , , ,        |                              | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  | MATH INM       |             | -Giaver Fi                                                                                                     |                                                  |                 | =Silt/Clay       | (1)                |            |
| 7. Embeddedr                                                                                                                                                                                     | iess (Gi         | avel, Co       | bble, Bou                    | liders Pe                                | rcent Em       | bedded)     |                                                                                                                | · - K.UK                                         | YParl           | ng é mga ma      |                    |            |
| % Embedded                                                                                                                                                                                       | $  \setminus$    |                |                              |                                          | +              |             | $\overline{}$                                                                                                  |                                                  |                 |                  |                    |            |
|                                                                                                                                                                                                  | <u></u>          | <u>با</u>      | <u></u>                      | ·                                        | 1              |             |                                                                                                                |                                                  |                 | $\leq$           |                    |            |
| 8. Sediment D                                                                                                                                                                                    | epositio         | on (Perce      | nt of Bot                    | tom Affe                                 | 20 TO 10 TO 10 |             |                                                                                                                |                                                  |                 |                  |                    |            |
| % 30                                                                                                                                                                                             | ) 10             | 1              | 5 30                         | s 2                                      | 0 40           | 30          |                                                                                                                |                                                  | 0               |                  |                    |            |
|                                                                                                                                                                                                  | ·                | <u> </u>       |                              |                                          |                |             | ) 20                                                                                                           | ) 30                                             | 2 40            | _ 24             | .5                 |            |

Page 1 of 2 V 2.1

Vov

.

1 :

# Stream Habitat Assessment (Semi-Quantitative)

()

| Station #:                        | Le-                    | 3                       |                | Date/                   | Time: 4    | 1/28/0:                         | 5                        | Ţ                        | Initials:                   | (NII)      | 1200                                            | <u> </u> |
|-----------------------------------|------------------------|-------------------------|----------------|-------------------------|------------|---------------------------------|--------------------------|--------------------------|-----------------------------|------------|-------------------------------------------------|----------|
| 9. Aquat                          | IC Macrop              | hytes a                 | nd Periph      | yton (P                 | ercent Co  |                                 |                          | ···                      |                             | 50711      | 5000                                            |          |
| i a l'al-Hea<br>Distantes de la   |                        |                         |                |                         |            | A second real                   |                          | 1965 <sup>18</sup> 63 18 |                             |            |                                                 |          |
| Riffle                            | Macroph                | ytes                    | 0 \$ 0         | >   _                   |            |                                 |                          |                          |                             |            |                                                 | Ren      |
|                                   | Periphyt               | on 5                    |                |                         |            |                                 |                          | 10                       | 3                           |            | - 2.5                                           | Ray 15   |
| Pool                              | Macroph                |                         | 0 0            | 5                       | 5          | 5                               | 10                       |                          | 5                           | 5 5        |                                                 |          |
|                                   | Periphyt               | on                      | 20 10          |                         | 5          | 5                               | 5                        | L'                       | 3                           | 5 5        | 4.4                                             |          |
| რარი<br>10. Cano                  | py Cover               | (Percen                 | t Stream       | Shadino                 | 1)         |                                 |                          |                          | Rul                         | <u></u>    | - /.2                                           | `        |
| en destrie                        |                        |                         |                |                         |            |                                 | adhai 203                |                          |                             | Prol       |                                                 |          |
| Shading                           | 20                     | 10                      |                | 10                      | 20         |                                 |                          |                          |                             |            | 4. 杨敏雄的 mer.                                    |          |
|                                   | - <u> </u>             | <u> </u>                | 170            |                         |            | 10                              | 120                      | 10                       | 10                          | 10         | 13                                              |          |
| 11. Bank                          | Stability              | (Score) :               | and Slope      | ) (Degre                | <u>es)</u> |                                 |                          |                          |                             | ·          |                                                 |          |
| Software .                        |                        |                         |                | ·<br>·                  |            |                                 |                          |                          |                             |            | h<br>All All All Andreas<br>All All All Andreas |          |
| Score                             | 80.                    | 900                     | $\frac{12}{2}$ | 2                       | 2          | 1                               | 3                        | 3                        | 2                           | 2          | 2.4                                             |          |
| Slope (°)                         | 00                     | 90-                     | 900            | 900                     | ° 90.      | 90                              | 80                       | 80                       | 85°                         | 90         | 86.5                                            |          |
| 行动的动物                             |                        |                         |                |                         |            |                                 |                          |                          |                             |            |                                                 |          |
| Score                             |                        | 8                       | 4              | 2                       | 4          | 7-                              | 2                        | 5                        | ·4                          | 3          | 4.7                                             |          |
| Stope (°)<br>Score 9-10 =         | $\frac{1}{65^{\circ}}$ | 150                     | 180            | <u>90°</u>              | 75         | 80                              | 90                       | 70                       | 80                          | an         | 77                                              | -        |
| Score $3-5 = 1$                   | Moderately             | unstable, 3             | 0-59% bank     | eroding.                |            | Score 6-8<br>Score 1-2          | = Moderate<br>= Unstable | y stable, :<br>60-100%   | 5-29% of bar<br>bank erodin | nk croding |                                                 |          |
| 12. Vegeta                        | ative Prot             | ection (I               | Percent B      | anks Pr                 |            |                                 |                          | ,                        |                             | 6.         |                                                 |          |
|                                   |                        |                         |                |                         |            |                                 |                          |                          |                             |            |                                                 |          |
| %                                 | (0)                    | 30.                     | 30             | 40                      | 26         | .20                             | 1.62                     | · UT                     |                             |            |                                                 |          |
|                                   |                        |                         |                |                         |            |                                 |                          | 17                       | 40                          | 20         | 40                                              |          |
| %                                 | 75                     | 85                      | 50             | 40.                     | re         | 2                               | 110                      |                          |                             |            |                                                 |          |
|                                   |                        |                         |                | 90.                     | 122        | 1                               | 40                       | 33                       | 70                          | 25         | 57                                              | ]        |
| 13. Riparia                       | an vegeta              | tive Zon                | e Width        |                         |            |                                 | a de la come             |                          |                             |            |                                                 | ••••     |
|                                   | *7                     |                         |                |                         |            |                                 |                          |                          |                             |            |                                                 |          |
| Score                             | .7                     | -7-                     | ~7-            | a7                      | *7         | 8                               | 7.                       | 5                        | 4                           | 5          | 6.4                                             |          |
| an the s                          |                        |                         |                |                         |            |                                 |                          |                          |                             |            | Not the state                                   |          |
| Score                             | 2                      | 2                       | 2              | 2                       | 3          | 3                               | 3                        | 3                        | 5                           | 5          | 3.0                                             |          |
| Score $9-10 =$<br>Score $3-5 = F$ | Ciparian Zon           | e Width 11              | - 6 metern     |                         | Score 6-8  | = Riparian<br>= Pinarian        | Zone Widt                | h 18 - 12 n              | neters                      | <u> </u>   | 5.0                                             | 1        |
| ALB Riport<br>14. Land-L          | rian is i              | a dana                  | Autor          | -                       | 50010 1-2  | - ruhanan                       | Zone Widt                | n < 6 mete               | rs                          |            |                                                 |          |
|                                   | Jee Orrea              |                         | 18             | У.,                     |            | an é a.                         | wilder fan               |                          |                             |            |                                                 |          |
| Impact                            |                        |                         |                |                         |            |                                 |                          |                          |                             |            |                                                 |          |
| C= Cattle                         | <u>E, [ ]</u>          | Z_/<br>ow Crops         | <u>I</u> I     | <u>I,1</u>              | 21         | I,I                             | I,I                      | F.1                      | II                          | I.1 :      | $\mathcal{I}_{.1}$                              | 1        |
| Score 0 = nor                     |                        | ow Crops<br>= minor aff |                | an Encroac<br>= moderat |            | = Kndustri<br>= major a         | al Encroach              | ment                     | 10=0                        | ther       |                                                 |          |
| Page 2 of 2                       |                        |                         |                |                         |            | · · · · · · · · · · · · · · · · |                          |                          |                             |            |                                                 |          |

# Habitat Assessment Field Data Sheet (Low Gradient)

| Station I.D: LC-3 | Client:            |
|-------------------|--------------------|
| Stream name:      | Date/Time:         |
| Location:         | Form Completed By: |

| Habitat<br>Parameter                              |                                                                                                                                                                                                                                      | CATEG                                                                                                                                                                                                                               | ORY                                                                                                                                                                               |                                                                                                                                                         |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                   | Optimal                                                                                                                                                                                                                              | Suboptimal                                                                                                                                                                                                                          | Marginal                                                                                                                                                                          | Poor                                                                                                                                                    |
| 1. Epifaunal<br>Substrate /<br>Available<br>Cover | Greater than 50% of<br>substrate favorable for<br>epifaunal colonization and<br>fish cover; mix of snags,<br>submerged logs, undercut<br>banks, cobble, or other<br>stable habitat; and at a<br>stage to allow full<br>colonization. | 30-50% mix of stable<br>habitat suited for<br>colonization; adequate<br>habitat for maintenance<br>of population; some<br>newfall may be present.                                                                                   | 10-30% mix of stable<br>habitat; habitat<br>availability less than<br>desirable; substrate<br>frequently disturbed.                                                               | Less than 10% stable<br>habitat; lack of<br>habitat obvious;<br>substrate lacking                                                                       |
|                                                   | 20 19 18 17 16                                                                                                                                                                                                                       | 15 14 13 12 11                                                                                                                                                                                                                      | (10)9876                                                                                                                                                                          | 54321                                                                                                                                                   |
| 2. Pool Substrate<br>Characterization             | Mixture of substrate<br>materials, with gravel and<br>firm sand prevalent; root<br>mats and submerged<br>vegetation common.                                                                                                          | Mixture of soft sand,<br>mud, or clay; mud may<br>be dominant; some root<br>mats and submerged<br>vegetation present.                                                                                                               | All mud or clay to sand<br>bottom; little or no root<br>mat; no submerged<br>vegetation.                                                                                          | Hard-pan clay or<br>bedrock; no root or<br>vegetation.                                                                                                  |
| 3. Pool Variability                               | 20 19 18 17 16                                                                                                                                                                                                                       | 15 14 13 2 11                                                                                                                                                                                                                       | 109876                                                                                                                                                                            | 54321                                                                                                                                                   |
|                                                   | Even mix of large-shallow,<br>large-deep small-shallow,<br>small deep pools present.                                                                                                                                                 | Majority of pools large deep; very few shallow.                                                                                                                                                                                     | Shallow pools much<br>more prevalent than<br>deep pools.                                                                                                                          | Majority of pools<br>small-shallow or<br>absent.                                                                                                        |
| SCORE 15                                          | 20 19 18 17 16                                                                                                                                                                                                                       | (15) 14 13 12 11                                                                                                                                                                                                                    | 10 9 8 7 6                                                                                                                                                                        | 54321                                                                                                                                                   |
| 4. Channel<br>Alteration                          | No channelization or<br>dredging present. Stream<br>channel normal.                                                                                                                                                                  | Some channelization<br>present, usually in areas<br>of bridge abutments;<br>evidence of past<br>channelization, i.e.<br>dredging, (greater than<br>past 20 yrs.) may be<br>present, but recent<br>channelization is not<br>present. | Embankments present<br>on both banks;<br>channelization may be<br>extensive, and 40%-<br>80% of steam reach<br>channelized and<br>disrupted.                                      | Extensive<br>channelization;<br>shored with Gabon<br>cement; heavily<br>urbanized areas; in<br>steam habitat greatly<br>altered or removed<br>entirely. |
| 5. Sediment                                       | 20.19 18 17 16                                                                                                                                                                                                                       | 15 14 13 12 11                                                                                                                                                                                                                      | (10)9876                                                                                                                                                                          | 54321                                                                                                                                                   |
| o. Seaiment<br>Deposition                         | Less than 20% of bottom<br>affected; minor<br>accumulation of fine and<br>coarse material at snags<br>and submerged<br>vegetation; little or no<br>enlargement of islands or<br>point bars.                                          | 20-50% affected; some<br>accumulation;<br>substantial sediment<br>movement only during<br>major storm even; some<br>new increase in bar<br>formation.                                                                               | 50-80% affected;<br>moderate deposition;<br>pools shallow,<br>moderately silted;<br>embankments may be<br>present on both banks;<br>frequent and substantial<br>sediment movement | Heavily silted; >80%<br>affected;<br>movement/shifting of<br>bottom occurs<br>frequently; pools<br>nearly absent due to<br>deposition.                  |
| SCORE 13                                          | 20 19 18 17 16                                                                                                                                                                                                                       | 15 14 (13 ) 2 11                                                                                                                                                                                                                    | during storm events.                                                                                                                                                              |                                                                                                                                                         |
|                                                   | 20 19 10 17 10                                                                                                                                                                                                                       | 10 14 13 12 11                                                                                                                                                                                                                      | 10 9 8 7 6                                                                                                                                                                        | 54321                                                                                                                                                   |

| Subam name.                                            |                                                                                                                                                                                                                | Form Co                                                                                                                                                                                                        | mpleted By:                                                                                                                                                                                                                            |                                                                                                                                                                                                           |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Habitat                                                |                                                                                                                                                                                                                | CATE                                                                                                                                                                                                           | GORY                                                                                                                                                                                                                                   |                                                                                                                                                                                                           |
| Parameter                                              |                                                                                                                                                                                                                |                                                                                                                                                                                                                | U U KI                                                                                                                                                                                                                                 |                                                                                                                                                                                                           |
| 6. Channel Sinuosity                                   | Optimal                                                                                                                                                                                                        | Suboptimal                                                                                                                                                                                                     | Marginal                                                                                                                                                                                                                               | Poor                                                                                                                                                                                                      |
| SCORE 9                                                | The bends in the<br>stream increase the<br>stream length 3 to 4<br>times longer than it if<br>was in a straight line.                                                                                          | The bends in the stream<br>increase the stream<br>length 2 to 3 times<br>longer than if it was in a<br>straight line.                                                                                          | The bends in the<br>stream increase the<br>stream length 1 to 2<br>times longer than if it<br>was in a straight line.                                                                                                                  | Channel straight;<br>waterway has been<br>channelized for a<br>distance.                                                                                                                                  |
| 7. Channel Flow                                        | 20 19 18 17 16<br>Water reaches base of                                                                                                                                                                        | 15 14 13 12 11                                                                                                                                                                                                 | 10 9 8 7 6                                                                                                                                                                                                                             | 54321                                                                                                                                                                                                     |
| Status                                                 | both lower banks and<br>minimal amount of<br>channel substrate is<br>exposed.                                                                                                                                  | Water fills >75% of the<br>available channel; or <<br>25% of channel<br>substrate is exposed.                                                                                                                  | Water fills 25-75% of<br>the available channel<br>and/or riffle substrates<br>are mostly exposed.                                                                                                                                      | Very little water in<br>channel and mostly<br>present as standing<br>pools.                                                                                                                               |
| 8. Bank Stability                                      | 20 19 18 17 16<br>Banks stable; no                                                                                                                                                                             | 15 14 13 12 11                                                                                                                                                                                                 | 10 9 8 7 6                                                                                                                                                                                                                             | 54321                                                                                                                                                                                                     |
|                                                        | evidence of erosion or<br>bank failure. <5%<br>affected.                                                                                                                                                       | Moderately stable;<br>infrequent, small areas<br>of erosion mostly healed<br>over. 5%-30% affected.                                                                                                            | Moderately unstable; up<br>to 30%-60% of banks in<br>reach show areas of<br>erosion. High erosion<br>potential during floods.                                                                                                          | Unstable; many<br>eroded areas; "raw"<br>areas frequent along<br>straight sections and<br>bends; 60-100% of<br>banks have erosion                                                                         |
|                                                        | Left Bank 10 9                                                                                                                                                                                                 | 8 7 6                                                                                                                                                                                                          | 5 4 (3).                                                                                                                                                                                                                               | scars.                                                                                                                                                                                                    |
| SCORE S RB                                             | Right Bank 10 9                                                                                                                                                                                                | 8 7 6                                                                                                                                                                                                          | (5) $(3)$                                                                                                                                                                                                                              | 2 1                                                                                                                                                                                                       |
| 9. Vegetative<br>Protection                            | More than 90% of the<br>streambank surfaces<br>and immediate riparian<br>zone covered by<br>vegetation. Vegetation<br>disruption minimal or<br>not evident; almost all<br>plants allowed to grow<br>naturally. | 70-90% of the<br>streambank surfaces<br>covered by vegetation.<br>Disruption minimal or not<br>evident; one group of<br>plants likely not evident.<br>Almost all plants allowed<br>to grow naturally.<br>8 7 6 | 50-70% of the<br>streambank surfaces<br>covered by vegetation.<br>Disruption obvious;<br>patches of bare soil or<br>closely cropped<br>vegetation common;<br>less than one-half of the<br>potential plant stubble<br>height remaining. | Less than 50% of<br>streambank surfaces<br>covered by vegetation.<br>Disruption of stream<br>bank vegetation very<br>high; vegetation has<br>been removed; 2<br>inches or less average<br>stubble height. |
| SCORE B RB                                             | Right Bank 10 9                                                                                                                                                                                                | 8 7 6                                                                                                                                                                                                          | <u>(5) 4 3</u><br>5 4 3                                                                                                                                                                                                                | $\frac{2}{2}$ 1                                                                                                                                                                                           |
| 10. Riparlan<br>Vegetative Zone<br>Width<br>SCORE 6 LB | Width of riparian zone<br>>18 meters; human<br>activities (i.e., parking<br>lots, roadbeds,<br>clearcuts, lawns or<br>crops) have not<br>impacted zone.                                                        | Width of riparian zone<br>12-18 meters; human<br>activities have impacted<br>zone only minimally.                                                                                                              | Width of riparian zone<br>6-12 meters; human<br>activities have impacted<br>a great deal.                                                                                                                                              | 2 1<br>Width of riparian zone<br><6 meters; little<br>riparian vegetation to<br>human activities.                                                                                                         |
| SCORE 6 LB                                             | Left Bank 10 9                                                                                                                                                                                                 | 8 7 6                                                                                                                                                                                                          | 5 4 3                                                                                                                                                                                                                                  | 2 1                                                                                                                                                                                                       |
|                                                        | Right Bank 10 9                                                                                                                                                                                                | 8 7 6                                                                                                                                                                                                          | 5 4 (3)                                                                                                                                                                                                                                | 2 1                                                                                                                                                                                                       |

# Habitat Assessment Field Data Sheet (Low Gradient Cont.)

Date/Time:

Page 2 of 3 (Pg.3 optional) GBMc Rev: 1.2

114

4

Barbour, M.T. et.al., 1999. Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers.

TOTAL SCORE: AVERAGE SCORE:

Station I.D:

Stroom

-1

### FIELD DATA SHEETS - FISH

| Waterbody Name: Louter Crock   |
|--------------------------------|
| Client: Lion Oil               |
| Project no: 2060-05-070        |
| Investigators: <u>REM</u> BJP  |
| SEH JB                         |
| Date Sample Collected: 4/28/05 |

| Location: <u>LC3</u>        |
|-----------------------------|
| Ecoregion: but Coastal .    |
| Weather: <u>Gunny Clear</u> |
| Mild                        |
| Form Completed By: AFM 15B. |
| Form Checked By:            |

Habitat Forms Completed: Ves / no

Fish Sampling Completed: Ves / no

|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a dempining completed. (Ves                                                                                    |               |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------|
|                                                                                                                 | Collection Site Obser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |               |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LC-3                                                                                                           |               |
| The second second second                                                                                        | Above Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Below Station                                                                                                  |               |
|                                                                                                                 | A Hait Carlo Mance of Ambain, program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | Additional    |
| Periphyton:                                                                                                     | 0 1 2 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                | Observations: |
| Filamentous Algae:                                                                                              | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01234                                                                                                          |               |
| Macrophytes:                                                                                                    | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01234                                                                                                          |               |
| Slimes:                                                                                                         | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 1 2 3 4                                                                                                      |               |
| Macroinvertebrates:                                                                                             | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01234                                                                                                          |               |
| Fish:                                                                                                           | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 1 2 3 4                                                                                                      |               |
| Other                                                                                                           | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 1 2 3 4                                                                                                      |               |
| 0=Not Obs                                                                                                       | erved, 1=Rare, 2=Common, 3=Abundant, 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 1 2 3 4                                                                                                      |               |
|                                                                                                                 | And and a second s |                                                                                                                |               |
| Kime/Run:                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |               |
| Shallow Pool:                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5/25                                                                                                           | 4             |
| Deep Pool:                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                             | - I .         |
| Backwaters:                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.57                                                                                                           | -             |
| Chanelized:                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                | -             |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |               |
| Noody debris:                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CCP 15                                                                                                         |               |
| Emergent Vegatation:                                                                                            | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                             | -             |
| Submerged Vegetation:                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                | -             |
| Depositional Area:                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20                                                                                                             | 4             |
| Overhanging Veg:                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                              | 4             |
| Root Wads:                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20                                                                                                             | 4             |
| Undercut Banks;                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |               |
| ilamentous algae:                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30                                                                                                             |               |
| eafy debris:                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |               |
| the second se | ere Visatsinar indocumbationage in service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and a second |               |
| Substrate                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |               |
| Bedrock:                                                                                                        | Score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Adj. Score                                                                                                     |               |
| g. Boulder:                                                                                                     | X0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                | , · · ·       |
| oulders:                                                                                                        | X1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                |               |
| Rubble;                                                                                                         | X 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |               |
| Bravel:                                                                                                         | X 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·                                                                          |               |
| and:                                                                                                            | X 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                             |               |
| fud/Silt:                                                                                                       | X 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                             |               |
| the second s  | X 0.1<br>pundant 11-15, Common 6-10, Sparce 1-5, /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 80 Lord for departe)                                                                                           |               |

Revision 1.2 05/28/02 GBMc Assoc. Doc.1 Page 1 of 2

•

|          | Sampling Gear Type: Electrofishing      | Seine Gill nets                       |
|----------|-----------------------------------------|---------------------------------------|
|          | Unit of Effort: Above:                  | Below: 2267 PDT                       |
| ()       | Quantity of Available Fish Cover:       |                                       |
|          | Above Station: Very Abundant, Abundant, | Moderate, Sparse, Absent              |
|          | Below Station: Very Abundant, Abundant, |                                       |
|          | Site Description & Notes:               |                                       |
|          | Above Station:                          |                                       |
|          |                                         | · · · · · · · · · · · · · · · · · · · |
|          | Below Station: Doutre Creck             |                                       |
| AS . W   | 5/19/05 Eich Small                      | · · · · · · · · · · · · · · · · · · · |
| - Ohakul | Above Station # // >                    | es Observed                           |
| ()<br>() | <u> </u>                                | Below Station #                       |
| (35) -   | Gambusia HI M M M M M M M               |                                       |
| (77)-    |                                         | WIT IN ALW AND ALW ALW AND ALW AND    |
| (1) -    | Grass Pickerel 1                        | MI HI HI HI HI HI HI HI HI HICHI      |
|          | Spotted Smitish HIT XII 1111            |                                       |
| Z)-      | Green Suntish HIII                      | - 3 w/ internal perasites             |
| $\sim$   | Harriff - Nor                           |                                       |
| 0-       | warmonth Four 1                         |                                       |
|          |                                         |                                       |
|          |                                         |                                       |
|          |                                         |                                       |
|          |                                         |                                       |
|          |                                         |                                       |
| •        |                                         |                                       |
|          |                                         |                                       |
|          | ·                                       |                                       |
|          | ······································  |                                       |
|          |                                         |                                       |
| -        |                                         |                                       |
| • 🔘      | Revision 1.2 05/28/02                   |                                       |

GBM<sup>c</sup> & Assoc. Doc. 1 Page 2 of 2

### FIELD DATA SHEETS - BENTHIC INVERTEBRATES

Location:

| Waterbody Name: Louter Crack   |
|--------------------------------|
| Client: <u>Lion oil</u>        |
| Project no: 2160 -05-070       |
| Investigators: <u>REM</u> BOP  |
| Stiff JB                       |
| Date Sample Collected: 4/28/05 |

Habitat Forms Completed: yes) / no

Ecoregion: <u>Galt Coestal</u> Weather: <u>Sanny Clear</u> <u>Mild</u> Form Completed By: <u>LEM</u> (JB

LC

Form Checked By: \_\_\_\_

Fish Sampling Completed: yes / no

| Collectio               | n Site Observatio       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Macroinvertet  | orate Qualitative   | Sample List                            |
|-------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------|----------------------------------------|
|                         | LC R:<br>Above Station- | LC-3<br>Below Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Таха           | Above Station       | 66-3                                   |
|                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Annelida       |                     | <u></u>                                |
| Periphyton:             | anterflaget antereth    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Decapoda       |                     | A                                      |
| Filamentous Algae:      | 01234                   | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gastropoda     |                     |                                        |
| Macrophytes:            | 01234                   | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pelecypoda     |                     |                                        |
| Slimes:                 | 01234                   | 0 1 (2) 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hemiptera      |                     | A                                      |
| Macroinvertebrates:     | 01234                   | <b>(b)</b> 1 <u>2 3 4</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Coleoptera     |                     |                                        |
| Fish:                   | 01234                   | 0 1 2 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lepidoptera    |                     | ······································ |
|                         | 01234                   | 01②34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Odonata        |                     | Ple                                    |
| Other:                  | 01234                   | 01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Megaloptera    |                     |                                        |
|                         |                         | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Diptera        |                     |                                        |
| 0=Not Observed, 1=Rare, | 2=Common, 3=Abund       | ant, 4=Dominant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chironomidae   |                     |                                        |
|                         | deller Stehneler K      | and the second of the second | Plecoptera     |                     |                                        |
| Riffle/Run:             |                         | 15135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ephemeroptera  |                     | ······································ |
| Shallow Pool:           |                         | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Trichoptera    |                     |                                        |
| Deep Pool:              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Amphipoda      |                     | Plc                                    |
| Backwaters:             |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                     |                                        |
| Chanelized:             |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                     |                                        |
|                         | ollelis Sene pictor (%) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                     | ·······                                |
| Woody Debris:           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R=Rare, C=Con  | imon, A=Abundant, D | Dominant                               |
| Emergent Vegatation:    |                         | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rare<3. Common | 3-9, Abundant>10, D | Dominant EQ                            |
| Submerged Vegetation:   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Site Descrip   | tion and Obser      |                                        |
| Depositional Area:      |                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                     | rations:                               |
| Overhanging Veg:        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                     |                                        |
| Root Wads:              |                         | . 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                     |                                        |
| Undercut Banks:         |                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                     |                                        |
| Filamentous algae:      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                     |                                        |
| Leafy Debris:           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                     |                                        |
| Other:                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                     |                                        |
|                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                     |                                        |
|                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                     |                                        |

Revision 1.2 05/28/02 GBMc Assoc. Doc.2 Page 1 of 2

| int Source <u></u><br>llector | ABOVE                                  |                                        | Date      |                                        |
|-------------------------------|----------------------------------------|----------------------------------------|-----------|----------------------------------------|
| bitat Description:            | ABOVE                                  | Sediment '                             | ?         |                                        |
|                               |                                        |                                        |           |                                        |
| )                             | BELOW                                  |                                        |           |                                        |
|                               |                                        |                                        |           | ······································ |
| BOVE Station #                | MACROINVE                              | RTEBRATE COMMU                         |           |                                        |
|                               | Taxa Tally                             | BELOW                                  | Station # |                                        |
| 11 Oliçach                    |                                        |                                        | Taxa      | Taliy                                  |
|                               |                                        |                                        | ***       |                                        |
| 8 Comben-                     |                                        |                                        |           |                                        |
| 3 Isopada                     | ///                                    |                                        |           |                                        |
| 2 Palemon                     | notes II                               |                                        |           |                                        |
| 10 CAENIS                     | 1124                                   |                                        |           | •                                      |
| <u>Q</u>                      | IHUTT                                  |                                        |           |                                        |
| 11 Corizide                   | willer                                 |                                        |           |                                        |
|                               | ······································ |                                        |           |                                        |
| 2 Columbia                    |                                        | ······································ |           |                                        |
| 2 Columber                    | 110- 11                                |                                        |           |                                        |
| 4 Airia                       |                                        |                                        |           |                                        |
| le <u>Enallos</u>             | <u>////</u>                            |                                        |           |                                        |
|                               |                                        |                                        |           |                                        |
|                               |                                        |                                        |           |                                        |
| 3 Stalis                      |                                        |                                        |           |                                        |
| 2 Herator                     | <u>ma 11</u>                           |                                        |           |                                        |
| 2 Weeril                      |                                        |                                        |           |                                        |
| 3 Uvarus                      | <u> </u>                               |                                        |           |                                        |
| 3 Tilula                      |                                        |                                        |           |                                        |
| 5 Chinon                      | idas IM HA HA                          |                                        |           |                                        |
| 11 Jury podi                  | vac IMIMI                              |                                        |           |                                        |
| 4 TAMYta                      | (sin) 1111                             |                                        |           |                                        |
| B Psycode                     |                                        |                                        |           | **                                     |
| 2 Psycode                     | <u></u>                                |                                        |           |                                        |
|                               |                                        |                                        |           |                                        |
| :TOTAL                        |                                        |                                        | 2024      |                                        |
|                               |                                        | unity Structure                        | TOTAL:    |                                        |
|                               | ABOVE BELOW                            | Minty Or UCIUIE                        |           |                                        |
| phem.                         | · · ·                                  | % Odon.                                | ABOVE     | BELOW                                  |
|                               |                                        | % Cole.                                | ·····     |                                        |
| richop.                       |                                        | % Crustacea                            |           |                                        |
| PT                            |                                        |                                        |           |                                        |
| hir.<br>Iptera                | ··                                     | # of Taxa:                             |           |                                        |

'1.1 6/99 'age 2 of 3

| Page |                 | BY:                                  | Notes                                     | Sample Collected 20740<br>CI Sulfale, TDS | 12.            |              | "             |             |              |       |           |      |           |                                                           |     |
|------|-----------------|--------------------------------------|-------------------------------------------|-------------------------------------------|----------------|--------------|---------------|-------------|--------------|-------|-----------|------|-----------|-----------------------------------------------------------|-----|
|      |                 | reviewed by:                         | Sample # of<br>Containers<br>S=Sed. w≓wat |                                           | -              |              | \<br>\<br>\   |             | · · ·        |       |           |      |           |                                                           | *** |
| •    | E               |                                      | Turb.                                     | 12.7<br>-                                 | Z.I.Z          | - 0.EI       | 22.0          | 24.0 -      | 13.3         |       |           |      | <br> <br> | -                                                         |     |
|      | ata Fon         |                                      | pH su                                     | 5'9                                       | s.e            | 10.4)        | $\overline{}$ | . •         | いよっ          | · · . |           |      | <b>}</b>  |                                                           |     |
|      | Field Data Form | (20/                                 | Sp. Cond.<br>uS                           | 475                                       | 4279           | 564          | 2788          | 2874        |              | •     | <br> <br> |      |           |                                                           |     |
|      |                 | 17-                                  | DO mg/l                                   | 75.2%                                     | 34%.<br>8.5m/h | 7. Sand      | 53.0%<br>4.4m |             |              |       |           |      | <br>      |                                                           | ·   |
|      |                 | ate                                  | င <sup>ိ</sup>                            | 14'9°C                                    | 16.50          | 1.4°C        | 23.6%         | 26.40       | 21.12        |       | <u>``</u> |      | <br>      |                                                           | •   |
|      | •               | CORD (D                              | Field<br>Crew                             | 1/2 the ortes bill                        | ANS -          | ser          | <u>v</u>      | 45/ha5      | Sua/<br>Inns |       |           | <br> | <br>      | nade                                                      |     |
|      |                 | INT RE                               | Time                                      | 0755-                                     | 971            | Bes          | 0800          | Shal        | Q/h]         |       |           |      |           | ick was i                                                 |     |
|      |                 | UREME                                | Date                                      | 4127h                                     | on uspert      | 4/20/05 1505 | 1/28/05 0800  | Upalos 1045 | 4/24/0× 1410 |       |           |      |           | ation che                                                 |     |
| ()   |                 | FIELD MEASUREMENT RECORD (Date 1/27- | Station/Depth                             | 4TA-2                                     | t-dra-4        | UNA-5        | 5-27          | 10-2        |              |       |           |      |           | * Indicates calibration check was made<br>V1.2 04/18/2004 |     |

.

<u>ب</u>ور:

May 5, 2005 Control No. 89880 Page 2 of 6

www.americaninterplex.com

### Mc & Associates, Inc. Brown Lane bryant, AR 72022

### CASE NARRATIVE

### SAMPLE RECEIPT

Received Temperature: 1°C

| Receipt Verification: | Complete Chain of Custody      | v   |
|-----------------------|--------------------------------|-----|
|                       | Sample ID on Sample Labels     | . V |
|                       | Date and Time on Semala Labels |     |
|                       | Date and Time on Sample Labels | Y   |
|                       | Proper Sample Containers       | Y   |
|                       | Within Holding Times           | Y   |
|                       | Adequate Sample Volume         | Ý   |
|                       | Sample Integrity               | Ý   |
|                       | Proper Temperature             | Ý   |
|                       | Proper Preservative            | Ý   |

### **QUALIFIERS**

| AIC Sample No.                           | Qualifiers | Definition                                                                                                                                                                           |
|------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 89880-2<br>89880-3<br>89880-5<br>89880-6 | D          | Result is from a secondary dilution factor<br>Result is from a secondary dilution factor<br>Result is from a secondary dilution factor<br>Result is from a secondary dilution factor |

### **Prences**:

"Methods for Chemical Analysis of Water and Wastes", EPA/600/4-79-020 (Mar 1983) with updates and supplements EPA/600/5-91-010 (Jun 1991), EPA/600/R-92-129 (Aug 1992) and EPA/600/R-93-100 (Aug 1993).

"Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846)", Third Edition.

"Standard Methods for the Examination of Water and Wastewaters", 20th edition, 1998.

"American Society for Testing and Materials" (ASTM).

"Association of Analytical Chemists" (AOAC).





Mc & Associates, Inc. Brown Lane bryant, AR 72022

### ANALYTICAL RESULTS

| AIC No. 89880-1                              |             |                                                                                                                 |               |        |                   |           |
|----------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------|---------------|--------|-------------------|-----------|
| Sample Identification: UTA-2 4-27<br>Analyte | •           |                                                                                                                 |               |        |                   |           |
| Total Dissolved Solids                       | Method      | Result                                                                                                          | RL            | Units  | Batch             | Qualifie  |
| Chloride                                     | EPA 160.1   | 280                                                                                                             | 10            | mg/l   | W13814            |           |
| Sulfate                                      | EPA 300.0   | 79                                                                                                              | 0.2           | mg/l   | S15746            |           |
|                                              | EPA 300.0   | 12                                                                                                              | 0.2           | mg/l   | S15746            |           |
| AIC No. 89880-2                              |             |                                                                                                                 |               |        |                   |           |
| Sample Identification: UTA-3 4-27            | ′-05 (1505) |                                                                                                                 |               |        |                   |           |
| Analyte                                      | Method      | Result                                                                                                          |               | 1 Late |                   |           |
| Total Dissolved Solids                       | EPA 160.1   | the second se | <u>RL</u>     | Units  | Batch             | Qualifier |
| Chloride                                     | EPA 300.0   | 300                                                                                                             | 10            | mg/l   | W13814            |           |
| Sulfate                                      | EPA 300.0   | 100                                                                                                             | 2             | mg/l   | S15746            | D         |
|                                              | C: A 000:0  | 15                                                                                                              | 0.2           | mg/l   | S15746            |           |
| AIC No. 89880-3                              |             |                                                                                                                 |               |        |                   |           |
| Sample Identification: UTA-4 4-27            | -05 (1140)  |                                                                                                                 |               |        |                   |           |
| Analyte                                      | Method      | Result                                                                                                          | DI            | 1.1    |                   |           |
| Total Dissolved Solids                       | EPA 160.1   | 2000                                                                                                            | <u>RL</u>     | Units  | Batch             | Qualifier |
| Chloride                                     | EPA 300.0   | 1200                                                                                                            | 10            | mg/l   | W13814            |           |
| ···lfate                                     | EPA 300.0   | 1200                                                                                                            | 20            | mg/l   | S15746            | D         |
|                                              | =: /: 000:0 | 11                                                                                                              | 0.2           | mg/i   | S15746            |           |
| A)-No. 89880-4                               |             |                                                                                                                 |               |        |                   |           |
| Sample Identification: LC-1 4-28-0           | 5 (1440)    |                                                                                                                 |               |        |                   |           |
| Analyte                                      | Method      | Result                                                                                                          | -             |        |                   |           |
| <b>Fotal Dissolved Solids</b>                | EPA 160.1   |                                                                                                                 |               | Units  | Batch             | Qualifier |
| Chloride                                     | EPA 300.0   | 190                                                                                                             | 10            | mg/l   | W13817            |           |
| Sulfate                                      | EPA 300.0   | 70                                                                                                              | 0.2           | mg/l   | S15746            |           |
|                                              | EFA 300.0   | 4.4                                                                                                             | 0.2           | mg/l   | S15746            |           |
| NC No. 89880-5                               |             |                                                                                                                 |               |        |                   |           |
| Sample Identification: LC-2 4-28-0           | 5 1045      |                                                                                                                 |               |        |                   |           |
| Analyte                                      | Method      | Result                                                                                                          | ы             | f 1    |                   |           |
| otal Dissolved Solids                        | EPA 160.1   | 1800                                                                                                            | <u>RL</u>     | Units  | Batch             | Qualifier |
| Chloride                                     | EPA 300.0   | 220                                                                                                             | 10            | mg/l   | W13817            |           |
| Sulfate                                      | EPA 300.0   | 960                                                                                                             | 2<br>2        | mg/i   | S15746            | D         |
|                                              |             | 200                                                                                                             | 2             | mg/i   | S15746            | Ð         |
| NC No. 89880-6                               |             |                                                                                                                 |               |        |                   |           |
| Sample Identification: LC-3 4-28-05          | 5 (0800)    |                                                                                                                 |               |        |                   |           |
| <u>Inalyte</u>                               | Method      | Desult                                                                                                          | <b>1</b> 11 1 |        |                   |           |
| otal Dissolved Solids                        | EPA 160.1   | Result                                                                                                          | <u>RL</u>     | Units  | Batch             | Qualifier |
| hloride                                      |             | 1800                                                                                                            | 10            | mg/i   | W13817            |           |
| ulfate                                       | EPA 300.0   | 220                                                                                                             | 2             | mg/l   | S15746            | D         |
| ,                                            | EPA 300.0   | 950                                                                                                             | 2             | mg/i   | S15746            | Ď         |
| •                                            |             |                                                                                                                 |               | •      | - · · · · · · · · |           |

8600 Kanls Road · Little Rock, AR 72204

www.americaninterplex.com

501-224-5060 · FAX 501-224-5072

.

www.americaninterplex.com

### Mc & Associates, Inc. Brown Lane bryant, AR 72022

### SAMPLE PREPARATION REPORT

| AIC No. 89880-1<br><u>Analyte</u><br>Total Dissolved Solids      | Date/Time<br>Prepared By             | Date/Time                                                | Dilution | Batch                                      | Out                   |
|------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|----------|--------------------------------------------|-----------------------|
| Chloride<br>Sulfate                                              | 29APR05 1557 252<br>29APR05 1557 252 | 03MAY05 0926 22<br>29APR05 2116 25                       | 3.       | W13814<br>S15746<br>S15746                 | Qualifier             |
| AIC No. 89880-2<br>Analyte<br>Total Dissolved Solids             | Date/Time<br>Prepared By             | Date/Time                                                | Dilution | Batch                                      | 0                     |
| Chloride<br>Sulfate                                              | 29APR05 1557 252<br>29APR05 1557 252 | 03MAY05 0926 223<br>29APR05 2132 252                     | 10       | W13814<br>S15746<br>S15746                 | Qualifier<br>D        |
| AIC No. 89880-3<br>Analyte<br>Total Dissolved Solids             | Date/Time<br>Prepared By             | Date/Time<br>Analyzed By                                 | Dilution |                                            | •                     |
| Chloride<br>Sulfate                                              | 29APR05 1557 252<br>29APR05 1557 252 | 03MAY05 0926 223<br>02MAY05 0956 253                     | 100      | <u>Batch</u><br>W13814<br>S15746<br>S15746 | <u>Qualifier</u><br>D |
| AIC No. 89880-4<br>Vte<br>Dissolved Solids<br>Chloride           | Date/Time<br>Prepared By             | Date/Time<br>Analyzed By<br>03MAY05 1246 223             | Dilution | Batch                                      | Qualifier             |
| Sulfate                                                          | 29APR05 1657 252<br>29APR05 1557 252 | 294PR05 2245 250                                         |          | W13817<br>S15746<br>S15746                 |                       |
| AIC No. 89880-5<br>Analyte<br>Total Dissolved Solids<br>Chloride | Date/Time<br>Prepared By             | Date/Time<br>Analyzed By<br>03MAY05 1246 223             | Dilution | Batch                                      | Qualifier             |
| Sulfate                                                          | 29APR05 1557 252                     | 30APR05 0001 252<br>30APR05 0001 252                     | 10       | W13817<br>S15746<br>S15746                 | D<br>D                |
| AIC No. 89880-6<br>Analyte<br>Total Dissolved Solids             | Date/Time<br>Prepared By             | Date/Time<br>Analyzed By                                 | Dilution | Batch                                      | Qualifier             |
| Chloride<br>Sulfate                                              | 29APR05 1557 252 3                   | 03MAY05 1246 223<br>30APR05 0032 252<br>30APR05 0032 252 | 10       | W13817<br>S15746<br>S15746                 | DDD                   |





May 5, 2005 Control No. 89880 Page 5 of 6

### BMc & Associates, Inc. 9 Brown Lane Tyant, AR 72022

## LABORATORY CONTROL SAMPLE RESULTS

| Analyte<br>Total Dissolved Solids<br>Total Dissolved Solids<br>Chloride<br>Sulfate | Spike<br><u>Amount</u><br>250 mg/l<br>250 mg/l<br>10 mg/l<br>30 mg/l | %<br><u>Recovery</u><br>101/102<br>104/103<br>97.1/95.2<br>99.8/100 | % Recovery<br>Limits<br>85-115<br>85-115<br>90-110<br>90-110 | <u>RPD</u><br>0.791<br>0.193<br>2.01<br>0.180 | RPD<br>Limit<br>10<br>10<br>10<br>10 | Batch Qua<br>W13814<br>W13817<br>S15746<br>S15746 | <u>alifier</u> |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|--------------------------------------|---------------------------------------------------|----------------|
|------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|--------------------------------------|---------------------------------------------------|----------------|

### MATRIX SPIKE SAMPLE RESULTS

| Analyte Al<br>Chloride | Spike         %           mount         Recove           10 mg/l         94.5/97           30 mg/l         97.9/98 | 5 80-120 2.64 | RPD<br>Limit Bato<br>10 S157<br>10 S157 | 46 |
|------------------------|--------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------|----|
|------------------------|--------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------|----|

### LABORATORY BLANK RESULTS

| Analyte<br>tal Dissolved Solids<br>I Dissolved Solids<br>Coride<br>Sulfate | Method<br>EPA 160.1<br>EPA 160.1<br>EPA 300.0<br>EPA 300.0 | <u>Result</u><br>< 10<br>< 10<br>< 0.2<br>< 0.2 | Units<br>mg/l<br>mg/l<br>mg/l<br>mg/l | RL<br>10<br>10<br>0.2<br>0.2 | QC<br>Sample<br>W13814-1<br>W13817-1<br>S15746-1<br>S15746-1 | Qualifier |
|----------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------|---------------------------------------|------------------------------|--------------------------------------------------------------|-----------|
|----------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------|---------------------------------------|------------------------------|--------------------------------------------------------------|-----------|

### May 5, 2005 Control No. 89880 Page 6 of 6

Ac & Associates, Inc. Brown Lane Bryant, AR 72022

•••

### QUALITY CONTROL PREPARATION REPORT

### LABORATORY CONTROL SAMPLES

| Analyte                                                                                                                                            | Date/Time<br>Prepared By                                                                                                   | Date/Time<br>Analyzed By                                                                                                                                     | Dilution | QC<br>Sample                                                                                 | Qualifier       |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------|-----------------|
| Total Dissolved Solids<br>Total Dissolved Solids<br>Total Dissolved Solids<br>Total Dissolved Solids<br>Chloride<br>Chloride<br>Sulfate<br>Sulfate | -<br>29APR05 1132 252<br>29APR05 1132 252<br>29APR05 1132 252<br>29APR05 1132 252<br>29APR05 1132 252<br>MATRIX SPIKE SAME | 03MAY05 0926 223<br>03MAY05 0926 223<br>03MAY05 1246 223<br>03MAY05 1246 223<br>29APR05 1333 252<br>29APR05 1400 252<br>29APR05 1333 252<br>29APR05 1400 252 |          | W13814-2<br>W13814-3<br>W13817-2<br>W13817-3<br>S15746-2<br>S15746-3<br>S15746-2<br>S15746-3 | <u>wuailler</u> |

### 

| Analyte             | Date/Time Prepared By                | Date/Time                                                | QC                               |
|---------------------|--------------------------------------|----------------------------------------------------------|----------------------------------|
| Chloride            |                                      | Analyzed By                                              | Dilution Sample Qualifier        |
| Chloride<br>Sulfate | 29APR05 1132 252<br>29APR05 1132 252 | 29APR05142725229APR05145925229APR05142725229APR051459252 | S15746-4<br>S15746-5<br>S15746-5 |

### LABORATORY BLANKS

| Analyte                            | Date/Time   | Date/Time                                                                    | QC                               |
|------------------------------------|-------------|------------------------------------------------------------------------------|----------------------------------|
| Total Dissolved Solids             | Prepared By | Analyzed By                                                                  | Dilution Sample Qualifier        |
| Total Dissolved Solids<br>Chloride | -           | 03MAY05 0926 223<br>03MAY05 1246 223<br>29APR05 1319 252<br>29APR05 1319 252 | W13814-1<br>W13817-1<br>S15746 1 |



LABORATORIES

AMC & Associates Serretic Environmental Services 219 Brown Ln. Bryant, AR 72022 X

(501) 847-7077 Fax (501) 847-7943

# **Chain of Custody**

(0000)

• • •

+

|    |                                                   |                     |                                            | A second s |                                 |                            |               |           | 8988                 | Q                 |        |
|----|---------------------------------------------------|---------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------|---------------|-----------|----------------------|-------------------|--------|
|    |                                                   |                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NI-SIA NO.                      | SURMERICON                 |               | の日本である作品の | NEART BEAT BUILDE    | SUCCESSION STATES | 100000 |
|    | Cuttpatry.                                        | -1-                 | H.SSUCIATes                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                            |               | Contart   | Read Philling        |                   | 8      |
|    | Project Name/No.:                                 | 2160-25-070         | 020-22-02-02                               | Company:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                            |               | I.        | ciliul no ici        | U AVE             |        |
|    | Send Report To:                                   | Rother M            | McDanje/                                   | Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Clip                            | 404                        |               | TATACON 1 | With any guestions @ | 11ms. @           |        |
|    | Address:                                          | 219 Strown Lane     | n Lane                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tafa                            | Toformation                |               | -140-100  | 1071                 |                   |        |
|    |                                                   | Bryant AR 72077     | K 72022                                    | Phone No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                               | 10/10/1/                   |               |           |                      | Methods           |        |
|    | Phone/Fax No.:                                    |                     |                                            | Fax No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                            |               |           |                      |                   | _      |
|    | Sample ID                                         | Sample Description  | Date                                       | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Matrix<br>S=Sed/Soit<br>W≐Water | Number<br>of<br>Containers | Composite 50  | 507       |                      |                   |        |
| 6  | 414-2                                             | -                   | 4/m/nC                                     | 0740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (*)                             | -                          |               |           |                      |                   | _      |
| Q  | 2                                                 |                     | 20/00/12                                   | 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                               |                            | K<br>X        |           |                      | · · ·             |        |
| 3  | 479-4                                             |                     | 24/26/17                                   | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 3                             |                            | ر<br>۲        |           |                      |                   |        |
| Ð( | 1-27                                              |                     | 4/28/05                                    | 0///                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 3                             |                            | 27<br>20      |           |                      |                   |        |
| SK | ╤┶                                                |                     | 4/28/02                                    | 1045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                               |                            |               |           |                      |                   |        |
| 9  | 5-37                                              |                     | 4/28/05                                    | 0800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ß                               |                            |               |           |                      |                   |        |
|    |                                                   |                     | -                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                            | 2             |           |                      |                   |        |
|    |                                                   |                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                            |               |           |                      | _                 |        |
|    |                                                   |                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                            |               |           |                      |                   |        |
|    | Preservative                                      | ( Sulfuric a        | (Sulfuric acid =S, Nitric acid =N. NaOH =B | cid =N, N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                            |               |           |                      |                   |        |
|    | Sampler(s): BJP/S/HH/JB                           | 5KH/JJB             | Shipment Met                               | hod: 6.R.I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Shipment Method: (C/R//C ////// | :}                         |               |           |                      |                   |        |
|    | COC Completed by Milling                          | allala.             | Data: 4/100                                | (hading =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1000                            | ╺┼╼╼╸                      |               | 1         | 112                  |                   |        |
|    |                                                   | 1 1 1 11            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                            | in new        | A A       | Date: 7/2 7/05       | Time: /235        |        |
|    | Relinquished by: XV north, 4 11 May Date: 4/79/05 | 120 a. J. 11 10 400 | Date: 7/79                                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Time; /3/5                      | Received by:               | by:           |           | Date:                | Time:             |        |
|    | Relinquished by:                                  |                     | Date:                                      | Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1e:                             | Received in lab by:        | n lab by: LLA | front     | Date: 4-29-05        | Time: 1315        |        |
|    |                                                   |                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 | 01                         |               | Series -  |                      |                   |        |

V1.3 04/14/04

| · · · · · · · · · · · · · · · · · · · | Appendix F |          |  |
|---------------------------------------|------------|----------|--|
|                                       | LA Data    | <u> </u> |  |
|                                       |            |          |  |
|                                       |            |          |  |
|                                       |            |          |  |
|                                       |            |          |  |
|                                       |            |          |  |
|                                       |            |          |  |
|                                       |            |          |  |
|                                       |            |          |  |
|                                       |            |          |  |
|                                       |            |          |  |

# Appendix F-1 USGS Flow Data

### RED RIVER BASIN

### 07366200 LITTLE CORNEY BAYOU NEAR LILLIE, LA

LOCATION.--Lat 32°55'45", long 92°37'58", in NW <sup>1</sup>/<sub>4</sub> sec. 1, T.22 N., R.3 W., Union Parish, Hydrologic Unit 08040206, left bank on downstream side of bridge on State Highway 15, 1.4 mi east of Lillie, and 2.6 mi upstream from mouth.

DRAINAGE AREA.--208 mi<sup>2</sup>.

PERIOD OF RECORD.--October 1955 to current year.

REVISED RECORDS .-- WDR LA-79-1: 1978(M).

GAGE.--Water-stage recorder. Datum of gage is 91.48 ft above sea level. October 1955 to Jan. 26, 1956, nonrecording gage, Jan. 27, 1956 to May 31, 1978, water-stage recorder, at site 500 ft downstream at same datum.

REMARKS.--Records good above 100 cfs, fair between 100 cfs and 50 cfs, and poor below, except for estimated record, which is poor. Satellite telemetry at station.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,200 ft<sup>3</sup>/s and maximum (\*):

| Date   | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) | Date   | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|--------|------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------|
| Oct 12 | 1100 | 2,070                             | 8.06                | Dec 25 | 0900 | 2,550                             | 8.42                |
| Nov 5  | 0000 | 1,850                             | 7.90                | Jan 10 | 1200 | 1,480                             | 7.63                |
| Nov 25 | 2000 | 1,440                             | 7.60                | Jan 15 | 0800 | 1,890                             | 7.93                |
| Dec 2  | 1200 | 1,400                             | 7.57                | Feb 10 | 1500 | 1,690                             | 7.46                |
| Dec 10 | 0000 | 2,440                             | 8.34                | Apr 13 | 0900 | *4,020                            | *9.88               |

### DISCHARGE, CUBIC FEET PER SECOND WATER YEAR OCTOBER 2004 TO SEPTEMBER 2005 DAILY MEAN VALUES

| DAY                              | OCT                                 | NOV                                 | DEC                                      | JAN                                  | FEB                   | MAR                                    | APR                        | MAY                                | JUN                             | JUL                                          | AUG                                          | SEP                           |
|----------------------------------|-------------------------------------|-------------------------------------|------------------------------------------|--------------------------------------|-----------------------|----------------------------------------|----------------------------|------------------------------------|---------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------|
| 1                                | 0.73                                | 159                                 | 1,300                                    | 114                                  | 1,100                 | 189                                    | 120                        | 39                                 | 176                             | 4.6                                          | 0.37                                         | 0.51                          |
| 2                                | 0.72                                | 381                                 | 1,370                                    | 116                                  | 1,110                 | 125                                    | 84                         | 33                                 | 56                              | 4.2                                          | 0.31                                         | 0.35                          |
| 3                                | 0.64                                | 653                                 | 1,350                                    | 118                                  | 1,140                 | 104                                    | 66                         | 29                                 | 42                              | 3.7                                          | 0.25                                         | 0.24                          |
| 4                                | 0.59                                | 1,300                               | 1,070                                    | 110                                  | 1,100                 | 117                                    | 56                         | 27                                 | 35                              | 3.8                                          | 0.21                                         | 0.16                          |
| 5                                | 0.53                                | 1,700                               | 728                                      | 101                                  | 995                   | 117                                    | 49                         | 26                                 | 27                              | 3.8                                          | 0.19                                         | 0.11                          |
| 6                                | 0.46                                | 1,140                               | 618                                      | 110                                  | 793                   | 106                                    | 67                         | 26                                 | 22                              | 10                                           | 0.17                                         | 0.10                          |
| 7                                | 0.52                                | 693                                 | 889                                      | 287                                  | 637                   | 98                                     | 87                         | 26                                 | 22                              | 19                                           | 0.14                                         | 0.11                          |
| 8                                | 3.3                                 | 428                                 | 1,170                                    | 710                                  | 767                   | 128                                    | 85                         | 27                                 | 22                              | 13                                           | 0.11                                         | 0.10                          |
| 9                                | 91                                  | 188                                 | 2,040                                    | 1,010                                | 1,060                 | 164                                    | 95                         | 31                                 | 24                              | 7.2                                          | 0.09                                         | 0.09                          |
| 10                               | 403                                 | 66                                  | 2,280                                    | 1,420                                | 1,600                 | 193                                    | 84                         | 36                                 | 21                              | 6.3                                          | 0.08                                         | 0.07                          |
| 11                               | 885                                 | 58                                  | 1,610                                    | 1,090                                | 1,310                 | 174                                    | 173                        | 34                                 | 20                              | 5.0                                          | 0.07                                         | 0.06                          |
| 12                               | 1,960                               | 63                                  | 953                                      | 673                                  | 809                   | 135                                    | 1,100                      | 30                                 | 20                              | 4.9                                          | 0.06                                         | 0.05                          |
| 13                               | 1,610                               | 60                                  | 640                                      | 656                                  | 540                   | 100                                    | 3,640                      | 27                                 | 18                              | 4.5                                          | 0.05                                         | 0.05                          |
| 14                               | 1,010                               | 57                                  | 453                                      | 994                                  | 347                   | 76                                     | 2,100                      | 24                                 | 17                              | 3.3                                          | 0.04                                         | 0.04                          |
| 15                               | 603                                 | 53                                  | 279                                      | 1,820                                | 239                   | 61                                     | 1,050                      | 26                                 | 17                              | 2.6                                          | 0.04                                         | 0.04                          |
| 16                               | 302                                 | 47                                  | 140                                      | 1,570                                | 197                   | 53                                     | 598                        | 28                                 | 15                              | 2.5                                          | 0.03                                         | 0.03                          |
| 17                               | 74                                  | 42                                  | 98                                       | 900                                  | 159                   | 49                                     | 308                        | 34                                 | 15                              | 5.6                                          | 0.03                                         | 0.04                          |
| 18                               | 41                                  | 73                                  | 86                                       | 541                                  | 128                   | 46                                     | 103                        | 33                                 | 17                              | 5.8                                          | 0.02                                         | 0.03                          |
| 19                               | 34                                  | 245                                 | 80                                       | 333                                  | 109                   | 44                                     | 61                         | e28                                | 19                              | 3.4                                          | 0.02                                         | 0.03                          |
| 20                               | 30                                  | 325                                 | 74                                       | 187                                  | 104                   | 46                                     | 49                         | 25                                 | 18                              | 2.5                                          | 0.01                                         | 0.02                          |
| 21                               | 30                                  | 482                                 | 69                                       | 134                                  | 117                   | 55                                     | 43                         | 23                                 | 17                              | 1.8                                          | 0.01                                         | 0.02                          |
| 22                               | 27                                  | 752                                 | 132                                      | 115                                  | 121                   | 291                                    | 40                         | 20                                 | 15                              | 1.3                                          | 0.05                                         | 0.02                          |
| 23                               | 28                                  | 796                                 | 530                                      | 99                                   | 144                   | 431                                    | 37                         | 21                                 | 13                              | 1.1                                          | 0.04                                         | 0.01                          |
| 24                               | 33                                  | 885                                 | 1,120                                    | 84                                   | 310                   | 415                                    | 33                         | 23                                 | 11                              | 0.87                                         | 0.04                                         | 0.25                          |
| 25                               | 37                                  | 1,320                               | 2,380                                    | 75                                   | 381                   | 348                                    | 30                         | 50                                 | 9.6                             | 0.70                                         | 0.04                                         | 2.3                           |
| 26<br>27<br>28<br>29<br>30<br>31 | 34<br>37<br>80<br>137<br>234<br>311 | 1,310<br>1,030<br>812<br>604<br>805 | 1,480<br>786<br>505<br>327<br>197<br>133 | 71<br>68<br>128<br>443<br>567<br>813 | 402<br>406<br>331<br> | 194<br>108<br>183<br>207<br>222<br>190 | 36<br>55<br>76<br>85<br>56 | 28<br>20<br>23<br>75<br>475<br>517 | 8.7<br>7.8<br>7.0<br>6.0<br>4.9 | 0.56<br>0.60<br>0.64<br>0.52<br>0.40<br>0.35 | 0.03<br>0.04<br>0.05<br>0.67<br>0.97<br>0.72 | 12<br>12<br>8.1<br>4.6<br>3.5 |
| TOTAL                            | 8,038.49                            | 16,527                              | 24,887                                   | 15,457                               | 16,456                | 4,769                                  | 10,466                     | 1,864                              | 723.0                           | 124.54                                       | 4.95                                         | 45.03                         |
| MEAN                             | 259                                 | 551                                 | 803                                      | 499                                  | 588                   | 154                                    | 349                        | 60.1                               | 24.1                            | 4.02                                         | 0.16                                         | 1.50                          |
| MAX                              | 1,960                               | 1,700                               | 2,380                                    | 1,820                                | 1,600                 | 431                                    | 3,640                      | 517                                | 176                             | 19                                           | 0.97                                         | 12                            |
| MIN                              | 0.46                                | 42                                  | 69                                       | 68                                   | 104                   | 44                                     | 30                         | 20                                 | 4.9                             | 0.35                                         | 0.01                                         | 0.01                          |
| AC-FT                            | 15,940                              | 32,780                              | 49,360                                   | 30,660                               | 32,640                | 9,460                                  | 20,760                     | 3,700                              | 1,430                           | 247                                          | 9.8                                          | 89                            |
| CFSM                             | 1.25                                | 2.65                                | 3.86                                     | 2.40                                 | 2.83                  | 0.74                                   | 1.68                       | 0.29                               | 0.12                            | 0.02                                         | 0.00                                         | 0.01                          |
| IN.                              | 1.44                                | 2.96                                | 4.45                                     | 2.76                                 | 2.94                  | 0.85                                   | 1.87                       | 0.33                               | 0.13                            | 0.02                                         | 0.00                                         | 0.01                          |
| STATIST                          | ICS OF MO                           | ONTHLY M                            | EAN DATA                                 | FOR WATI                             |                       | 1956 - 2005                            | , BY WATE                  |                                    |                                 | 0.02                                         | 0.00                                         | 0.01                          |
| MEAN                             | 56.0                                | 149                                 | 297                                      | 344                                  | 430                   | 403                                    | 394                        | 236                                | 156                             | 70.8                                         | 28.2                                         | 38.5                          |
| MAX                              | 660                                 | 977                                 | 1,333                                    | 1,140                                | 1,256                 | 1,222                                  | 2,764                      | 852                                | 1,391                           | 985                                          | 202                                          | 464                           |
| (WY)                             | (1985)                              | (1958)                              | (2002)                                   | (1974)                               | (1975)                | (2001)                                 | (1991)                     | (1991)                             | (1974)                          | (1989)                                       | (1996)                                       | (1974)                        |
| MIN                              | 0.14                                | 8.88                                | 20.7                                     | 34,4                                 | 45.4                  | 48.3                                   | 49.8                       | 11.5                               | 3.40                            | 1.19                                         | 0.16                                         | 0.00                          |
| (WY)                             | (2001)                              | (1996)                              | (1957)                                   | (2000)                               | (2000)                | (1966)                                 | (1981)                     | (1988)                             | (1966)                          | (1988)                                       | (2005)                                       | (2000)                        |

116

### USGS Station 07366200 - Little Corney Bayou near Lilite, LA Daily Mean Flow Data - (7/1/1965 - 6/30/2006)

206.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. • = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | Ali        | Code          |
| 7/1/1985  | 2.7        | A             |
| 7/2/1985  | 2,3        | A             |
| 7/3/1985  | 4.3        | A             |
| 7/4/1985  | 8.3        | Ä             |
| 7/5/1985  | 9.8        | Ä             |
| 7/8/1985  | 11         | A             |
| 7/7/1985  | 11         | A             |
| 7/8/1985  | 7.9        | Ä             |
| 7/9/1985  | 7.5        | Å             |
| 7/10/1985 | 6,7        | Â             |
| 7/11/1985 | 6,3        | Â             |
| 7/12/1985 | 4.2        | A             |
| 7/13/1985 | 3.7        | 1. A          |
| 7/14/1985 | 4.6        | A             |
| 7/15/1985 | 3.4        | Â             |
| 7/16/1985 | 5,2        | Ă A           |
| 7/17/1985 | 28         | Â             |
| 7/16/1985 | 24         | Á Á           |
| 7/19/1985 | 27         | A             |
| 7/20/1985 | 16         | A             |
| 7/21/1985 | 11         | A             |
| 7/22/1985 | 13         |               |
| 7/23/1985 | 51         | <u></u>       |
| 7/24/1985 | 73         | Â             |
| 7/25/1985 | 51         | A             |
| 7/26/1985 | 26         | Á             |
| 7/27/1985 | 22         | A             |
| 7/28/1985 | 17         | A             |
| 7/29/1985 | 15         | A             |
| 7/30/1985 | 11         | A             |
| 7/31/1985 | 8.5        | A             |
| B/1/1985  | 6.3        | A             |
| 8/2/1985  | 5          | A             |
| 8/3/1985  | 4          | A             |
| 8/4/1985  | 3.7        | A             |
| 8/5/1985  | 3.2        | A             |
| 8/6/1985  | 4.3        | A             |
| 8/7/1985  | 4.7        | A             |
| 8/8/1985  | 4.6        | A             |
| 8/9/1985  | 4.9        | A             |
| B/10/1985 | 5          | A             |

•.

USGS Station 07386200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1965 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed, P = Provisional data subject to revision. e = Value has been astimated.

| Date      | Flow (cfs) | Qualification                         |
|-----------|------------|---------------------------------------|
|           | All        | Code                                  |
| 8/11/1985 | 5.8        | A                                     |
| 8/12/1985 | 6.2        |                                       |
| 8/13/1985 | 5.3        |                                       |
| 8/14/1985 | 5          | A                                     |
| 8/15/1985 | 6.7        |                                       |
| 8/16/1985 | 7.8        | <u> </u>                              |
| 8/17/1985 | 8.7        | A                                     |
| 8/18/1985 | 8.8        | A A                                   |
| 8/19/1985 | 9.5        |                                       |
| 8/20/1985 | 15         | 1 <del>2</del>                        |
| 8/21/1985 | 19         | Â                                     |
| 8/22/1985 | 21         | A                                     |
| 8/23/1985 | 16         | A A A A A A A A A A A A A A A A A A A |
| 6/24/1985 | 12         | Â                                     |
| 8/25/1985 | 8,5        |                                       |
| 8/26/1985 | 8.5        | Â                                     |
| 8/27/1985 | 7.6        | Â                                     |
| 8/26/1985 | 6.6        | Â                                     |
| 8/20/1985 | 6.6        | A                                     |
| B/30/1985 | 6.2        | Â                                     |
| 8/31/1965 | 5.2        | <u> </u>                              |
| 9/1/1985  | 4.9        | Â                                     |
| 9/2/1985  | 4.3        | Â                                     |
| 9/3/1985  | 7.1        |                                       |
| 9/4/1985  | 12         | <u> </u>                              |
| 9/5/1985  | 25         | A                                     |
| 9/8/1985  | 29         |                                       |
| 9/7/1985  | 25         | <u> </u>                              |
| 9/8/1985  | 17         | A                                     |
| 9/9/1985  | 13         |                                       |
| 9/10/1985 | 16         | <u> </u>                              |
| 9/11/1985 | 33         | Â                                     |
| 9/12/1985 | 46         | <u> </u>                              |
| 9/13/1985 | 30         | Â                                     |
| 9/14/1985 | 20         | <u> </u>                              |
| 9/15/1985 | 15         | Â                                     |
| 9/16/1985 | 12         | Â                                     |
| 9/17/1985 | 9.6        | Â                                     |
| 9/18/1985 | 7          | Â                                     |
| 9/19/1985 | 5.9        | Â                                     |
| 9/20/1985 | 5          | - Â                                   |

USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication – Processing and review completed. P = Provisional data subject to revision.

| e≏ | Value has been estimated, |  |
|----|---------------------------|--|
|    |                           |  |

| Date       | Flow (cfs) | Qualification                         |
|------------|------------|---------------------------------------|
|            | All        | Code                                  |
| 11/1/1985  | 692        | A                                     |
| 11/2/1985  | 730        | Ă                                     |
| 11/3/1985  | 772        | A                                     |
| 11/4/1985  | 626        | A                                     |
| 11/5/1985  | 393        | Ā                                     |
| 11/6/1985  | 166        | A                                     |
| 11/7/1985  | 67         | A                                     |
| 11/8/1985  | 41         | A                                     |
| 11/9/1985  | 34         | A                                     |
| 11/10/1985 | 30         | A                                     |
| 11/11/1985 | 29         | A                                     |
| 11/12/1985 | 29         | Ă Ă                                   |
| 11/13/1985 | 31         | Ä                                     |
| 11/14/1985 | 31         | A                                     |
| 11/15/1985 | 33         | A                                     |
| 11/16/1985 | 35         | A.                                    |
| 11/17/1985 | 43         |                                       |
| 11/18/1985 | 121        | A A                                   |
| 11/19/1985 | 209        | A                                     |
| 11/20/1985 | 270        | A A                                   |
| 11/21/1985 | 298        |                                       |
| 11/22/1985 | 248        | A -                                   |
| 11/23/1985 | 127        | A                                     |
| 11/24/1985 | 125        | <u> </u>                              |
| 11/25/1985 | 265        | L. Â                                  |
| 11/26/1985 | 423        | <u> </u>                              |
| 11/27/1986 | 1150       | <u> </u>                              |
| 11/28/1985 | 1050       | 1 Â                                   |
| 11/29/1985 | 763        | <u> </u>                              |
| 11/30/1985 | 548        | <u> </u>                              |
| 12/1/1985  | 424        | A A A A A A A A A A A A A A A A A A A |
| 12/2/1985  | 349        | A A                                   |
| 12/3/1985  | 285        | A                                     |
| 12/4/1985  | 337        | Å                                     |
| 12/5/1985  | 480        |                                       |
| 12/6/1985  | 422        |                                       |
| 12/7/1985  | 278        | A                                     |
| 12/8/1985  | 137        | <u>A</u>                              |
| 12/9/1985  | 90         | A                                     |
| 12/10/1985 | 78         | A                                     |
| 12/11/1985 | 264        | A                                     |

USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006) - /\*

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | All .      | Code          |
| 9/21/1985  | 4.5        | Α             |
| 9/22/1985  | 4          | A             |
| 9/23/1985  | 4.3        | A             |
| 9/24/1985  | 4,2        | A             |
| 9/25/1985  | 4,3        | A             |
| 9/26/1985  | 4.4        | A             |
| 9/27/1985  | 4.5        | A             |
| 9/26/1985  | 6          | A             |
| 9/29/1985  | 8          | Α             |
| 9/30/1985  | 15         | A             |
| 10/1/1985  | 21         | A             |
| 10/2/1985  | 17         | Α             |
| 10/3/1985  | 12         | A .           |
| 10/4/1985  | 9          | A             |
| 10/5/1985  | 8          | A             |
| 10/6/1985  | 6          | A             |
| 10/7/1985  | 4          | A             |
| 10/8/1985  | 3.5        | A             |
| 10/9/1985  | 3.1        | Ä             |
| 10/10/1985 | 3.5        | A             |
| 10/11/1985 | 4          | A             |
| 10/12/1985 | 5          | A             |
| 10/13/1985 | 7          | A             |
| 10/14/1985 | 7.4        | A             |
| 10/15/1985 | 6.6        | A             |
| 10/16/1985 | 6          | A             |
| 10/17/1985 | 7          | A             |
| 10/18/1985 | 13         | A             |
| 10/19/1985 | 24         | A             |
| 10/20/1985 | 50         | <u> </u>      |
| 10/21/1985 | 66         |               |
| 10/22/1985 | 353        | à             |
| 10/23/1985 | 682        |               |
| 10/24/1985 | 566        |               |
| 10/25/1985 | 280        | Â             |
| 10/26/1985 | 65         | 1 Â           |
| 10/27/1985 | 35         | A             |
| 10/28/1985 | 42         | Â             |
| 10/29/1985 | 149        | Â             |
| 10/30/1985 | 478        | A             |
| 10/31/1985 | 710        | A             |

### USGS Station 07368200 - Little Comey Bayou near Lille, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed, P = Provisional data subject to revision, a = Value has been estimated,

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | All        | Code          |
| 12/12/1985 | 871        | A             |
| 12/13/1985 | 2010       | A             |
| 12/14/1985 | 1960       | A             |
| 12/15/1985 | 1120       | Ä             |
| 12/16/1965 | 757        | A             |
| 12/17/1985 | 558        | Ă             |
| 12/18/1985 | 400        | A             |
| 12/19/1985 | 279        | Ä             |
| 12/20/1985 | 160        | A             |
| 12/21/1085 | 109        | A             |
| 12/22/1985 | 91         | A             |
| 12/23/1985 | 84         | A             |
| 12/24/1985 | 80         | A             |
| 12/25/1985 | 74         | A             |
| 12/26/1985 | 68         | A             |
| 12/27/1985 | 64         | A             |
| 12/28/1085 | 65         | A             |
| 12/29/1985 | 64         | 1 A           |
| 12/30/1985 | 63         | A             |
| 12/31/1985 | 61         | A             |
| 1/1/1986   | 61         | A             |
| 1/2/1986   | 60         | A             |
| 1/3/1986   | 58         | A             |
| 1/4/1986   | 58         | A             |
| 1/5/1986   | 58         | Α             |
| 1/6/1986   | 57         | A             |
| 1/7/1986   | 58         | A             |
| 1/6/1986   | 58         | Α             |
| 1/9/1986   | 59         | Α             |
| 1/10/1986  | 60         | Α             |
| 1/11/1986  | 58         | Α             |
| 1/12/1986  | 57         | A             |
| 1/13/1986  | 55         | A             |
| 1/14/1986  | 52         | A             |
| 1/15/1986  | 51         | A             |
| 1/16/1986  | 49         | Α             |
| 1/17/1986  | 49         | A             |
| 1/18/1986  | 52         | A             |
| 1/19/1986  | 60         | Α             |
| 1/20/1986  | 72         | A             |
| 1/21/1986  | 72         | A             |

### USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1965 - 6/30/2008)

208.00 square miles

A = Approved for publication -- Processing and review completed. = Provisional data subject to revision. = Value has been estimated.

| Date      | Flow (cfs) | Gustification |
|-----------|------------|---------------|
|           | All        | Code          |
| 1/22/1986 | 65         | Α             |
| 1/23/1986 | 57         | A             |
| 1/24/1986 | 51         | A             |
| 1/26/1986 | 65         | A             |
| 1/26/1986 | 116        | A             |
| 1/27/1986 | 106        | A             |
| 1/28/1986 | 81         | A             |
| 1/29/1986 | 65         | 1 A           |
| 1/30/1986 | 59         | 1             |
| 1/31/1986 | 53         | Ä             |
| 2/1/1986  | 50         | A             |
| 2/2/1986  | 50         | A             |
| 2/3/1986  | 51         |               |
| 2/4/1986  | 260        | A             |
| 2/5/1986  | 767        | A A           |
| 2/6/1986  | 1190       | 1 <u>à</u>    |
| 2/7/1986  | 1520       | A             |
| 2/8/1986  | 1000       | A A           |
| 2/9/1986  | 719        | Ā             |
| 2/10/1986 | 615        | <u> </u>      |
| 2/11/1966 | 478        | Â             |
| 2/12/1986 | 338        | A A           |
| 2/13/1986 | 244        | <u> </u>      |
| 2/14/1986 | 192        |               |
| 2/15/1986 | 167        | A             |
| 2/16/1986 | 139        | A             |
| 2/17/1986 | 118        | A             |
| 2/18/1986 | 105        | Ä             |
| 2/19/1986 | 95         | Å             |
| 2/20/1986 | 86         | A             |
| 2/21/1986 | 78         | A A           |
| 2/22/1986 | 69         | Â             |
| 2/23/1986 | 66         | A             |
| 2/24/1986 | 60         | A A           |
| 2/25/1986 | 55         | Â             |
| 2/26/1986 | 53         | Â             |
| 2/27/1986 | 53         | A             |
| 2/28/1986 | 51         |               |
| 3/1/1986  | 47         |               |
| 3/2/1986  | 46         | Â             |
| 3/3/1986  | 46         | A             |

### USGS Station 07366200 - Little Comey Bayou near Liffe, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 equare miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e < Value has been estimated.

4/1/1986 4/2/1986 4/3/1986 4/3/1986 4/5/1986 4/5/1986 4/5/1986 4/6/1988 4/7/1986 4/8/1986 4/10/1986 4/10/1986 4/11/1986 4/11/1986

Date Flow (cfs) All 3/4/1986 3/5/1986 3/5/1986 3/6/1986 3/7/1986 3/1/1986 3/10/1986 3/11/1986 3/11/1986 3/11/1986 3/11/1986 3/11/1986 3/14/1986 3/14/1986 3/14/1986 3/14/1986 3/14/1986 3/14/1986 3/14/1986 3/14/1986 3/14/1986 3/12/1986 3/22/1986 3/22/1986 3/22/1986 3/22/1986 3/22/1986 3/22/1986 3/22/1986 48 4 44 40 39 38 36 165 408 552 698 782 659 483 435 392 299 224 128

Qualification

USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

206.00 square miles A = Approved for publication - Processing and review completed. P = Provisional data subject to revision. e = Velue has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | Alt        | Code          |
| 4/14/1986 | 539        | A.            |
| 4/15/1986 | 404        | A             |
| 4/16/1986 | 341        | A             |
| 4/17/1986 | 191        | A             |
| 4/16/1986 | 68         | A             |
| 4/19/1986 | 55         | A             |
| 4/20/1986 | 283        | A             |
| 4/21/1986 | 443        | A             |
| 4/22/1986 | 429        | A             |
| 4/23/1986 | 566        | A             |
| 4/24/1986 | 546        |               |
| 4/25/1986 | 314        | A             |
| 4/26/1986 | 92         | A             |
| 4/27/1986 | 53         | A             |
| 4/26/1986 | 51         | A             |
| 4/29/1986 | 51         | A             |
| 4/30/1986 | 42         | Â             |
| 5/1/1986  | 187        | A             |
| 5/2/1986  | 544        | A             |
| 5/3/1986  | 223        | A             |
| 5/4/1986  | 68         | A             |
| 5/5/1986  | 44         | A A           |
| 5/6/1986  | 34         | A A           |
| 5/7/1986  | 29         | A A           |
| 5/6/1986  | 24         | A             |
| 5/9/1986  | 20         | Ä             |
| 5/10/1986 | 18         | Â             |
| 5/11/1986 | 16         | A A           |
| 5/12/1986 | 17         | Â             |
| 5/13/1986 | 20         | Â             |
| 5/14/1986 | 23         | Â             |
| 5/15/1986 | 26         | A A           |
| 5/16/1986 | 26         | Â             |
| 5/17/1986 | 33         | A             |
| 5/18/1986 | 60         | Å             |
| 6/19/1986 | 61         |               |
| 5/20/1986 | 51         | AA            |
| 5/21/1986 | 41         |               |
| 5/22/1986 |            | A             |
| 5/23/1986 |            | A             |
| 5/24/1986 |            | A             |

### USGS Station 07368200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

------

| ´        | Date      | Flow (cfs) | Qualification |
|----------|-----------|------------|---------------|
|          |           | All        | Code          |
| <u> </u> | 5/25/1986 | 33         | Α             |
|          | 5/26/1986 | 105        | A             |
|          | 5/27/1986 | 197        | A             |
|          | 5/28/1986 | 498        | A             |
|          | 5/29/1986 | 263        | A             |
|          | 5/30/1986 | 146        | A             |
|          | 5/31/1986 | 69         | A             |
|          | 6/1/1986  | 45         | A             |
|          | 6/2/1986  | 36         | A             |
|          | 6/3/1986  | 28         | Å             |
|          | 6/4/1986  | 25         | A             |
|          | 6/5/1986  | 24         | A             |
|          | 6/6/1986  | 40         | A             |
|          | 6/7/1986  | . 74       | A             |
|          | 6/6/1986  | 91         | A             |
|          | 6/9/1986  | 239        | A             |
|          | 6/10/1986 | 346        | A             |
|          | 6/11/1986 | 343        | A             |
|          | 6/12/1986 | 323        | A             |
| <u> </u> | 6/13/1986 | 223        | A             |
| h        | 6/14/1966 | 58         | A             |
|          | 6/15/1986 | 28         | A             |
|          | 6/16/1986 |            | A             |
|          | 6/17/1986 | 11         | A             |
| <b></b>  | 6/18/1986 | 6.6        | A             |
|          | 6/19/1986 | 4          | A             |
|          | 6/20/1986 | 2.4        | A             |
| <b></b>  | 6/21/1986 | 3.4        | Α             |
|          | 6/22/1986 | 4.8        | A             |
| <u> </u> | 6/23/1986 | 6          | A             |
| ┝        | 6/24/1986 | 13         | A             |
|          | 6/25/1986 | 17         | A             |
| h        | 6/26/1086 | 23         | A             |
|          | 6/27/1986 | 42         | A.            |
| <b>L</b> | 6/28/1986 | 349        | A             |
| <b></b>  | 6/29/1986 | 5270       | A             |
| h        | 6/30/1986 | 5040       | A             |
| L        | 7/1/1986  | 2170       | A             |
| h        | 7/2/1986  | 1010       | A             |
| <b>—</b> | 7/3/1986  | 579        | A             |
| L        | 7/4/1986  | 268        | A             |

### USGS Station 07366200 - Little Corney Bayou near Liffie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved (or publication - Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 7/5/1986  | 62         | Α.            |
| 7/6/1986  | 39         | A A           |
| 7/7/1986  | 29         |               |
| 7/8/1986  | 23         | <u> </u>      |
| 7/9/1986  | 19         | Ä             |
| 7/10/1986 | 16         | A             |
| 7/11/1986 | 13         | Â             |
| 7/12/1986 | 12         | 1 <u> </u>    |
| 7/13/1986 | 9.8        | <u>à</u>      |
| 7/14/1966 | 7.9        | λ             |
| 7/15/1986 | 6.9        | Â             |
| 7/16/1986 | 6,3        |               |
| 7/17/1986 | 4.9        | A             |
| 7/18/1986 | 3.2        | Â             |
| 7/19/1986 | 1.6        | Â             |
| 7/20/1986 | 1.6        |               |
| 7/21/1986 | 1.6        | A A           |
| 7/22/1986 | 2.2        | A             |
| 7/23/1986 | 2.2        | <u>À</u>      |
| 7/24/1986 | 4.4        | Â             |
| 7/25/1986 | 6.9        | Â             |
| 7/26/1986 | 7.7        | Â             |
| 7/27/1986 | 11         | <u> </u>      |
| 7/28/1986 | 11         | <u> </u>      |
| 7/29/1986 | 8.2        | Â.            |
| 7/30/1986 | 5          | Â             |
| 7/31/1986 | 2.8        | Â             |
| 8/1/1986  | 2.6        | Ä             |
| 8/2/1986  | 2.7        | A             |
| 8/3/1986  | 2          | Ä             |
| 8/4/1986  | 1.1        | Ä             |
| 8/5/1986  | 0.56       | A             |
| 8/6/1986  | 0.32       | A             |
| 8/7/1986  | 0.23       | A             |
| 8/8/1986  | 0.23       | Ä             |
| 8/9/1986  | 0.27       | Ă Ă           |
| 8/10/1986 | 0.26       | Â             |
| 8/11/1986 | 2          | A             |
| 8/12/1986 | 3          | A             |
| 8/13/1986 | 0.66       | A             |
| 8/14/1986 | 2.7        | Ä             |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1965 - 6/30/2006)

208.00 square miles A = Approved for publication — Processing and review completed. P = Provisionel data subject to revision. e « Velue has been estimated.

| Date      | Flow (cfs) | Qualification                         |
|-----------|------------|---------------------------------------|
|           | All        | Code                                  |
| 8/15/1986 | 2.6        | A                                     |
| 8/16/1986 | 5.6        | А                                     |
| 6/17/1966 | 13         | A                                     |
| 6/18/1966 | 11         | A                                     |
| 8/19/1986 | 9.2        | A                                     |
| 8/20/1986 | 14         | A                                     |
| 8/21/1986 | 14         | A                                     |
| 8/22/1986 | 13         | Α                                     |
| 8/23/1986 | 15         | A                                     |
| 8/24/1986 | 35         | A                                     |
| 8/25/1986 | 35         | Α                                     |
| 6/26/1986 | 28         | A                                     |
| 6/27/1986 | 9          | A                                     |
| 8/28/1986 | 2,6        | Α                                     |
| 8/29/1986 | 2.8        | A                                     |
| 8/30/1986 | 1,7        | Α                                     |
| 8/31/1986 | 1.9        | A                                     |
| 9/1/1986  | 1.2        | A                                     |
| 9/2/1986  | 1.2        | A                                     |
| 9/3/1986  | 12         | A                                     |
| 9/4/1986  | 20         | A                                     |
| 9/5/1986  | 15         | A                                     |
| 9/6/1986  | 27         | A                                     |
| 9/7/1986  | 38         | A                                     |
| 9/8/1986  | 32         | A                                     |
| 9/9/1986  | 17         | Ā                                     |
| 9/10/1986 | 10         | A                                     |
| 9/11/1986 | 4.8        | A                                     |
| 9/12/1986 | 3.8        | A                                     |
| 9/13/1986 | 2.8        | A                                     |
| 9/14/1986 | 2.9        | A                                     |
| 9/15/1986 | 2,4        | A                                     |
| 9/16/1986 | 2.1        | A                                     |
| 9/17/1986 | 2.1        | A                                     |
| 9/10/1986 | 16         | A A A A A A A A A A A A A A A A A A A |
| 9/19/1986 | 36         | A A A A A A A A A A A A A A A A A A A |
| 9/20/1986 | 18         | <u> </u>                              |
| 9/21/1986 | 9.3        | Â                                     |
| 9/22/1986 | 35         | Â                                     |
| 9/23/1986 | 71         | 1 2 -                                 |
| 9/24/1986 | 59         | Â                                     |

USGS Station 07366200 - Little Corney Bayou near Little, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. • 2 Vatic has been estimated.

| Date       | Flow (cfs) | Qualification  |
|------------|------------|----------------|
|            | All        | Code           |
| 9/26/1986  | 31         | A              |
| 9/26/1966  | 17         | A              |
| 9/27/1986  |            | A              |
| 9/28/1986  | 7          | A              |
| 9/29/1986  | 6.4        | Α              |
| 9/30/1986  | 10         | A              |
| 10/1/1986  | 8.7        | A              |
| 10/2/1986  | 8.3        | A              |
| 10/3/1986  | 7.2        | A              |
| 10/4/1986  | 6.1        | A              |
| 10/5/1986  | 13         | A              |
| 10/6/1986  | 21         | Á              |
| 10/7/1986  | 17         | A              |
| 10/8/1986  |            | A              |
| 10/9/1986  | 64         | A              |
| 10/10/1986 | 92         | A              |
| 10/11/1986 | 79         | A              |
| 10/12/1986 | 70         | A              |
| 10/13/1986 | 116        | A              |
| 10/14/1986 | 141        | Ä              |
| 10/15/1966 | 143        | Ă              |
| 10/16/1966 | 125        | A              |
| 10/17/1986 | 63         | A              |
| 10/18/1986 | 35         | A              |
| 10/19/1986 | 22         | A              |
| 10/20/1986 | 15         | A              |
| 10/21/1986 | 13         | A              |
| 10/22/1986 | 12         | Α              |
| 10/23/1986 | 34         | Ä              |
| 10/24/1986 | 341        | A              |
| 10/25/1986 | 596        | A A            |
| 10/26/1986 | 966        | Â              |
| 10/27/1986 | 1100       | Ä              |
| 10/28/1966 | 756        | A              |
| 10/29/1986 | 476        | A              |
| 10/30/1986 | 171        | A              |
| 10/31/1986 | 61         | A              |
| 11/1/1986  | 45         | A A            |
| 11/2/1986  | 36         | <del>1 î</del> |
| 11/3/1986  | 31         | t- <u>-</u>    |
| 11/4/1986  | 42         | <del> </del>   |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication - Processing and review completed. P = Provisional data subject to revision. a = Value has been estimated.

Dale

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | All        | Code          |
| 11/6/1986  | 167        | A             |
| 11/6/1986  | 295        | Ä             |
| 11/7/1986  | 442        | A             |
| 11/8/1986  | 854        | A             |
| 11/9/1986  | 2440       | A             |
| 11/10/1986 | 3020       | A             |
| 11/11/1986 | 1420       | A             |
| 11/12/1986 | 853        | A             |
| 11/13/1986 | 616        | A             |
| 11/14/1986 | 468        | A             |
| 11/15/1986 | 384        | A             |
| 11/16/1086 | 327        | A             |
| 11/17/1986 | 211        | A             |
| 11/16/1986 | 130        | A             |
| 11/19/1986 | 100        | A             |
| 11/20/1986 | 69         | A             |
| 11/21/1986 | 80         | A             |
| 11/22/1996 | 94         | A             |
| 11/23/1986 | 440        | Α             |
| 11/24/1986 | 1900       | A             |
| 11/25/1986 | 3420       | A             |
| 11/26/1986 | 3600       | Â             |
| 11/27/1986 | 2440       | A             |
| 11/25/1986 | 1690       | A             |
| 11/29/1986 | 1080       | Á             |
| 11/30/1986 | 717        | A .           |
| 12/1/1986  | 630        | A             |
| 12/2/1986  | 386        | A .           |
| 12/3/1986  | 254        | Α             |
| 12/4/1986  | 173        | A             |
| 12/5/1986  | 135        | A             |
| 12/6/1986  | 109        | A             |
| 12/7/1986  | 100        | Α             |
| 12/8/1986  | 264        | A             |
| 12/9/1986  | 539        | A             |
| 12/10/1986 | 741        | A             |
| 12/11/1986 | 1110       | A             |
| 12/12/1986 | 1430       | A             |
| 12/13/1986 | 903        | A             |
| 12/14/1986 | 617        | A             |
| 12/15/1986 | 485        | Á Á           |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated,

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | All        | Code          |
| 12/16/1986 | 451        | A             |
| 12/17/1986 | 436        | A             |
| 12/18/1986 | 436        | A             |
| 12/19/1986 | 490        | A             |
| 12/20/1986 | 522        | A             |
| 12/21/1986 | 479        | A             |
| 12/22/1986 | 423        | A             |
| 12/23/1986 | 420        | A             |
| 12/24/1986 | 459        | Â             |
| 12/25/1986 | 448        | Â             |
| 12/26/1986 | 452        | A             |
| 12/27/1986 | 491        | 1 <u>A</u>    |
| 12/28/1986 | 466        | Â             |
| 12/29/1986 | 349        | A             |
| 12/30/1986 | 218        | Å             |
| 12/31/1986 | 153        | 1 A           |
| 1/1/1987   | 124        | Â             |
| 1/2/1987   | 112        | Â             |
| 1/3/1987   | 166        | Â             |
| 1/4/1987   | 459        | Å             |
| 1/5/1987   | 551        | 1 <u> </u>    |
| 1/6/1987   | 608        | 1 <u> </u>    |
| 1/7/1987   | 765        | Â             |
| 1/8/1987   | 651        | A             |
| 1/9/1987   | 474        | A             |
| 1/10/1987  | 372        | Â             |
| 1/11/1987  | 290        | A             |
| 1/12/1987  | 263        | Ä             |
| 1/13/1987  | 253        | A             |
| 1/14/1987  | 215        | A             |
| 1/15/1987  | 167        | A             |
| 1/16/1987  | 146        | A             |
| 1/17/1987  | 143        | A             |
| 1/18/1987  | 339        | A             |
| 1/19/1987  | 517        | A             |
| 1/20/1987  | 515        | · A           |
| 1/21/1987  | 576        | A             |
| 1/22/1987  | 659        | A             |
| 1/23/1987  | 526        | Å             |
| 1/24/1987  | 352        | A             |
| 1/25/1987  | 226        | A             |

USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

205.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. a = Value has been estimated.

| Date             | Flow (cfs) | Qualification |
|------------------|------------|---------------|
|                  | All        | Code          |
| 1/26/1987        | 185        | A             |
| 1/27/1087        | 175        | Α             |
| 1/28/1987        | 173        | A .           |
| 1/28/1987        | 155        | A             |
| 1/30/1987        | 132        | A             |
| 1/31/1987        | 119        | Α.            |
| 2/1/1987         | 112        | A             |
| 2/2/1987         | 285        | A             |
| 2/3/1987         | 445        | Α             |
| 2/4/1987         | 550        | A             |
| 2/6/1987         | 849        | A             |
| 2/6/1987         | 746        | A             |
| 2/7/1987         | 715        | Α             |
| 2/6/1987         | 689        | A             |
| 2/8/1987         | 722        | A             |
| 2/10/1987        | 730        | A             |
| <u>2/11/1987</u> | 588        | A             |
| 2/12/1987        | 423        | A .           |
| 2/13/1987        | 266        | A             |
| 2/14/1987        | 167        | A             |
| 2/15/1987        | 372        | A             |
| 2/16/1987        | 1330       | A             |
| 2/17/1987        | 1910       | Α             |
| 2/16/1987        | 1990       | A             |
| 2/19/1987        | 1060       | Α             |
| 2/20/1987        | 623        | A             |
| 2/21/1987        | 1090       | A             |
| 2/22/1987        | 1180       | A             |
| 2/23/1987        | 1490       | A             |
| 2/24/1987        | 1050       | A             |
| 2/25/1987        | 769        | A             |
| 2/26/1987        | 889        | A             |
| 2/27/1987        | 1500       | A             |
| 2/28/1987        | 2460       | A             |
| 3/1/1987         | 2690       | A             |
| 3/2/1987         | 2010       | A             |
| 3/3/1987         | 1390       | A             |
| 3/4/1987         | 807        | Ä             |
| 3/6/1987         | 568        | A             |
| 3/6/1967         | 413        | A             |
| 3/7/1987         | 278        | Â             |

USGS Station 07366200 - Little Corney Bayou near Lilije, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication - Processing and review completed. P = Provisional data subject to revision. a = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 3/8/1987  | 205        | Α             |
| 3/9/1987  | 185        | A             |
| 3/10/1987 | 166        |               |
| 3/11/1987 | 144        | A             |
| 3/12/1987 | 121        | A             |
| 3/13/1987 | 107        | Å             |
| 3/14/1987 | 104        | A             |
| 3/15/1987 | 102        | A             |
| 3/16/1987 | 99         | A             |
| 3/17/1987 | 110        | A             |
| 3/18/1987 | 170        | A             |
| 3/19/1987 | 200        | A             |
| 3/20/1987 | 229        | A             |
| 3/21/1987 | 240        | Ä             |
| 3/22/1987 | 188        | A             |
| 3/23/1987 | 140        | . <u>A</u>    |
| 3/24/1987 | 275        | A             |
| 3/25/1987 | 340        | A             |
| 3/26/1987 | 356        | A             |
| 3/27/1987 | 365        | A             |
| 3/28/1987 | 332        | A             |
| 3/29/1987 | 166        | A             |
| 3/30/1987 | 108        | A             |
| 3/31/1987 | 115        | A             |
| 4/1/1987  | 131        | A             |
| 4/2/1987  | 122        | A             |
| 4/3/1987  | 123        | A             |
| 4/4/1987  | 116        | Ä             |
| 4/5/1987  | 107        | A             |
| 4/6/1987  | 95         | A             |
| 4/7/1987  | 87         | A             |
| 4/8/1987  | 77         | A             |
| 4/9/1987  | 74         | A             |
| 4/10/1987 | 67         | A             |
| 4/11/1987 | 64         | A             |
| 4/12/1987 | 59         | A             |
| 4/13/1987 | 57         | A             |
| 4/14/1987 | 60         | A             |
| 4/15/1987 | 60         | A             |
| 4/16/1987 | 59         | A             |
| 4/17/1987 | 54         | A             |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1995 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

Defe

| Date             | Flow (cfs) | Qualification |
|------------------|------------|---------------|
|                  | All        | Code          |
| 4/18/1987        | 50         | Α             |
| 4/19/1987        | 46         | A             |
| 4/20/1987        | 44         | A             |
| 4/21/1987        | 41         | A             |
| 4/22/1987        | 37         | A A           |
| 4/23/1987        | 35         | Â             |
| 4/24/1987        | 32         | Ä             |
| 4/25/1987        | 29         | 1 Â           |
| 4/26/1987        | 27         | Ä             |
| 4/27/1987        | 26         | A             |
| 4/28/1987        | 26         | A             |
| 4/29/1987        | 25         | Ä             |
| 4/30/1987        | 23         | Ä             |
| 5/1/1987         | 20         |               |
| 5/2/1987         | 19         | A             |
| 5/3/1987         |            | A             |
| 5/4/19B7         | 33         | A             |
| <u>5/5/19</u> 87 | 37         | Ā             |
| 5/6/1987         | 32         | Ä             |
| 5/7/1987         | 48         | A             |
| 5/8/1987         | 50         | 1 A           |
| 5/9/1987         | 69         | A             |
| 5/10/1987        | 76         | A             |
| 5/11/1987        | 60         | A             |
| 5/12/1987        | 44         | A             |
| 5/13/1987        | 37         | A             |
| 5/14/1987        | 44         | A             |
| 5/15/1987        | 42         | A             |
| 5/16/1987        | 38         | A             |
| 5/17/1987        | 47         | A             |
| 6/18/1987        | 66         | Α             |
| 5/19/1987        | 64         | A             |
| 5/20/1987        | 50         | A             |
| 5/21/1987        | 36         | Α             |
| 5/22/1067        | 27         | A             |
| 5/23/1987        | 22         | A             |
| 5/24/1987        | 44         | Α             |
| 5/25/1987        | 46         | A             |
| 5/26/1987        | 36         | A A           |
| 5/27/1987        | 28         | A             |
| 5/28/1987        | 22         | A             |

### USGS Station 07366200 - Little Corney Bayou near Lillie, LA Deily Mean Flow Data - (7/1/1985 - 6/30/2006)

205.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | AU         | Code          |
| 6/29/1987 | 20         | A             |
| 6/30/1987 | 18         | Â             |
| 5/31/1987 | 16         | Â             |
| 6/1/1987  | 21         |               |
| 6/2/1987  | 24         | A             |
| 6/3/1987  | 20         | A             |
| 6/4/1987  | 27         | <u> </u>      |
| 6/5/1987  | 34         | Â             |
| 6/6/1987  | 25         | 1 <u> </u>    |
| 6/7/1987  | 16         | <u> </u>      |
| 6/8/1987  | 12         | Â             |
| 6/9/1987  | 10         | i â           |
| 6/10/1987 | 8,4        | 1 <u>A</u>    |
| 6/11/1987 | 7.8        | A             |
| 6/12/1987 | 6,9        | Â             |
| 6/13/1987 | 21         | A             |
| 6/14/1987 | 64         | Â             |
| 6/15/1957 | 72         |               |
| 6/16/1987 | 58         | <u>A</u>      |
| 6/17/1987 | 48         | A             |
| 6/18/1987 | 38         | A             |
| 6/19/1987 | 27         | A             |
| 6/20/1987 | 22         | <u> </u>      |
| 6/21/1987 | 17         | Â             |
| 6/22/1987 | 15         | A             |
| 6/23/1987 | 14         | A             |
| 6/24/1987 | 44         | Â             |
| 6/25/1987 | 84         | Â             |
| 6/26/1987 | 38         |               |
| 6/27/1987 | 22         | Â             |
| 6/28/1987 | 15         | <u> </u>      |
| 6/29/1987 | 12         |               |
| 6/30/1987 | 8.4        | <u> </u>      |
| 7/1/1987  | 21         | Â             |
| 7/2/1987  | 73         |               |
| 7/3/1987  | 107        | Â             |
| 7/4/1987  | 73         | Â             |
| 7/5/1987  | 38         | <u> </u>      |
| 7/6/1987  | 26         | <u>A</u>      |
| 7/7/1987  | 20         | Â             |
| 7/8/1987  | 15         | <u>Â</u>      |

USGS Station 07366200 - Little Comay Bayos near Little, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 equare miles A = Approved for publication — Processing and review completed, P = Provisional data subject to revision, e = Velue has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | Ali        | Code          |
| 7/8/1987  | 12         | A             |
| 7/10/1987 | 15         | Α             |
| 7/11/1987 | 17         | A             |
| 7/12/1987 | 15         | A             |
| 7/13/1987 | 12         | A             |
| 7/14/1987 | 9.5        | A             |
| 7/15/1987 | 7.5        | A             |
| 7/16/1987 | 6.2        | A             |
| 7/17/1987 | 5.3        | Ä             |
| 7/18/1987 | 4.7        | A             |
| 7/19/1987 | 4.1        | A             |
| 7/20/1987 | 3.6        | Å             |
| 7/21/1987 | 3.1        | Ä             |
| 7/22/1987 | 2.8        | Å             |
| 7/23/1987 | 2.7        | A             |
| 7/24/1987 | 3.9        | <u>i</u> A    |
| 7/25/1987 | 14         |               |
| 7/26/1987 | 17         | Â             |
| 7/27/1987 | 13         | Â             |
| 7/28/1987 | 9.3        | A             |
| 7/29/1987 | 6,4        | Â             |
| 7/30/1987 | 4.7        | Â             |
| 7/31/1987 | 3.8        | A             |
| 8/1/1987  | 3.9        | Â             |
| 8/2/1987  | 4.6        | Â             |
| 8/3/1987  | 3.7        | A A           |
| 8/4/1987  | 3.6        | 1 <u> </u>    |
| 8/5/1987  | 4.2        | <u> </u>      |
| 8/6/1987  | 6,5        | Â             |
| 8/7/1987  | 13         | <u> </u>      |
| 8/8/1987  | 7.2        | Â             |
| 8/9/1987  | 5.1        | A             |
| 6/10/1987 | 4.1        |               |
| 6/11/1987 | 7.4        | A             |
| 8/12/1987 | 26         | A             |
| B/13/19B7 | 22         | A             |
| 8/14/1997 | 22         | <u> </u>      |
| 8/15/1987 | 6.9        | Α             |
| 8/16/1987 | 3.9        | A             |
| 8/17/1987 |            | Α             |
| 8/18/1987 | 2.8        | Α             |
| 01001007  | 2          | A             |

USGS Station 07366200 - Little Contey Bayou near Little, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication - Processing and review completed. P = Provisional das subject to ravision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 8/19/1987 | 1.6        | A             |
| 8/20/1987 | 1.3        | A A           |
| 6/21/1987 | 1.1        | A             |
| 8/22/1987 | 0.87       | Â             |
| 8/23/1987 | 0.84       | A             |
| 8/24/1987 | 0.69       | A             |
| 8/25/1987 | 0.58       | Ä             |
| 8/26/1987 | 0.52       | <u>A</u>      |
| 8/27/1987 | 0.46       | Ä             |
| 8/28/1987 | 0.38       | A             |
| 8/29/1987 | 0.34       | A             |
| 8/30/1987 | 0.31       | A             |
| 8/31/1987 | 0.28       | Ā             |
| 9/1/1987  | 0.29       | A             |
| 9/2/1967  | 0.24       | A             |
| 9/3/1967  | 0.28       | A             |
| 9/4/1987  | 0.28       | A             |
| 9/5/1987  | 0.24       | Ä             |
| 9/6/1987  | 0.23       | A             |
| 9/7/1987  | 0.2        | A             |
| 9/6/1987  | 0,18       | A             |
| 8/9/1967  | 0.17       | A             |
| 9/10/1987 | 0.2        | <u> </u>      |
| 9/11/1987 | 0.17       | A             |
| 9/12/1967 | 0.16       | A             |
| 9/13/1987 | 0.14       | A             |
| 9/14/1987 | 0.2        |               |
| 9/15/1987 | 0.49       | <u> </u>      |
| 9/16/1987 | 0.4        | A             |
| 9/17/1987 | 0.28       | A             |
| 9/18/1967 | 0.29       | A             |
| 9/19/1987 | 0.4        | A A           |
| 9/20/1967 | 2          | Ä             |
| 9/21/1987 | 2.4        | Ä             |
| 9/22/1987 | 1.4        | Â             |
| 9/23/1987 | 1.1        | Â             |
| 9/24/1987 | 1          | <u> </u>      |
| 9/25/1967 | 0.92       | A             |
| 9/26/1967 | 0.77       | <u> </u>      |
| 9/27/1987 | 0.64       | Â             |
| 9/28/1987 | 0.5        |               |

### USGS Stalion 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1986 - 6/30/2006)

206.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated,

-

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | Ali        | Code          |
| 9/29/1887  | 0.39       | A             |
| 9/30/1987  | 0.25       | Ä             |
| 10/1/1987  | 0.26       | A             |
| 10/2/1987  | 0.25       | A             |
| 10/3/1987  | 0.15       | A             |
| 10/4/1987  | 0.1        | Ä             |
| 10/5/1987  | 0.06       | A             |
| 10/6/1987  | 0.04       | A             |
| 10/7/1987  | 0.03       | A             |
| 10/8/1987  | 0.02       | Ä             |
| 10/9/1987  | 0.01       | Ä             |
| 10/10/1987 | NA         | A             |
| 10/11/1987 | NA         | A             |
| 10/12/1987 | NA         | A             |
| 10/13/1987 | NA         | A             |
| 10/14/1987 | NA         | Ă Ă           |
| 10/15/1987 | NA         | A             |
| 10/16/1987 | NA         | A A           |
| 10/17/1987 | NA         | A             |
| 10/18/1987 | NA         | A             |
| 10/19/1087 | NA         | A             |
| 10/20/1987 | NA         | A             |
| 10/21/1987 | NĄ         | A             |
| 10/22/1987 | NA         | A             |
| 10/23/1987 | 0.01       | A             |
| 10/24/1987 | 0.03       | A             |
| 10/25/1987 | 0.14       | A             |
| 10/26/1987 | 0.59       | A             |
| 10/27/1987 | 2.6        | A             |
| 10/28/1987 | 2.6        | A             |
| 10/29/1987 | 2.4        | Α             |
| 10/30/1987 | 2,3        | Α             |
| 10/31/1987 | 2.3        | A             |
| 11/1/1987  | 3          | A             |
| 11/2/1987  | 4,1        | Α             |
| 11/3/1987  | 4.4        | A             |
| 11/4/1987  | 4.6        | A             |
| 11/5/1987  | 5.7        | A             |
| 11/6/1987  | 7          | A             |
| 11/7/1987  | 8.8        | A             |
| 11/8/1987  | 10         | A             |

### USGS Station 07366200 - Little Corney Bayou near Lille, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication → Processing and review completed. P = Provisional data subject to revision. e = Válue has been estimated.

| Date       | Flow (cfs) | Qualification                         |
|------------|------------|---------------------------------------|
|            | All        | Code                                  |
| 11/9/1987  | 17         | A                                     |
| 11/10/1987 | 67         | A                                     |
| 11/11/1987 | 101        | Ä                                     |
| 11/12/1987 | 107        | Ä                                     |
| 11/13/1987 | 104        | A                                     |
| 11/14/1987 | 76         | A                                     |
| 11/15/1987 | 47         | A                                     |
| 11/16/1987 | 117        | A                                     |
| 11/17/1987 | 333        | A                                     |
| 11/18/1987 | 509        | Â                                     |
| 11/19/1987 | 499        | A                                     |
| 11/20/1987 | 438        | 1                                     |
| 11/21/1987 | 463        | Â                                     |
| 11/22/1987 | 410        | Â                                     |
| 11/23/1987 | 190        | Â                                     |
| 11/24/1987 | 71         | Â                                     |
| 11/25/1987 | 76         | A                                     |
| 11/26/1987 | 170        | Â                                     |
| 11/27/1987 | 264        | A A                                   |
| 11/28/1987 | 304        | Â                                     |
| 11/29/1987 | 326        | Â                                     |
| 11/30/1987 | 318        | 1 <u>à</u>                            |
| 12/1/1987  | 228        | Â                                     |
| 12/2/1987  | 108        | Â                                     |
| 12/3/1987  | 67         | A                                     |
| 12/4/1987  | 53         | Â                                     |
| 12/5/1987  | 48         | Â                                     |
| 12/6/1987  | 46         | <u> </u>                              |
| 12/7/1987  | 58         | Â                                     |
| 12/8/1987  | 75         | A                                     |
| 12/9/1987  | 73         | A A                                   |
| 12/10/1987 | 65         | Â                                     |
| 12/11/1987 | 54         | <u>A</u>                              |
| 12/12/1987 | 48         | Â                                     |
| 12/13/1987 | 44         | A                                     |
| 12/14/1987 | 49         | A                                     |
| 12/15/1987 | 53         | A                                     |
| 12/16/1987 | 56         | A A                                   |
| 12/17/1987 | 53         | A A A A A A A A A A A A A A A A A A A |
| 12/18/1987 | 50         | A                                     |
| 12/19/1987 | 48         | A                                     |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication - Processing and review completed. P = Provisional data subject to revision. e = Vakre has been estimated.

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | All        | Code          |
| 12/20/1987 | 63         | A             |
| 12/21/1987 | 89         | Â             |
| 12/22/1987 | 110        | <u> </u>      |
| 12/23/1987 | 118        | <u> </u>      |
| 12/24/1987 | 105        | <u> </u>      |
| 12/26/1987 | 83         | 1 â           |
| 12/26/1987 | 186        | <u> </u>      |
| 12/27/1987 | 1090       | <u> </u>      |
| 12/26/1987 | 1920       | 1 <u>2</u>    |
| 12/29/1987 | 2670       | <u> </u>      |
| 12/30/1987 | 1650       | <u>A</u>      |
| 12/31/1987 | 1040       | Â             |
| 1/1/1988   | 759        | 1             |
| 1/2/1988   | 585        | Å             |
| 1/3/1988   | 440        | A             |
| 1/4/1988   | 360        | A             |
| 1/5/1988   | 319        |               |
| 1/6/1988   | 268        | A             |
| 1/7/1988   | 285        | A             |
| 1/8/1988   | 281        | A             |
| 1/9/1988   | 214        | A             |
| 1/10/1988  | 169        | <u>A</u>      |
| 1/11/1988  | 136        | A             |
| 1/12/1966  | 125        | A             |
| 1/13/1988  | 173        | A             |
| 1/14/1988  | 245        | A             |
| 1/15/1988  | 280        |               |
| 1/16/1988  | 314        | A             |
| 1/17/1988  | 385        | A             |
| 1/18/1988  | 423        | A             |
| 1/19/1988  | 492        | A             |
| 1/20/1968  | 1200       | A             |
| 1/21/1988  | 1510       | A             |
| 1/22/1988  | 1290       | A             |
| 1/23/1988  | 893        | A             |
| 1/24/1988  | 619        | <u>A</u>      |
| 1/25/1988  | 436        | A             |
| 1/26/1988  |            | A             |
| 1/27/1986  | 295        | A             |
| 1/28/1988  | 178        | A             |
| 1/29/1988  | 124        | Α.            |
| 1140/1900  | 105        | A             |

USGS Station 07366200 - Little Corney Bayou near Liffie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

206.00 square miles A = Approved for publication -- Processing and review completed, P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 1/30/1988 | 91         | A             |
| 1/31/1988 | 86         | A             |
| 2/1/1988  | 90         | Å             |
| 2/2/1988  | 154        | A             |
| 2/3/1988  | 249        | A             |
| 2/4/1968  | 278        | A             |
| 2/5/1988  | 323        | A             |
| 2/6/1988  | 351        | A             |
| 2/7/1988  | 305        | Ä             |
| 2/8/1988  | 205        | A             |
| 2/9/1968  | 134        | A             |
| 2/10/1988 | 108        | A A           |
| 2/11/1988 | 97         | Ä             |
| 2/12/1988 | 99         | Ä             |
| 2/13/1968 | 109        | A A           |
| 2/14/1988 | 124        | Â             |
| 2/15/1988 | 194        | A             |
| 2/16/1988 | 270        | A             |
| 2/17/1988 | 222        | A A           |
| 2/18/1988 | 246        | Â             |
| 2/19/1988 | 500        | A A           |
| 2/20/1988 | 631        |               |
| 2/21/1988 | 739        | Â             |
| 2/22/1988 | 814        | 1             |
| 2/23/1988 | 636        | Â             |
| 2/24/1986 | 451        | 1 - <u>â</u>  |
| 2/25/1988 | 303        | A A           |
| 2/26/1988 | 171        | A             |
| 2/27/1988 | 113        | Â             |
| 2/28/1988 | 94         | A             |
| 2/29/1968 | 84         | A             |
| 3/1/1968  | 77         | A             |
| 3/2/1988  | 75         |               |
| 3/3/1988  | 104        | A             |
| 3/4/1968  | 171        | A             |
| 3/5/1988  | 196        | <u> </u>      |
| 3/6/1988  | 203        | <u> </u>      |
| 3/7/1988  |            | A             |
| 3/8/1986  | 196        | A             |
| 3/9/1988  | 747        | A             |
| 3/10/1986 |            | A             |
|           | 704        | I A           |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.0) square miles A = Approved for publication  $\sim$  Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

Date

| Data      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | AII        | Code          |
| 3/11/1988 | 560        | A             |
| 3/12/1988 | 570        | A             |
| 3/13/1986 | 492        | A             |
| 3/14/1988 | 371        | A             |
| 3/15/1986 | 273        | A             |
| 3/16/1988 | 203        | A             |
| 3/17/1988 | 142        | A             |
| 3/18/1988 | 125        | A             |
| 3/19/1988 | 154        | A             |
| 3/20/1988 | 156        | A             |
| 3/21/1968 | 151        | Ă             |
| 3/22/1988 | 130        | A             |
| 3/23/1988 | 105        | A             |
| 3/24/1988 | 109        | A             |
| 3/25/1988 | 151        | A             |
| 3/26/1988 | 292        | A             |
| 3/27/1988 | 451        | A             |
| 3/28/1988 | 626        | A .           |
| 3/29/1988 | 662        | A             |
| 3/30/1988 | 642        | . A           |
| 3/31/1966 | 594        | Α             |
| 4/1/1988  | 604        | A             |
| 4/2/1988  | 704        | A             |
| 4/3/1988  | 693        | A             |
| 4/4/1988  | 564        | A             |
| 4/5/1988  | 522        | A             |
| 4/6/1988  | 518        | A             |
| 4/7/1968  | 419        | A             |
| 4/8/1088  | 281        | A             |
| 4/9/1988  | 145        | A             |
| 4/10/1988 | 90         | A             |
| 4/11/1988 | 72         | A             |
| 4/12/1968 | 70         | Α             |
| 4/13/1988 | 75         | Á Á           |
| 4/14/1988 | 74         | Α             |
| 4/15/1988 | 66         | A             |
| 4/16/1988 | 56         | A             |
| 4/17/1988 | 49         | Α.            |
| 4/16/1988 | 52         | A             |
| 4/19/1988 | 78         | A             |
| 4/20/1988 | 102        | A             |

### USGS Station 07366200 - Little Corney Bayou near Little, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification                         |
|-----------|------------|---------------------------------------|
|           | All        | Code                                  |
| 4/21/1986 | 119        | Α                                     |
| 4/22/1988 | 132        | A                                     |
| 4/23/1988 | 108        | A                                     |
| 4/24/1988 | 69         | A                                     |
| 4/25/1988 | 46         | A                                     |
| 4/26/1988 | 36         | A                                     |
| 4/27/1988 | 27         | A                                     |
| 4/28/1988 | 22         | A                                     |
| 4/29/1988 | 18         | A                                     |
| 4/30/1986 | 16         | A                                     |
| 5/1/1988  | 14         | A                                     |
| 5/2/1988  | 13         | A                                     |
| 5/3/1988  | 12         | 1                                     |
| 5/4/1988  | 10         |                                       |
| 5/5/1988  | 9.2        | Ä                                     |
| 5/6/1988  | 7,8        | Â                                     |
| 5/7/1988  | 7,9        | A                                     |
| 5/8/1988  | 6.9        | A                                     |
| 5/9/1988  | 6,3        | A                                     |
| 5/10/1968 | 7.3        | A                                     |
| 5/11/1988 | 15         | <u> </u>                              |
| 5/12/1988 | 15         | Ä                                     |
| 5/13/1988 | 14         | A                                     |
| 5/14/1988 | 13         | Ä                                     |
| 6/16/1986 | 11         | Å                                     |
| 5/16/1986 | 7.3        | 1                                     |
| 5/17/1988 | 5.2        | Â                                     |
| 5/18/1986 | 3,8        | Â                                     |
| 5/19/1968 | 3.5        |                                       |
| 5/20/1988 | 3.1        | A A                                   |
| 5/21/1988 | 2.6        | A A                                   |
| 6/22/1988 | 5.2        |                                       |
| 5/23/1986 | 31         | <u> </u>                              |
| 5/24/1986 | 38         | <u> </u>                              |
| 5/25/1988 | 33         | A A A A A A A A A A A A A A A A A A A |
| 5/26/1988 | 23         | Â                                     |
| 5/27/1988 | 14         |                                       |
| 5/28/1988 | 9.1        | 1 Â                                   |
| 5/29/1988 | 5.9        | Â                                     |
| 5/30/1988 | 4.4        | Â                                     |
| 5/31/1968 | 3.5        |                                       |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Dally Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication — Processing and review completed, P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 6/1/1988  | 2.5        | Α             |
| 6/2/1988  | 2.1        | A             |
| 6/3/1988  | 3.1        | A             |
| 6/4/1988  | 14         | A             |
| 6/5/1968  | 23         | A             |
| 6/6/1988  | 16         | A             |
| 6/7/1988  | 8,6        | Α             |
| 6/8/1988  | 4.8        | Α             |
| 6/9/1988  | 3.2        | A             |
| 6/10/1988 | 2.6        | A             |
| 6/11/1988 | 2          | Α             |
| 6/12/1988 | 1.7        | Α             |
| 6/13/1988 | 1.5        | A             |
| 6/14/1988 | 1.5        | Α             |
| 6/15/1988 | 1.4        | A             |
| 6/16/1988 | 1.3        | Α .           |
| 6/17/1988 | 1.3        | A .           |
| 6/18/1988 | 1.3        | A             |
| 6/19/1988 | 1.3        | A             |
| 6/20/1988 | 1.1        | A             |
| 6/21/1988 | 1.1        | A             |
| 6/22/1988 | 1,3        | A .           |
| 6/23/1988 | 1,3        | A             |
| 6/24/1986 | 1.3        | Α .           |
| 6/25/1988 | 1.4        | Α             |
| 6/26/1988 | 1.4        | A             |
| 6/27/1988 | 1.4        | A             |
| 6/28/1988 | 1.3        | A             |
| 6/29/1988 | 1.2        | A             |
| 6/30/1986 | 1.1        | A             |
| 7/1/1988  | 0.95       | A             |
| 7/2/1988  | 0.84       | A             |
| 7/3/1988  | 0.77       | A             |
| 7/4/1988  | 0.53       | Ā             |
| 7/5/1988  | 0.3        | A             |
| 7/6/1988  | 0.26       |               |
| 7/7/1988  | 0.36       | A             |
| 7/8/1988  | 1.2        | - <u> </u>    |
| 7/9/1988  | 3.6        |               |
| 7/10/1968 | 2.6        | 1 <u>2</u>    |
| 7/11/1968 | 1,8        | - <u>A</u>    |

USGS Station 07366200 - Little Corney Bayou near Little, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 7/12/1988 | 1.4        | A             |
| 7/13/1988 | 1          |               |
| 7/14/1958 | 1.1        | A             |
| 7/15/1986 | 1.1        | A             |
| 7/16/1988 | 1.2        | Ä             |
| 7/17/1986 | 0.96       | A             |
| 7/18/1988 | 0.95       | Α             |
| 7/19/1988 | 0.85       | A             |
| 7/20/1988 | 0.78       | A             |
| 7/21/1988 | 0.71       | A A           |
| 7/22/1988 | 0.91       | A             |
| 7/23/1988 | 0.77       | A             |
| 7/24/1968 | 0.6        | A             |
| 7/25/1988 | 0.48       | A             |
| 7/26/1968 | 0.63       | A             |
| 7/27/1988 | 1.1        | A             |
| 7/28/1988 | 2.6        | A             |
| 7/29/1988 | 2,5        | A             |
| 7/30/1988 | 2.2        | A             |
| 7/31/1986 | 1.9        | A             |
| 8/1/1966  | 1.5        | A             |
| 8/2/1988  | 1.4        | A             |
| 8/3/1988  | 1.2        | Ä             |
| 8/4/1988  | 1.2        | A             |
| 8/5/1988  | 1,3        | Ä             |
| 8/6/1988  | 1          | A             |
| 8/7/1988  | 0.65       | A             |
| 6/8/1988  | 0.55       | A             |
| 6/9/1988  | 0.65       | A             |
| 6/10/1988 | 0.71       | A             |
| 6/11/1968 | 0,76       | A             |
| 8/12/1986 | 0,77       | Â             |
| 8/13/1956 | 0.74       | A A           |
| 6/14/1986 | 0.71       | A A           |
| 8/15/1988 | 0.78       |               |
| 8/16/1988 | 0.93       |               |
| 8/17/198B | 0.68       | A             |
| 8/18/1988 | 0.71       | Â             |
| 8/19/1988 | 0.8        | <del> </del>  |
| 8/20/1988 | 0.69       | Â             |
| 8/21/1988 | 0.09       | - <u>^</u>    |

### USGS Station 07368200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

206.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. § = Value has been estimated.

Date

|           | ÁH . | Qualification |
|-----------|------|---------------|
|           | All  | Code          |
| 8/22/1988 | 21   | Α             |
| 8/23/1988 | 38   | A             |
| 8/24/1988 | 17   | A             |
| 8/25/1988 | 34   | Α.            |
| 8/26/1986 | 36   | Ä             |
| 8/27/1986 | 21   | A             |
| 8/28/1986 | 10   | A             |
| 6/29/1988 | 4.9  | A             |
| 8/30/1968 | 2.9  | A             |
| 8/31/1988 | 2.6  | A             |
| 9/1/1988  | 2.7  | A             |
| 9/2/1968  | 2.3  | Α             |
| 9/3/1988  | 2.3  | A             |
| 9/4/1988  | 2.3  | A             |
| 9/6/1988  | 11   | A             |
| 9/6/1988  | 11   | A             |
| 9/7/1988  | 6    | A             |
| 9/8/1988  | 3.5  | A             |
| 9/9/1988  | 2.6  | A             |
| 9/10/1988 | 2,1  | Α             |
| 9/11/1988 | 2.2  | Α             |
| 9/12/1988 | 16   | A             |
| 9/13/1986 | 34   | A             |
| 9/14/1988 | 25   | A             |
| 9/15/1988 | 14   | Α             |
| 9/16/1988 | 7.7  | A             |
| 9/17/1986 | 5.2  | Α             |
| 9/18/1986 | 4.5  | A             |
| 9/19/1988 | 4    | Α             |
| 9/20/1986 | 3.6  | A             |
| 9/21/1986 | 3.2  | A             |
| 9/22/1988 | 3    | Α             |
| 9/23/1966 | 3    | A             |
| 9/24/1988 | 2.9  | A             |
| 9/25/1968 | 2.2  | Α             |
| 9/26/1986 | 2.1  | A             |
| 9/27/1988 | 2    | A             |
| 9/28/1968 | 1.7  | Α             |
| 9/29/1988 | 1.7  | A             |
| 9/30/1988 | 10   | Α             |
| 10/1/1986 | 35   | <u>A</u>      |

### USGS Station 07366200 - Little Corney Bayou near Lillie, LA Dally Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to ravision. e = Value been estimated.

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | All        | Code          |
| 10/2/1986  | 37         | A             |
| 10/3/1988  | 34         | A             |
| 10/4/1988  | 24         | A             |
| 10/5/1988  | 15         | A.,           |
| 10/6/1988  | 9.5        | A             |
| 10/7/1988  | 6.2        | A             |
| 10/8/1988  | 4.8        | A             |
| 10/9/1988  | 4.6        | A             |
| 10/10/1988 | 6.8        | A             |
| 10/11/1986 | 6.9        |               |
| 10/12/1986 | 6.3        | A             |
| 10/13/1986 | 5          | A             |
| 10/14/1986 | 5.2        | A             |
| 10/15/1986 | 10         | A             |
| 10/16/1988 | 5.6        | A             |
| 10/17/1988 | 3.5        | A             |
| 10/16/1988 | 3.6        | A             |
| 10/19/1988 | 24         | Ä             |
| 10/20/1988 | 50         | Ā             |
| 10/21/1968 | 63         | A             |
| 10/22/1968 | 66         | A             |
| 10/23/1988 | 57         | A             |
| 10/24/1988 | 45         | A             |
| 10/25/1988 | 33         | A             |
| 10/26/1988 | 22         | A             |
| 10/27/1986 | 21         | A             |
| 10/28/1988 | 36         | A             |
| 10/29/1986 | 45         | A             |
| 10/30/1986 | 49         | A             |
| 10/31/1986 | 51         | A             |
| 11/1/1988  | 55         | A             |
| 11/2/1988  | 49         | A             |
| 11/3/1988  | 43         | A             |
| 11/4/1988  | 33         | A             |
| 11/5/1988  | 23         | A             |
| 11/6/1988  | 16         | A             |
| 11/7/1988  | 12         | A             |
| 11/8/1988  | 13         | A             |
| 11/9/1988  | 14         | Α             |
| 11/10/1988 | 22         | A             |
| 11/11/1988 | 42         | A             |

.

USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 equare miles A = Approved for publication -- Processing and review completed. P = Provisional data, subject to revision, e = Vake has been estimated.

| Date        | Flow (cfs) | Qualification  |
|-------------|------------|----------------|
|             | Ali        | Code           |
| 11/12/1988  | 49         | Α              |
| 11/13/1988  | 101        | Α              |
| 11/14/1988  | 139        | A              |
| 11/15/1988  | 158        | Α              |
| 11/16/1986  | 164        | A              |
| 11/17/1986  | 146        | A              |
| 11/18/1988  | 102        | A              |
| 11/19/1986  | 78         | A              |
| 11/20/1986  | 71         | A              |
| 11/21/1986  | 59         | A              |
| 11/22/1986  | 65         | A              |
| 11/23/1986  | 73         | A              |
| 11/24/1988  | 68         | Á              |
| 11/25/1986  | 56         | Ä              |
| 11/26/1988  | 69         | A              |
| 11/27/1988  | 143        | A              |
| 11/28/1988  | 213        | A              |
| 11/29/1988  | 306        | A              |
| 11/30/1988  | 682        | Ä              |
| 12/1/1988   | 714        | A              |
| 12/2/1988   | 497        | Ā              |
| 12/3/1988   | 268        | Ä              |
| 12/4/1988   | 109        | A A            |
| 12/5/1988   | 70         |                |
| 12/6/1988   | 55         |                |
| 12/7/1988   | 49         | Ä              |
| 12/8/1988   | 50         |                |
| 12/9/1988   | 85         |                |
| 12/10/1988  | 118        | Â              |
| 12/11/1988  | 137        |                |
| 12/12/1988  | 129        |                |
| 12/13/1986  | 113        | il â           |
| 12/14/1986  | 98         | - <del></del>  |
| 12/15/1986  | 64         | - <del> </del> |
| 12/16/1988  | 74         | Â              |
| 12/17/1988  | 62         | Â              |
| 12/16/1988  | 54         | â              |
| 12/19/1988  | 49         |                |
| 12/20/19/88 | 49         |                |
| 12/21/1988  | . 4/       |                |
| 12/22/1988  | 199        |                |

### USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication - Processing and review completed, P = Provisionat data subject to revision. e = Value has been estimated.

| Date       | Flow (cfs) | Qualification                         |
|------------|------------|---------------------------------------|
|            | All        | Code                                  |
| 12/23/1986 | 294        | A                                     |
| 12/24/1988 | 735        | A                                     |
| 12/25/1988 | 896        | A                                     |
| 12/26/1988 | 639        | A                                     |
| 12/27/1988 | 460        | A                                     |
| 12/28/1988 | 391        | A                                     |
| 12/29/1988 | 367        | A                                     |
| 12/30/1988 | 409        | A                                     |
| 12/31/1988 | 470        | A                                     |
| 1/1/1989   | 602        | A                                     |
| 1/2/1989   | 644        | A                                     |
| 1/3/1989   | 548        | A                                     |
| 1/4/1989   | 470        | A                                     |
| 1/5/1989   | 408        | A                                     |
| 1/6/1989   | 301        | A                                     |
| 1/7/1989   | 187        | A                                     |
| 1/8/1989   | 147        | A                                     |
| 1/9/1989   | 161        | A                                     |
| 1/10/1989  | 206        | A                                     |
| 1/11/1989  | 229        | A                                     |
| 1/12/1969  | 428        | A                                     |
| 1/13/1989  | 1380       | A                                     |
| 1/14/1989  | 2530       | A                                     |
| 1/15/1989  | 2950       | A                                     |
| 1/16/1989  | 2230       | A                                     |
| 1/17/1959  | 1470       | A                                     |
| 1/10/1989  | 993        | A                                     |
| 1/19/1989  | 692        | A                                     |
| 1/20/1969  | 519        | A                                     |
| 1/21/1989  | 384        | A                                     |
| 1/22/1989  | 253        | A                                     |
| 1/23/1969  | 167        | A                                     |
| 1/24/1989  | 193        | A A                                   |
| 1/25/1989  | 148        | A                                     |
| 1/26/1989  | 179        | A                                     |
| 1/27/1989  | 240        | A                                     |
| 1/28/1989  | 264        | A                                     |
| 1/29/1969  | 256        | 1 <u> </u>                            |
| 1/30/1989  | 488        | A A A A A A A A A A A A A A A A A A A |
| 1/31/1989  | 1070       | A                                     |
| 2/1/1989   | 1540       | â                                     |

### USGS Station 07366200 - Little Comey Bayou near Lille, LA Daily Mean Flow Cata - (7/1/1965 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision, v = Value has been estimated.

S .....

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 2/2/1989  | 1150       | A             |
| 2/3/1989  | 651        | A             |
| 2/4/1989  | 718        | A             |
| 2/5/1989  | 529        | A             |
| 2/6/1989  | 429        | A             |
| 2/7/1989  | 403        | A             |
| 2/8/1989  | 363        | A             |
| 2/9/1989  | 316        | A             |
| 2/10/1989 | 221        | A             |
| 2/11/1989 | 169        | A             |
| 2/12/1969 | 168        | A             |
| 2/13/1989 | 310        | A             |
| 2/14/1989 | 499        | A             |
| 2/15/1989 | 737        | A             |
| 2/16/1989 | 1310       | A A           |
| 2/17/1969 | 1620       | <u> </u>      |
| 2/18/1989 | 1300       | A             |
| 2/19/1989 | 1030       | A             |
| 2/20/1989 | 1070       | A             |
| 2/21/1989 | 1820       | A             |
| 2/22/1989 | 1470       | A             |
| 2/23/1989 | 1080       | A             |
| 2/24/1089 | 802        | Α             |
| 2/25/1989 | 633        | Α             |
| 2/26/1989 | 494        | Â             |
| 2/27/1989 | 370        | A             |
| 2/28/1989 | 309        | Α             |
| 3/1/1969  | 335        | Ā             |
| 3/2/1989  | 373        | A             |
| 3/3/1989  | 443        | A             |
| 3/4/1989  | 529        | A             |
| 3/5/1989  | 582        | Α             |
| 3/6/1989  | 686        | A             |
| 3/7/1969  | 705        | Â             |
| 3/6/1989  | 698        | A             |
| 3/9/1989  | 654        | A             |
| 3/10/1989 | 569        | A             |
| 3/11/1989 | 439        | A             |
| 3/12/1989 | 293        | A             |
| 3/13/1989 | 198        | A             |
| 3/14/1989 | 165        | A             |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 3/15/1989 | 133        | A             |
| 3/16/1989 | 116        | A A           |
| 3/17/1989 | 103        | Â             |
| 3/18/1989 | 96         | Â             |
| 3/19/1989 | 92         | A             |
| 3/20/1989 | 94         | <u>^</u>      |
| 3/21/1989 | 465        | Â             |
| 3/22/1989 | 787        | <u> </u>      |
| 3/23/1969 | 570        | <u> </u>      |
| 3/24/1989 | 441        | A             |
| 3/25/1989 | 355        | Â             |
| 3/26/1989 | 262        | <u> </u>      |
| 3/27/1989 | 417        |               |
| 3/28/1989 | 524        | Â             |
| 3/29/1989 | 682        | Â             |
| 3/30/1989 | 1030       | A             |
| 3/31/1989 | 992        | A             |
| 4/1/1989  | 949        | A             |
| 4/2/1989  | 608        | Â             |
| 4/3/1989  | 439        | A             |
| 4/4/1989  | 279        | Å             |
| 4/5/1989  | 213        | A             |
| 4/6/1989  | 212        | <u>A</u>      |
| 4/7/1959  | 212        | Â             |
| 4/8/1989  | 162        | A             |
| 4/9/1989  | 112        | A             |
| 4/10/1989 | 93         | Â             |
| 4/11/1989 | 85         | A             |
| 4/12/1989 | 80         |               |
| 4/13/1989 | 83         | Â             |
| 4/14/1989 | 102        | A             |
| 4/15/1989 | 108        | A             |
| 4/16/1989 | 108        | A A           |
| 4/17/1989 | 99         | A             |
| 4/16/1989 | 89         | <u>A</u>      |
| 4/19/1989 | 64         | Â             |
| 4/20/1989 | 78         | A             |
| 4/21/1989 | 70         | Â             |
| 4/22/1989 | 61         | <u> </u>      |
| 4/23/1989 | 54         | A             |
| 4/24/1989 | 47         | Â             |

### USGS Station 07366200 - Little Corney Bayou near Lillie, LA Dally Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication — Processing and review completed. P  $\simeq$  Provisional data subject to revision, e = Value has been estimated,

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 4/25/1989 | 43         | Α.            |
| 4/26/1989 | 40         | Å             |
| 4/27/1989 | 39         | A             |
| 4/26/1989 | 48         | A             |
| 4/29/1989 | 79         | A             |
| 4/30/1989 | 161        | A             |
| 5/1/1989  | 199        | A             |
| 5/2/1989  | 202        | A             |
| 5/3/1989  | 256        |               |
| 5/4/1989  | 1310       | A             |
| 5/5/1989  | 1940       | A             |
| 5/8/1989  | 1850       | A             |
| 6/7/1989  | 1170       | A             |
| 5/8/1989  | 739        | A             |
| 5/9/1989  | 528        | A             |
| 5/10/1989 | 304        | A             |
| 6/11/1989 | 134        | A             |
| 6/12/1989 | 181        | A             |
| 5/13/1989 | 301        | Ä             |
| 5/14/1989 | 323        | Â             |
| 5/15/1989 | 408        | A             |
| 5/16/1989 | 708        | A             |
| 5/17/1989 | 1000       | Ae            |
| 5/18/1989 | 1300       | Ae            |
| 5/19/1989 | 1790       | A             |
| 6/20/1989 | 1880       | A             |
| 6/21/1989 | 1000       | Ae            |
| 5/22/1989 | 700        | Ae            |
| 5/23/1989 | 500        | Ae            |
| 5/24/1989 | 350        | Ae            |
| 6/25/1989 | 250        | Ae            |
| 5/26/1989 | 180        | Ae            |
| 5/27/1989 | 120        | Ae            |
| 5/28/1989 | 85         | Ae            |
| 5/29/1989 | 60         | Ae            |
| 5/30/1989 | 52         | Ae            |
| 5/31/1989 | 49         | A             |
| 8/1/1989  | 40         | A             |
| 6/2/1989  | 35         | A             |
| 6/3/1989  | 32         | A             |
| 6/4/1989  | 39         | <u>À</u>      |

USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daity Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication — Processing and review completed. P = Provisional data subject to revision, e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 6/5/1989  | 82         | A             |
| 6/6/1959  | 201        | A             |
| 6/7/1989  | 368        | A             |
| 6/8/1989  | 1630       | Ä             |
| 6/9/1989  | 1410       | A             |
| 6/10/1989 | 1790       | A             |
| 6/11/1989 | 1310       | A             |
| 6/12/1989 | 742        | A             |
| 6/13/1989 | 485        | A             |
| 6/14/1989 | 335        | A             |
| 6/15/1989 | 671        | A             |
| 6/16/1989 | 637        | A             |
| 6/17/1989 | 462        | A             |
| 6/18/1989 | 495        | A             |
| 6/19/1989 | 491        | Ä             |
| 6/20/1989 | 300        | A             |
| 6/21/1989 | 103        | A             |
| 6/22/1989 | 61         | A             |
| 6/23/1989 | 47         | A             |
| 6/24/1989 | 39         | A             |
| 6/25/1989 | 33         | 1 <u>A</u>    |
| 6/26/1989 | 29         | Å             |
| 6/27/1989 | 56         | Â             |
| 6/28/1989 | 405        | Ä             |
| 6/29/1989 | 827        | A             |
| 6/30/1989 | 1750       | A             |
| 7/1/1989  | 3120       | A             |
| 7/2/1989  | 4720       | A             |
| 7/3/1989  | 3900       | A A           |
| 7/4/1969  | 2330       | <u>A</u>      |
| 7/6/1989  | 1480       | A             |
| 7/6/1989  | 1230       | Á Á           |
| 7/7/1989  | 1840       | Â             |
| 7/8/1989  | 1610       | <u> </u>      |
| 7/9/1989  | 1160       | A             |
| 7/10/1989 | 711        | Â             |
| 7/11/1989 | 477        | A             |
| 7/12/1989 | 265        | Â             |
| 7/13/1989 | 139        | <u> </u>      |
| 7/14/1989 | 192        | <u> </u>      |
| 7/15/1989 | 246        | Â             |

### USGS Station 07366200 - Little Comey Bayou near Lille, LA Daily Mean Flow Data - (7/1/1986 - 6/30/2006)

206.00 square miles A = Approved for publication -- Processing and review completed, P = Provisional dela subject to ravision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | Ali        | Code          |
| 7/16/1989 | 437        | Α             |
| 7/17/1989 | 1250       | A             |
| 7/18/1989 | 1850       | A             |
| 7/19/1989 | 1110       | A             |
| 7/20/1989 | 743        | A             |
| 7/21/1989 | 533        | A             |
| 7/22/1989 | 387        | Α             |
| 7/23/1989 | 209        | A             |
| 7/24/1989 | 99         | A             |
| 7/25/1989 | 75         | Α             |
| 7/26/1989 | 69         | Α             |
| 7/27/1989 | 85         | A             |
| 7/28/1989 | 84         | A             |
| 7/29/1988 | 75         | A             |
| 7/30/1989 | 67         | A             |
| 7/31/1989 | 55         | A             |
| 8/1/1989  | 48         | A             |
| 8/2/1989  | 45         | A             |
| 8/3/1989  | 51         | A             |
| 8/4/1989  | 63         | A             |
| 8/5/1989  | 55         | A             |
| 8/6/1989  | 51         | A             |
| 8/7/1989  | 40         | A             |
| 8/8/1989  | 35         | A             |
| 8/9/1989  | 30         | A             |
| 8/10/1989 | 26         | A             |
| 8/11/1989 | 22         | A             |
| 8/12/1989 | 21         | Α             |
| 8/13/1989 | 17         | A             |
| 8/14/1989 | 16         | A             |
| 8/15/1989 | 15         | A             |
| 8/16/1989 | 14         | A             |
| 6/17/1989 | 22         | ΑΑ            |
| 8/16/1989 | 32         | A             |
| 6/19/1989 | 40         | Ä             |
| 6/20/1989 | 50         | A             |
| 8/21/1989 | 34         | A             |
| 6/22/1989 | 24         | A             |
| 8/23/1989 | 18         | A             |
| 8/24/1989 |            | Α             |
| 8/25/1989 | 17         | A             |

.....

### USGS Stallen 07366200 - Little Corney Bayou near Little, LA Daily Mean Flow Data - (7/1/1965 - 6/30/2006)

208.00 square miles A = Approved for publication - Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 6/26/1989 | 21         | A             |
| 8/27/1989 | 20         | Α             |
| 6/28/1989 | 19         | A             |
| 6/29/1989 | 16         | A             |
| 8/30/1989 | 27         | A             |
| 8/31/1989 | 36         | A             |
| 9/1/1989  | 30         | Α             |
| 9/2/1989  | 26         | A             |
| 9/3/1989  | 20         | Α             |
| 9/4/1989  | 16         | Α             |
| 9/5/1989  | 14         | A             |
| 9/6/1989  | 13         | A             |
| 9/7/1989  | 13         | A             |
| 9/8/1989  | 12         | A             |
| 9/9/1989  | 11         | A             |
| 9/10/1989 | 10         | A             |
| 9/11/1989 | 15         | A             |
| 9/12/1989 | 30         | A             |
| 9/13/1989 | 28         | A             |
| 9/14/1989 | 24         | A             |
| 9/15/1989 | 24         | A             |
| 9/16/1989 | 25         | Ă             |
| 9/17/1989 | 21         | A             |
| 9/16/1969 | 17         | A             |
| 9/19/1989 | 15         | Ä             |
| 9/20/1989 | 14         | A             |
| 9/21/1969 | 13         | A             |
| 9/22/1989 | 11         | A             |
| 9/23/1989 | 10         | A             |
| 9/24/1989 | 12         | A             |
| 9/25/1989 | 9.9        | A             |
| 9/26/1989 | 9.2        | A             |
| 9/27/1989 | 9.1        | A             |
| 9/28/1989 | 9.7        | A             |
| 9/29/1989 | 11         | A             |
| 9/30/1989 | 15         | A             |
| 10/1/1989 | 20         | A             |
| 10/2/1989 | 23         | Ä             |
| 10/3/1989 | 22         | A             |
| 10/4/1989 | 20         | A             |
| 10/5/1989 | 15         | A             |

USGS Station 07366200 - Little Comey Bayou near Lillie, LA Deily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Dato       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | AJI        | Code          |
| 10/6/1989  | 13         | A .           |
| 10/7/1989  | 12         | A             |
| 10/8/1989  | 12         | Α             |
| 10/9/1989  | 14         | A             |
| 10/10/1989 | 16         | A             |
| 10/11/1989 | 16         | Α             |
| 10/12/1989 | 14         | Α             |
| 10/13/1989 | 13         | A             |
| 10/14/1989 | 12         | A             |
| 10/15/1989 | 12         | A             |
| 10/16/1989 | 14         | Α             |
| 10/17/1989 | 32         | A             |
| 10/16/1989 | 37         | A             |
| 10/19/1989 | 33         | Α             |
| 10/20/1989 | 28         | A             |
| 10/21/1989 | 23         | Α             |
| 10/22/1989 | 22         | A             |
| 10/23/1989 | 20         | A             |
| 10/24/1989 | 20         | Α             |
| 10/25/1989 | 19         | Α             |
| 10/26/1989 | 19         | Α             |
| 10/27/1989 | 19         | A             |
| 10/28/1989 | 17         | A             |
| 10/29/1989 | 16         | A             |
| 10/30/1989 | 16         | A             |
| 10/31/1989 | 21         | A             |
| 11/1/1989  | 30         | A             |
| 11/2/1989  | 33         | A             |
| 11/3/1989  | 29         | A             |
| 11/4/1989  | 26         | A             |
| 11/5/1989  | 23         | A             |
| 11/6/1989  | 36         | A             |
| 11/7/1989  | 93         | A             |
| 11/8/1989  | 99         | Α             |
| 11/9/1989  | 104        | A             |
| 11/10/1989 | 126        | Α             |
| 11/11/1989 | 101        | A             |
| 11/12/1969 | 65         | Α             |
| 11/13/1969 | 49         | A             |
| 11/14/1989 | 42         | A             |
| 11/15/1989 | 41         | A             |

USGS Stallon 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication - Processing and review completed. P = Provisional data subject to revision. e = Vatue has been estimated.

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | All        | Code          |
| 11/16/1989 | 41         | A             |
| 11/17/1989 | 40         | A             |
| 11/18/1989 | 37         | A             |
| 11/19/1089 | 35         | A             |
| 11/20/1989 | 35         | А             |
| 11/21/1989 | 33         | A             |
| 11/22/1989 | 50         | A             |
| 11/23/1989 | 118        | A             |
| 11/24/1989 | 141        | A             |
| 11/25/1989 | 116        | A             |
| 11/26/1989 | 80         | A             |
| 11/27/1989 | 64         | Α             |
| 11/28/1989 | 55         | Α.            |
| 11/29/1989 | 47         | Α             |
| 11/30/1989 | 42         | A             |
| 12/1/1989  | 37         | Α             |
| 12/2/1989  | 37         | Α.            |
| 12/3/1989  | 37         | A             |
| 12/4/1989  | 34         | A             |
| 12/5/1989  | 32         | A             |
| 12/6/1989  | 32         | A             |
| 12/7/1989  | 34         | A             |
| 12/8/1989  | 43         | A             |
| 12/9/1989  | 44         | A             |
| 12/10/1989 | 46         | A             |
| 12/11/1989 | 46         | Α             |
| 12/12/1989 | 42         | A             |
| 12/13/1989 | 39         | A             |
| 12/14/1969 | 37         | A             |
| 12/15/1989 | 35         | A             |
| 12/16/1989 | 35         | A             |
| 12/17/1989 | 33         | A             |
| 12/16/1989 | 33         | A             |
| 12/10/1989 | 38         | A             |
| 12/20/1989 | 44         | A             |
| 12/21/1989 | 44         | Ae            |
| 12/22/1989 | 45         | Aa            |
| 12/23/1989 | 44         | Aa            |
| 12/24/1989 | 42         | Ae            |
| 12/25/1989 | 37         | A             |
| 12/26/1989 | 35         | A             |

### USGS Station 07366200 - Little Comey Bayou near Lilile, LA Delly Mean Flow Data - (7/1/1965 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date       | Flow (cfs) | Qualification                         |
|------------|------------|---------------------------------------|
|            | All        | Code                                  |
| 12/27/1889 | 45         | A                                     |
| 12/28/1989 | 52         | A                                     |
| 12/29/1989 | 58         | Â                                     |
| 12/30/1989 | 82         | A                                     |
| 12/31/1989 | 231        | A A                                   |
| 1/1/1990   | 361        | A                                     |
| 1/2/1990   | 410        | A                                     |
| 1/3/1990   | 379        | Ä                                     |
| 1/4/1990   | 378        | Å                                     |
| 1/5/1990   | 466        | Ä                                     |
| 1/6/1990   | 546        | A                                     |
| 1/7/1990   | 579        | A                                     |
| 1/8/1990   | 518        | A                                     |
| 1/9/1990   | 403        | A A                                   |
| 1/10/1990  | 268        | A                                     |
| 1/11/1990  | 165        | A A A A A A A A A A A A A A A A A A A |
| 1/12/1990  | 112        | A                                     |
| 1/13/1990  | 69         | A                                     |
| 1/14/1990  | 75         | A                                     |
| 1/15/1990  | 69         | A                                     |
| 1/16/1990  | 69         | A                                     |
| 1/17/1990  | 84         | A                                     |
| 1/18/1990  | 318        | A                                     |
| 1/19/1990  | 670        | Ă                                     |
| 1/20/1990  | 1160       | A                                     |
| 1/21/1990  | 1460       | Α                                     |
| 1/22/1990  | 1160       | A                                     |
| 1/23/1990  | 778        | A                                     |
| 1/24/1990  | 579        | A                                     |
| 1/25/1990  | 449        | A                                     |
| 1/26/1990  | 326        | A                                     |
| 1/27/1990  | 234        | A                                     |
| 1/28/1990  | 171        | Α                                     |
| 1/29/1990  | 328        | A                                     |
| 1/30/1990  | 536        | A                                     |
| 1/31/1990  | 606        | Α                                     |
| 2/1/1990   | 714        | Α                                     |
| 2/2/1990   | 1580       | A                                     |
| 2/3/1990   | 2420       | A                                     |
| 2/4/1990   | 4470       | A                                     |
| 2/5/1990   | 4430       | A                                     |

### USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A ≈ Approved for publication — Processing and review completed. P ≈ Provisional dela subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification                         |
|-----------|------------|---------------------------------------|
|           | All        | Code                                  |
| 2/6/1990  | 2070       | A                                     |
| 2/7/1990  | 972        | A A                                   |
| 2/8/1990  | 657        | A                                     |
| 2/9/1990  | 553        | A                                     |
| 2/10/1990 | 1500       | Â                                     |
| 2/11/1990 | 1080       | A                                     |
| 2/12/1990 | 927        | A                                     |
| 2/13/1990 | 823        | A                                     |
| 2/14/1990 | 646        | Â                                     |
| 2/15/1990 | 513        | A A                                   |
| 2/16/1990 | 622        |                                       |
| 2/17/1990 | 539        | 1 <del>- 2</del>                      |
| 2/16/1990 | 371        | Â                                     |
| 2/19/1980 | 283        | Â                                     |
| 2/20/1990 | 220        | - Â                                   |
| 2/21/1990 | 174        | A A                                   |
| 2/22/1990 | 393        | Â                                     |
| 2/23/1990 | 637        | Â                                     |
| 2/24/1990 | 660        | Â                                     |
| 2/25/1990 | 768        | Â                                     |
| 2/26/1990 | 616        |                                       |
| 2/27/1990 | 439        | <u> </u>                              |
| 2/28/1990 | 275        | <u> </u>                              |
| 3/1/1990  | 188        | Â                                     |
| 3/2/1990  | 233        | 1 A                                   |
| 3/3/1990  | 308        | Â                                     |
| 3/4/1990  | 301        | Â.                                    |
| 3/5/1990  | 267        | A                                     |
| 3/6/1990  | 215        | Â                                     |
| 3/7/1990  | 195        | A                                     |
| 3/8/1990  | 912        | Å                                     |
| 3/9/1990  | 3630       | Â                                     |
| 3/10/1990 | 5210       | A                                     |
| 3/11/1990 | 2080       | Ä                                     |
| 3/12/1990 | 950        | A                                     |
| 3/13/1990 | 637        | Â                                     |
| 3/14/1990 | 501        | Â                                     |
| 3/15/1990 | 538        | Â                                     |
| 3/16/1990 | 561        | A A                                   |
| 3/17/1990 | 671        | A A A A A A A A A A A A A A A A A A A |
| 3/16/1990 | 661        | A                                     |
|           |            |                                       |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Dally Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 3/19/1990 | 536        | A             |
| 3/20/1990 | 401        | A             |
| 3/21/1990 | 255        | A             |
| 3/22/1990 | 162        | A             |
| 3/23/1990 | 130        | A             |
| 3/24/1990 | . 117      | A             |
| 3/25/1990 | 108        | Ä             |
| 3/26/1990 | 109        | A             |
| 3/27/1990 | 148        | A             |
| 3/28/1990 | 182        | A             |
| 3/29/1990 | 336        | A             |
| 3/30/1990 | 1410       | A             |
| 3/31/1990 | 3370       | A             |
| 4/1/1990  | 3270       | Â             |
| 4/2/1990  | 1590       | A             |
| 4/3/1990  | 1170       | Ă             |
| 4/4/1990  | 752        | A             |
| 4/5/1990  | 524        | A             |
| 4/6/1990  | 596        | A             |
| 4/7/1990  | 710        |               |
| 4/8/1990  | 869        | A             |
| 4/9/1990  | 1060       | Â             |
| 4/10/1990 | 710        | A A           |
| 4/11/1990 | 583        | Ä             |
| 4/12/1990 | 479        | A             |
| 4/13/1990 | 429        | A             |
| 4/14/1990 | 456        | A             |
| 4/15/1990 | 498        | A             |
| 4/16/1990 | 469        | A             |
| 4/17/1990 | 444        | A             |
| 4/18/1990 | 438        | A             |
| 4/19/1990 | 358        | 1 <u> </u>    |
| 4/20/1990 | 211        |               |
| 4/21/1990 | 137        | Â             |
| 4/22/1990 | 113        | <u>Å</u>      |
| 4/23/1990 | 103        |               |
| 4/24/1990 | 94         | Â             |
| 4/25/1990 | 65         | 1             |
| 4/26/1990 | 89         | A             |
| 4/27/1990 | 105        |               |
| 4/28/1990 | 201        | <u> </u>      |

USGS Station 07366200 - Little Corney Bayou near Little, LA Daily Mean Flow Data - (7/1/1965 - 8/30/2006)

208.00 square miles A = Approved for publication — Processing and review completed, P = Provisional data subject to revision, e < Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 4/29/1990 | 258        | Α .           |
| 4/30/1990 | 222        | A             |
| 6/1/1990  | 138        | Ā             |
| 5/2/1990  | 90         | A             |
| 5/3/1990  | 75         | A             |
| 5/4/1990  | 91         | A             |
| 5/5/1990  | 110        | À             |
| 5/6/1990  | 98         | A             |
| 5/7/1990  | 76         | A             |
| 5/8/1990  | 60         | A             |
| 5/9/1990  | 56         | A             |
| 6/10/1990 | 56         | A             |
| 6/11/1990 | 52         | Α             |
| 5/12/1990 | 106        | A             |
| 5/13/1990 | 667        | A .           |
| 5/14/1990 | 1090       | A             |
| 5/15/1990 | 1520       | A             |
| 5/16/1990 | 847        | Α             |
| 5/17/1990 | 873        | A             |
| 5/18/1990 | 3800       | A             |
| 5/19/1990 | 2910       | A             |
| 5/20/1990 | 1120       | A             |
| 5/21/1990 | 724        | Α             |
| 5/22/1990 | 688        | Α             |
| 5/23/1990 | 977        | Α             |
| 5/24/1990 | 1020       | A             |
| 5/25/1990 | 668        | Α             |
| 5/26/1990 | 449        | A             |
| 5/27/1990 | 269        | A             |
| 5/28/1990 | 234        | A             |
| 5/29/1990 | 291        | A             |
| 5/30/1990 | 261        | A             |
| 5/31/1990 | 268        | A             |
| 6/1/1990  | 625        | A             |
| 6/2/1990  | 770        | A             |
| 6/3/1990  | 1110       | A             |
| 6/4/1990  | 1720       | A             |
| 6/5/1990  | 3300       | A             |
| 6/6/1990  | 1770       | A             |
| 6/7/1990  | 800        | A             |
| 6/8/1990  | 492        | A             |

### USG8 Station 07366200 - Little Comey Bayou near Lillie, LA Dally Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 aquare miles A = Approved for publication — Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | AH         | Code          |
| 6/9/1990  | 281        | A             |
| 6/10/1990 | 109        | A             |
| 6/11/1990 | 68         | A             |
| 6/12/1990 | 56         | A             |
| 6/13/1990 | 49         | A             |
| 6/14/1990 | 43         | A             |
| 6/15/1990 | 39         | A             |
| 6/16/1990 | 38         | A             |
| 6/17/1990 | 35         | A             |
| 6/18/1990 | 32         | A             |
| 6/19/1000 | 29         | A             |
| 6/20/1990 | 27         | A             |
| 6/21/1990 | 23         | A             |
| 6/22/1990 | 21         | A             |
| 6/23/1990 | 21         | A             |
| 6/24/1990 | 26         | A             |
| 6/25/1990 | 22         | A             |
| 6/26/1990 | 37         | A             |
| 6/27/1990 | 36         | A             |
| 6/28/1990 | 38         | A             |
| 6/28/1990 | 30         | A             |
| 6/30/1990 | 24         | A             |
| 7/1/1990  | 19         | A             |
| 7/2/1990  | 16         | Α             |
| 7/3/1990  | 13         | Α             |
| 7/4/1990  | 12         | Α             |
| 7/5/1990  | 11         | A             |
| 7/6/1990  | 10         | A             |
| 7/7/1990  | 9.3        | A             |
| 7/8/1990  | 6.9        | A             |
| 7/8/1990  | 9.2        | A             |
| 7/10/1990 | 9.1        | Α             |
| 7/11/1990 | 8,3        | A             |
| 7/12/1990 | 12         | A             |
| 7/13/1990 | 14         | A             |
| 7/14/1990 | 13         | A             |
| 7/15/1990 | 13         | A             |
| 7/16/1990 | 13         | Α             |
|           | 12         | Α             |
| 7/18/1990 | 13         | A             |
| 7/19/1990 | 14         | LA            |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication ~ Processing and review completed, P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfa) | Qualification |
|-----------|------------|---------------|
|           | Ali        | Code          |
| 7/20/1990 | 14         | A             |
| 7/21/1990 | 14         | A             |
| 7/22/1990 | 14         | 1             |
| 7/23/1990 | 14         | Â             |
| 7/24/1990 | 25         | Â             |
| 7/25/1990 | 31         |               |
| 7/26/1990 | 27         | A             |
| 7/27/1990 | 21         | Â             |
| 7/26/1990 | 16         | 1 Â           |
| 7/29/1990 | 11         | <u> </u>      |
| 7/30/1990 | 7.8        |               |
| 7/31/1990 | 15         |               |
| 8/1/1990  | 42         | <u> </u>      |
| 8/2/1990  | 53         | Â             |
| 8/3/1990  | 102        | A             |
| 8/4/1990  | 287        | <u> </u>      |
| 8/5/1990  | 253        | Â             |
| 8/6/1990  | 147        | À             |
| 8/7/1990  | 50         | T             |
| 8/8/1990  | 28         | Â             |
| 6/9/1990  | 20         | Â             |
| 8/10/1990 | 15         | Â             |
| 8/11/1990 | 12         | <u> </u>      |
| 8/12/1990 | 11         | Â             |
| 8/13/1990 | 10         | Ä             |
| 8/14/1990 | 11         | A             |
| 8/15/1990 | 14         | A             |
| 8/16/1990 | 12         | A             |
| 8/17/1990 | 10         | A             |
| 8/18/1990 | 9          | A             |
| 8/19/1990 | 8.3        | A             |
| 8/20/1990 | 6.7        | A             |
| 8/21/1990 | 5.8        | A             |
| 6/22/1990 | 7.3        | Â             |
| 8/23/1990 | 6.5        | Â             |
| 8/24/1990 | 5.6        | Ā             |
| 8/25/1990 | 5.8        | Â             |
| 8/26/1990 | 6          | A             |
| 8/27/1990 | 6.5        |               |
| 8/28/1990 | 7.6        | Ä             |
| 8/29/1990 | 5.7        |               |

.

### USGS Station 07366200 - Little Corney Bayou near Lilie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication --- Processing and review completed, P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs)      | Qualification |
|-----------|-----------------|---------------|
|           | All             | Code          |
| 8/30/1990 | 4.3             | A             |
| 8/31/1990 | 3.9             | A             |
| 9/1/1990  | 2.8             | A             |
| 9/2/1990  | 2.5             | A             |
| 9/3/1990  | 3.3             | A             |
| 9/4/1990  | 2.4             | 1 A           |
| 9/5/1090  | 3.4             | 1             |
| 9/6/1990  | 3.1             |               |
| 9/7/1990  | 2.6             | A             |
| 9/6/1990  | 2.5             | A             |
| 9/9/1990  | 4.6             | A             |
| 9/10/1990 | 40              | Ä             |
| 9/11/1990 | 53              | A             |
| 9/12/1990 | 43              | A             |
| 9/13/1990 | 36              | <u>A</u>      |
| 9/14/1990 | 31              | X X           |
| 9/15/1990 | 27              | T             |
| 9/16/1990 | 25              | Ä             |
| 9/17/1990 | 19              | 1             |
| 9/16/1990 | 15              | Â             |
| 9/18/1990 | 11              |               |
| 9/20/1990 | 9.6             | Â             |
| 9/21/1990 | 17              | Â             |
| 9/22/1990 | 34              |               |
| 9/23/1990 | 26              | 1             |
| 9/24/1990 | 19              |               |
| 9/25/1990 | 14              | <u> </u>      |
| 9/26/1990 |                 | Â             |
| 9/27/1990 | 9               | Â             |
| 9/26/1990 | 8,3             | A             |
| 9/29/1990 | 7.8             | A             |
| 9/30/1990 | 7.4             |               |
| 10/1/1990 | 6,4             | A             |
| 10/2/1990 | 6               | A             |
| 10/3/1990 | 5.9             | A             |
| 10/4/1990 | 7.5             | <u>A</u>      |
| 10/5/1990 | 15              | <u>A</u>      |
| 10/6/1990 | <u>15</u><br>14 | <u> </u>      |
| 10/7/1990 |                 | A             |
| 10/8/1990 | 12              | A             |
| 10/9/1990 | 10              | <u> </u>      |
| 10/0/1890 | 12              | Δ             |

USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved far publication -- Processing and review completed, P = Provisional data subject to revision. e = Value has been estimated.

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | Ali        | Code          |
| 10/10/1990 | 17         | A             |
| 10/11/1990 | 23         | Ā             |
| 10/12/1990 | 22         | A             |
| 10/13/1990 | 19         | A             |
| 10/14/1990 | 17         | Ā             |
| 10/15/1990 | . 14       | A             |
| 10/16/1990 | 14         | A             |
| 10/17/1990 | 13         | A             |
| 10/18/1990 | 16         | A             |
| 10/19/1990 | 27         | A             |
| 10/20/1990 | 22         | A             |
| 10/21/1990 | 25         | A             |
| 10/22/1990 | 70         | A             |
| 10/23/1990 | 112        | A             |
| 10/24/1990 | 125        | A             |
| 10/25/1990 | 123        | A             |
| 10/26/1990 | 70         | A             |
| 10/27/1990 | 36         | A             |
| 10/28/1990 | 28         | A             |
| 10/29/1990 | 24         | A             |
| 10/30/1990 | 22         | A             |
| 10/31/1990 | 23         | A             |
| 11/1/1990. | 21         | A             |
| 11/2/1990  | 21         | A             |
| 11/3/1990  | 23         | A             |
| 11/4/1990  | 25         | A             |
| 11/5/1990  | 31         | A             |
| 11/6/1990  | 40         | A             |
| 11/7/1990  | 44         | Α             |
| 11/8/1990  | 43         | A             |
| 11/9/1990  | 97         | <u>A</u>      |
| 11/10/1990 | 232        | A             |
| 11/11/1990 | 311        | A A           |
| 11/12/1990 | 319        | A             |
| 11/13/1990 | 300        | A             |
| 11/14/1990 | 263        | A A           |
| 11/15/1990 | 123        | À             |
| 11/16/1990 | 56         | A             |
| 11/17/1990 | 45         | A             |
| 11/18/1990 | 38         | A             |
| 11/19/1990 | 32         | Å             |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Dala - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. = Value has been estimated.

| Date       | Flow (cfs) | Qualification                           |
|------------|------------|-----------------------------------------|
|            | All        | Code                                    |
| 11/20/1990 | 29         | A                                       |
| 11/21/1990 | 28         | A                                       |
| 11/22/1990 | 29         | A                                       |
| 11/23/1990 | 42         | Å                                       |
| 11/24/1990 | 52         | A                                       |
| 11/25/1990 | 51         | Ä                                       |
| 11/26/1990 | 48         | A                                       |
| 11/27/1990 | 51         | Ä                                       |
| 11/28/1990 | 105        | Ä                                       |
| 11/29/1990 | 227        | Ä                                       |
| 11/30/1990 | 291        | Â                                       |
| 12/1/1990  | 334        | A                                       |
| 12/2/1990  | 339        | A                                       |
| 12/3/1990  | 272        | A                                       |
| 12/4/1990  | 202        | A                                       |
| 12/5/1990  | 124        | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
| 12/6/1990  | 73         | A                                       |
| 12/7/1990  | 56         | A                                       |
| 12/8/1990  | 50         | A                                       |
| 12/9/1990  | 45         | A                                       |
| 12/10/1990 | 42         | Ă                                       |
| 12/11/1990 | 40         | Ä                                       |
| 12/12/1990 | 39         | A                                       |
| 12/13/1990 | 47         | A                                       |
| 12/14/1990 | 47         | A                                       |
| 12/15/1990 | 45         | A                                       |
| 12/16/1990 | 43         | A                                       |
| 12/17/1990 | 57         | Α                                       |
| 12/16/1990 | 114        | А                                       |
| 12/19/1990 | 193        | A                                       |
| 12/20/1990 | 222        | Α                                       |
| 12/21/1990 | 248        | A                                       |
| 12/22/1990 | 391        | A                                       |
| 12/23/1990 | 507        | A                                       |
| 12/24/1990 | 436        | Α                                       |
| 12/25/1990 | 366        | A                                       |
| 12/26/1990 | 324        | A                                       |
| 12/27/1990 | 369        | Α                                       |
| 12/28/1990 | 592        | A                                       |
| 12/29/1990 | 701        | Α                                       |
| 12/30/1990 | 820        | A                                       |

### USGS Station 07366200 - Little Corney Bayou near Little, LA Daily Mean Flow Date - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed, P = Provisional data subject to revision. e = Value has been estimated.

| Date       | Flow (cfs) | Qualification                         |
|------------|------------|---------------------------------------|
|            | Ali        | Code                                  |
| 12/31/1990 | 640        | Α                                     |
| 1/1/1991   | 695        | A                                     |
| 1/2/1991   | 510        | A .                                   |
| 1/3/1991   | 383        | A                                     |
| 1/4/1991   | 279        | A A                                   |
| 1/5/1991   | 158        | Ä                                     |
| 1/6/1991   | 103        | A                                     |
| 1/7/1991   | 153        | Ā                                     |
| 1/8/1991   | 260        | A                                     |
| 1/9/1991   | 265        | A THE                                 |
| 1/10/1991  | 539        | 1 X                                   |
| 1/11/1991  | 1140       | A                                     |
| 1/12/1991  | 1290       | A                                     |
| 1/13/1991  | 1370       | A A A A A A A A A A A A A A A A A A A |
| 1/14/1991  | 884        | A                                     |
| 1/15/1991  | 811        | A                                     |
| 1/16/1991  | 1100       | A                                     |
| 1/17/1091  | 1060       | A                                     |
| 1/18/1991  | 1300       | 1 <u>A</u>                            |
| 1/19/1991  | 866        | A                                     |
| 1/20/1991  | 593        | A                                     |
| 1/21/1991  | 424        | Å                                     |
| 1/22/1991  | 288        | Ä                                     |
| 1/23/1991  | 192        | A                                     |
| 1/24/1991  | 135        | A                                     |
| 1/25/1991  | 107        | Ä                                     |
| 1/26/1991  | 93         | A                                     |
| 1/27/1991  | 85         | <u> </u>                              |
| 1/28/1991  | 83         | A                                     |
| 1/29/1991  | 76         | A                                     |
| 1/30/1991  | 76         | Ä                                     |
| 1/31/1991  | 74         | Â                                     |
| 2/1/1991   | 72         | Â                                     |
| 2/2/1991   | 64         | Ä                                     |
| 2/3/1991   | 60         | 1 <u> </u>                            |
| 2/4/1991   | 58         | A                                     |
| 2/5/1991   | 81         | A                                     |
| 2/6/1991   | 178        |                                       |
| 2/7/1991   | 252        | A                                     |
| 2/8/1991   | 290        | A                                     |
| 2/9/1991   | 324        | <u> </u>                              |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication — Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Flow (cfs)                                                                                                     | Qualification                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| All                                                                                                            | Code                                                                                                                                                                                                                                                                                          |
| 295                                                                                                            | A                                                                                                                                                                                                                                                                                             |
|                                                                                                                | A                                                                                                                                                                                                                                                                                             |
| 92                                                                                                             | A                                                                                                                                                                                                                                                                                             |
| 79                                                                                                             | A                                                                                                                                                                                                                                                                                             |
| 71                                                                                                             | A                                                                                                                                                                                                                                                                                             |
| 62                                                                                                             | A                                                                                                                                                                                                                                                                                             |
| 56                                                                                                             | A                                                                                                                                                                                                                                                                                             |
| 58                                                                                                             | A                                                                                                                                                                                                                                                                                             |
| 578                                                                                                            | Ā                                                                                                                                                                                                                                                                                             |
| 4920                                                                                                           | A                                                                                                                                                                                                                                                                                             |
| 4120                                                                                                           | A                                                                                                                                                                                                                                                                                             |
| 2580                                                                                                           | A                                                                                                                                                                                                                                                                                             |
| 2040                                                                                                           | Ă                                                                                                                                                                                                                                                                                             |
| 1580                                                                                                           | A                                                                                                                                                                                                                                                                                             |
| 1310                                                                                                           | A                                                                                                                                                                                                                                                                                             |
| 1450                                                                                                           | A                                                                                                                                                                                                                                                                                             |
| 921                                                                                                            | A                                                                                                                                                                                                                                                                                             |
| 608                                                                                                            | Ā                                                                                                                                                                                                                                                                                             |
| 442                                                                                                            | A                                                                                                                                                                                                                                                                                             |
| 384                                                                                                            | A                                                                                                                                                                                                                                                                                             |
| 481                                                                                                            | A                                                                                                                                                                                                                                                                                             |
| 751                                                                                                            | A                                                                                                                                                                                                                                                                                             |
| 1100                                                                                                           |                                                                                                                                                                                                                                                                                               |
| 789                                                                                                            | A                                                                                                                                                                                                                                                                                             |
| 536                                                                                                            | A                                                                                                                                                                                                                                                                                             |
| 377                                                                                                            | A                                                                                                                                                                                                                                                                                             |
| 240                                                                                                            | A                                                                                                                                                                                                                                                                                             |
| 155                                                                                                            | Ä                                                                                                                                                                                                                                                                                             |
| 116                                                                                                            | A                                                                                                                                                                                                                                                                                             |
| 97                                                                                                             | A                                                                                                                                                                                                                                                                                             |
| 89                                                                                                             | A                                                                                                                                                                                                                                                                                             |
| 89                                                                                                             | A                                                                                                                                                                                                                                                                                             |
| 86                                                                                                             | A                                                                                                                                                                                                                                                                                             |
| 80                                                                                                             | A                                                                                                                                                                                                                                                                                             |
| 74                                                                                                             | A                                                                                                                                                                                                                                                                                             |
| 75                                                                                                             | × ×                                                                                                                                                                                                                                                                                           |
| 86                                                                                                             | A A                                                                                                                                                                                                                                                                                           |
| 83                                                                                                             | 1 <u> </u>                                                                                                                                                                                                                                                                                    |
| 78                                                                                                             | 1 Â                                                                                                                                                                                                                                                                                           |
| the second s | <u>Â</u>                                                                                                                                                                                                                                                                                      |
| 79                                                                                                             | <u> </u>                                                                                                                                                                                                                                                                                      |
|                                                                                                                | 295<br>164<br>82<br>79<br>71<br>62<br>56<br>58<br>573<br>4920<br>4120<br>2886<br>2040<br>1310<br>1450<br>921<br>603<br>442<br>384<br>442<br>384<br>451<br>761<br>1100<br>789<br>538<br>377<br>240<br>155<br>116<br>97<br>89<br>89<br>89<br>89<br>89<br>80<br>74<br>75<br>86<br>83<br>77<br>77 |

USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = V Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | Al I       | Code          |
| 3/23/1991 | 75         | A             |
| 3/24/1991 | 70         | A             |
| 3/25/1991 | 65         | A             |
| 3/26/1991 | 61         | A             |
| 3/27/1991 | 63         | A             |
| 3/28/1991 | 83         | A             |
| 3/29/1991 | 647        | A             |
| 3/30/1991 | 1040       | A             |
| 3/31/1991 | 1200       | A .           |
| 4/1/1991  | 1100       | A             |
| 4/2/1991  | 705        | A             |
| 4/3/1991  | 469        | A             |
| 4/4/1991  | 285        | A             |
| 4/5/1991  | 191        | A             |
| 4/6/1991  | 214        | A             |
| 4/7/1991  | 242        | A             |
| 4/8/1991  | 361        | A             |
| 4/9/1991  | 451        | A             |
| 4/10/1991 | 775        | A             |
| 4/11/1991 | 730        | A             |
| 4/12/1991 | 632        | A             |
| 4/13/1991 | 1450       | A             |
| 4/14/1991 | 4620       | A             |
| 4/15/1991 | 8840       | A             |
| 4/16/1991 | 5460       | A             |
| 4/17/1991 | 2130       | A             |
| 4/18/1991 | 1040       | A             |
| 4/19/1991 | 744        | A             |
| 4/20/1991 | 778        | A             |
| 4/21/1991 | 817        | A             |
| 4/22/1991 | 1270       | A             |
| 4/23/1991 | 1390       | A             |
| 4/24/1991 | 972        | A             |
| 4/25/1991 | 1080       | Ä             |
| 4/26/1991 | 857        | A             |
| 4/27/1991 | 783        | A             |
| 4/28/1991 | 11400      | A             |
| 4/29/1991 | 19300      | A             |
| 4/30/1991 | 13800      | A A           |
| 5/1/1991  | 7180       | A             |
| 5/2/1991  | 1860       | A             |

### USGS Station 07366200 - Little Comey Bayou near Lille, LA Daily Mean Flow Data - (7/1/1965 - 6/30/2008)

.

208.00 square miles A = Approved for publication -- Processing and review completed, P = Provisional data subject to revision. V = Value has been estimated.

| Date                 | Flow (cfs) | Qualification |
|----------------------|------------|---------------|
|                      | All        | Code          |
| 5/3/1991             | 917        | A             |
| 5/4/1991             | 1370       | A             |
| 5/5/1991             | 2520       | A             |
| 5/6/1991             | 3500       | A             |
| 5/7/1091             | 1970       | A             |
| 5/8/1991             | 1330       | A             |
| 6/9/1991             | 856        | A             |
| 5/10/1991            | 655        | Α             |
| 5/11/1991            | 517        | A             |
| 5/12/1991            | 421        | A             |
| 5/13/1991            | 364        | A             |
| 5/14/1991            | 294        | Α             |
| 5/15/1991            | 201        | A             |
| 5/16/1991            | 154        | Α             |
| 5/17/1991            | 157        | A             |
| 5/18/1991            | 154        | A             |
| 5/19/1991            | 140        | A             |
| 5/20/1091            | 129        | A             |
| 5/21/1991            | 133        | A             |
| 5/22/1991            | 134        | A             |
| 5/23/1991            | 125        | Α             |
| 5/24/1991            | 123        | A             |
| 5/25/1991            | 114        | A             |
| 5/26/1991            | 211        | Α             |
| 5/27/1991            | 281        | A             |
| 5/28/1991            | 205        | Α             |
| 5/29/1991            | 173        | Α             |
| 6/30/1991            | 128        | A             |
| 5/31/1991            |            | A             |
| 6/1/1991             | 87         | A             |
| 6/2/1991             |            | Α             |
| 6/3/1991             | 70         | A             |
| 6/4/1991             | 58         | . <u>A</u>    |
| 6/5/1991             | 49         | A             |
| 6/6/1991             | 44         | A             |
| 6/7/1991             | 42         | Α             |
| 6/8/1991<br>6/9/1991 | 42         | A             |
| 6/10/1991            | 38         | A             |
| 6/11/1991            | 36         | A             |
| 6/12/1991            | 38         | A             |
| 0(12/1991            | 56         | A             |

### USGS Station 07366200 - Little Corney Bayou near Little, LA Daily Mean Flow Data - (7/1/1965 - 6/30/2006)

208.00 square miles A = Approved for publication ~ Processing and review completed. P = Provisional data subject to ravision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 6/13/1991 | 70         | A             |
| 6/14/1991 | 50         | A             |
| 6/15/1991 | 41         | A             |
| 6/16/1991 | 75         | Ä             |
| 6/17/1991 | 143        | A             |
| 6/16/1991 | 179        | A             |
| 6/19/1991 | 125        | A             |
| 6/20/1991 | 66         | Ä             |
| 6/21/1991 | 45         | A             |
| 6/22/1991 | 36         | A             |
| 6/23/1991 | 31         | A             |
| 6/24/1991 | 33         | A             |
| 6/25/1991 | 51         | Ä             |
| 6/26/1991 | 46         | A             |
| 6/27/1991 | 36.        | A             |
| 6/28/1991 | 31         | A             |
| 6/29/1991 | 35         | A             |
| 6/30/1991 | 43         | Ä             |
| 7/1/1991  | 32         | A             |
| 7/2/1991  | 27         | Α             |
| 7/3/1991  | 23         | A             |
| 7/4/1991  | 49         | A             |
| 7/6/1991  | 51         | A             |
| 7/6/1991  | 64         | A             |
| 7/7/1991  | 53         | Α             |
| 7/8/1991  | 37         | Α             |
| 7/9/1991  | 28         | A             |
| 7/10/1991 | 24         | Α             |
| 7/11/1991 | 23         | A             |
| 7/12/1991 | 19         | A             |
| 7/13/1991 | 16         | A             |
| 7/14/1991 | 14         | A             |
| 7/15/1991 | 12         | A             |
| 7/16/1991 | 11         | A             |
| 7/17/1991 | 11         | Α             |
| 7/18/1991 | 9.8        | Α             |
| 7/19/1991 | 11         | A             |
| 7/20/1991 | 15         | A             |
| 7/21/1991 | 17         | A             |
| 7/22/1991 | 30         | A             |
| 7/23/1991 | 24         | Ä             |

### USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square mäes A = Approved for publication — Processing and review completed. ₽ = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | IIA        | Code          |
| 7/24/1991 | 17         | A             |
| 7/25/1991 | 14         | A             |
| 7/26/1991 | 13         | A             |
| 7/27/1991 | 13         | A             |
| 7/28/1991 | 15         | A             |
| 7/29/1991 | 27         | Α             |
| 7/30/1991 | 51         | A             |
| 7/31/1991 |            | A             |
| 8/1/1991  | 32         | A             |
| 8/2/1991  | 21         | A             |
| 8/3/1991  | 15         | A             |
| 8/4/1991  |            | A             |
| 8/5/1991  | 14         | A             |
| 8/6/1991  | 13         | A             |
| 8/7/1991  | 19         | A             |
| 8/8/1991  | 28         | Α             |
| 8/9/1991  | 22         | Α             |
| 8/10/1991 | 26         | A             |
| 8/11/1991 | 38         | Α             |
| 8/12/1991 | 32         | A             |
| 8/13/1991 | 24         | A             |
| 8/14/1991 | 20         | A             |
| 8/15/1991 | 19         | A             |
| 8/16/1991 | 17         | A             |
| 8/17/1991 | 17         | A             |
| 8/18/1991 | 17         | Α             |
| 8/19/1991 | 22         | Α             |
| 8/20/1991 | 23         | A             |
| 8/21/1991 | 19         | A             |
| 8/22/1991 | 14         | A             |
| 8/23/1991 | 13         | A             |
| 8/24/1991 | 13         | A             |
| 8/25/1991 | 14         | A             |
| 8/26/1991 | 11         | A             |
| 8/27/1991 | 9.6        | A             |
| 8/28/1991 | 11         | A             |
| 8/29/1991 | 12         | Α             |
| 8/30/1991 | 17         | A             |
| 8/31/1991 | 84         | A             |
| 9/1/1091  | 151        | A             |
| 9/2/1991  | 130        | A             |

USGS Station 07366200 - Little Corney Bayou near Lillie, LA Dally Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date       | Flow (cfs) | Qualification                         |
|------------|------------|---------------------------------------|
|            | Ali        | Code                                  |
| 9/3/1991   | 168        | A                                     |
| 9/4/1991   | 138        | A                                     |
| 9/5/1991   | 137        | A                                     |
| 9/6/1991   | 120        | A                                     |
| 9/7/1991   | 86         | A                                     |
| 9/8/1991   | 56         | Α                                     |
| 9/9/1991   | 43         | A                                     |
| 9/10/1991  | 116        | A                                     |
| 9/11/1991  | 125        | A                                     |
| 9/12/1991  | 81         | A                                     |
| 9/13/1991  | 42         | A                                     |
| 9/14/1991  | 31         | A                                     |
| 9/15/1991  | 25         | A                                     |
| 9/16/1991  | 21         | A                                     |
| 9/17/1991  | 20         | A                                     |
| 9/18/1991  | 20         | A                                     |
| 9/19/1991  | 33         | A                                     |
| 9/20/1991  | 28         | A                                     |
| 9/21/1991  | 21         | A                                     |
| 9/22/1991  | 17         | A                                     |
| 9/23/1991  | · 16       | A                                     |
| 9/24/1991  | 31         | A                                     |
| 9/25/1991  | 200        | Ä                                     |
| 9/26/1991  | 365        | A                                     |
| 9/27/1991  | 367        | A                                     |
| 9/28/1991  | 178        | A                                     |
| 9/29/1991  | 60         | A A A A A A A A A A A A A A A A A A A |
| 9/30/1991  | 38         | A                                     |
| 10/1/1991  | 29         | Ä                                     |
| 10/2/1991  | 24         | A                                     |
| 10/3/1991  | 20         | A                                     |
| 10/4/1991  | 21         | Â                                     |
| 10/5/1991  | 19         | A                                     |
| 10/6/1991  | 20         | A                                     |
| 10/7/1991  | 21         | A                                     |
| 10/8/1991  | 17         | A.                                    |
| 10/9/1991  | 16         | 1 <u>A</u>                            |
| 10/10/1991 | 18         | 1 <u> </u>                            |
| 10/11/1991 | 16         | 1 <u>Å</u>                            |
| 10/12/1991 | 19         | <u>A</u>                              |
| 10/13/1991 | 19         | A                                     |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 aquare miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. } = Value has been estimated.

| Flow (cfs) | Qualification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| All        | Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 20         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 17         | Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 16         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 18         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | A North Annual A |
|            | A9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | A9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | Ae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | Ae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | Ae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | Ae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | T Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | †                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | <u>A</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | À                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | All<br>20<br>20<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

### USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A ≈ Approved for publication -- Processing and review completed. P ≈ Provisional data subject to revision. e = Value has been estimated.

| Date       | Flow (cfs) | Qualification                         |
|------------|------------|---------------------------------------|
|            | Ali        | Code                                  |
| 11/24/1991 | 268        | A                                     |
| 11/25/1991 | 124        | A                                     |
| 11/26/1991 | 75         | <u> </u>                              |
| 11/27/1991 | 67         | Å                                     |
| 11/26/1991 | 70         | Â                                     |
| 11/28/1991 | 70         | 1 <u> </u>                            |
| 11/30/1991 | 70         | Â                                     |
| 12/1/1991  | 211        | Â                                     |
| 12/2/1991  | 1290       | <u> </u>                              |
| 12/3/1991  | 2830       | Â                                     |
| 12/4/1991  | 2630       | A A A A A A A A A A A A A A A A A A A |
| 12/5/1991  | 1560       | Ă                                     |
| 12/6/1991  | 934        | A A                                   |
| 12/7/1991  | 643        | Â                                     |
| 12/8/1991  | 438        | Â                                     |
| 12/9/1991  | 438        | <u> </u>                              |
| 12/10/1991 | 1290       |                                       |
| 12/11/1991 | 1010       | Â                                     |
| 12/12/1991 | 752        | 1 A                                   |
| 12/13/1991 | 591        | Â                                     |
| 12/14/1991 | 494        | Ä                                     |
| 12/15/1891 | 385        | Â                                     |
| 12/16/1991 | 304        | A                                     |
| 12/17/1991 | 243        | Ä                                     |
| 12/18/1991 | 177        | A A A A A A A A A A A A A A A A A A A |
| 12/19/1991 | 136        | Â                                     |
| 12/20/1991 | 118        | A                                     |
| 12/21/1991 | 115        |                                       |
| 12/22/1991 | 148        | Ä                                     |
| 12/23/1991 | 344        | Ā                                     |
| 12/24/1991 | 429        | A                                     |
| 12/25/1991 | 399        | Ä                                     |
| 12/26/1991 | 392        | A A                                   |
| 12/27/1991 | 381        | Å                                     |
| 12/28/1991 | 276        | Â                                     |
| 12/29/1991 | 175        |                                       |
| 12/30/1991 | 140        |                                       |
| 12/31/1991 | 124        | Â                                     |
| 1/1/1992   | 112        | A                                     |
| 1/2/1992   | 109        | Ä                                     |
| 1/3/1992   | 125        | Â                                     |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1965 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | Alt        | Code          |
| 1/4/1992  | 120        | A             |
| 1/5/1992  | 115        | Α.            |
| 1/6/1992  | 107        | A             |
| 1/7/1992  | 98         | A             |
| 1/8/1992  | 101        | A             |
| 1/9/1992  | 147        | Α             |
| 1/10/1992 | 138        | A             |
| 1/11/1992 | 115        | A             |
| 1/12/1992 | 223        | A             |
| 1/13/1992 | 478        | A             |
| 1/14/1992 | 524        | Ā             |
| 1/15/1992 | 496        | Ä             |
| 1/16/1992 | 476        | A             |
| 1/17/1992 | 431        | A             |
| 1/18/1992 | 363        | A             |
| 1/19/1992 | 425        | A             |
| 1/20/1992 | 479        | A             |
| 1/21/1992 | 460        | A             |
| 1/22/1992 | 460        | A             |
| 1/23/1992 | 452        | A             |
| 1/24/1992 | 390        | A             |
| 1/25/1992 | 317        | A             |
| 1/26/1992 | 252        | A             |
| 1/27/1992 | 216        | Ä             |
| 1/26/1992 | 301        | A             |
| 1/20/1992 | 357        | A             |
| 1/30/1992 | 374        | A             |
| 1/31/1992 | 374        | A             |
| 2/1/1992  | 329        | A             |
| 2/2/1992  | 235        | A             |
| 2/3/1992  | 169        | A             |
| 2/4/1992  | 141        | A             |
| 2/5/1992  | 300        | A             |
| 2/6/1992  | 614        |               |
| 2/7/1992  | 677        | A A           |
| 2/8/1992  | 776        |               |
| 2/9/1992  | 729        | <u>Å</u>      |
| 2/10/1992 | 531        | 1 <u> </u>    |
| 2/11/1992 | 332        |               |
| 2/12/1992 | 559        | 1 <u> </u>    |
| 2/13/1992 | 3490       | 1 <u>2</u>    |

USGS Station 07366200 - Little Corney Bayou near Little, LA Daily Mean Flow Date - (7/1/1986 - 6/30/2006)

206.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification  |
|-----------|------------|----------------|
|           | Alt        | Code           |
| 2/14/1992 | 4150       | A              |
| 2/15/1992 | 3640       | A              |
| 2/16/1992 | 1630       | A              |
| 2/17/1992 | 947        | A              |
| 2/18/1992 | 675        | A              |
| 2/19/1992 | 514        | A              |
| 2/20/1992 | 386        | A              |
| 2/21/1992 | 273        | A              |
| 2/22/1992 | 203        | Â              |
| 2/23/1992 | 203        | A              |
| 2/24/1992 | 259        | Ä              |
| 2/25/1992 | 406        | A              |
| 2/26/1992 | 1530       | Å              |
| 2/27/1992 | 2280       | A              |
| 2/28/1992 | 2190       | A              |
| 2/29/1992 | 1140       | A              |
| 3/1/1992  | 703        | A              |
| 3/2/1992  | 487        |                |
| 3/3/1992  | 371        | <u> </u>       |
| 3/4/1992  | 556        | A              |
| 3/5/1992  | 930        | A              |
| 3/6/1992  | 1170       | A              |
| 3/7/1992  | 1310       | 1 <u></u> Â    |
| 3/8/1992  | 945        | A              |
| 3/9/1992  | 681        | A              |
| 3/10/1992 | 1540       | - <u>â</u>     |
| 3/11/1992 | 2900       | A              |
| 3/12/1992 | 2020       | 1              |
| 3/13/1992 | 1060       | Â              |
| 3/14/1992 | 661        | 1 <del>à</del> |
| 3/15/1992 | 464        | A A            |
| 3/16/1992 | 328        | A              |
| 3/17/1992 | 241        | A              |
| 3/18/1992 | 332        | Â              |
| 3/19/1992 | 537        | Â              |
| 3/20/1992 | 598        | Â              |
| 3/21/1992 | 787        | A              |
| 3/22/1992 | 690        | A              |
| 3/23/1992 | 484        | A              |
| 3/24/1992 | 329        |                |
| 3/25/1992 | 246        | AA             |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Deily Mean Flow Data - (7/1/1965 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed, P = Provisional data subject to revision, is = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | Ali        | Code          |
| 3/26/1992 | 263        | A             |
| 3/27/1992 | 248        | Α.            |
| 3/26/1992 | 221        | A             |
| 3/28/1992 | 163        | Α             |
| 3/30/1992 | 151        | A             |
| 3/31/1992 | 134        | Α             |
| 4/1/1992  | 123        | A             |
| 4/2/1992  | 109        | A             |
| 4/3/1992  | 99         | A             |
| 4/4/1092  | 92         | A             |
| 4/5/1992  | 85         | A             |
| 4/6/1992  | 85         | A             |
| 4/7/1992  | 102        | A             |
| 4/8/1992  | 113        | A             |
| 4/9/1992  | 108        | A             |
| 4/10/1992 | 94         | A             |
| 4/11/1992 | 84         | A             |
| 4/12/1992 | 75         | A             |
| 4/13/1992 | 66         | A             |
| 4/14/1992 | 61         | A             |
| 4/15/1992 | 56         | Α             |
| 4/16/1992 | 54         | A             |
| 4/17/1992 | 56         | Α             |
| 4/18/1992 | 52         | Α             |
| 4/19/1992 | 54         | Α.            |
| 4/20/1992 | 71         | Α             |
| 4/21/1992 | 126        | Α             |
| 4/22/1992 | 105        | Α.            |
| 4/23/1992 | 79         | Α             |
| 4/24/1982 | 61         | Α             |
| 4/25/1992 | 65         | A             |
| 4/26/1092 | 165        | Α             |
| 4/27/1992 | 199        | A             |
| 4/28/1992 | 229        | A             |
| 4/29/1992 | 154        | А             |
| 4/30/1992 | 205        | A             |
| 5/1/1992  | 282        | <u>A</u> .    |
| 5/2/1992  | 299        | A             |
| 5/3/1992  | 274        | A             |
| 5/4/1992  | 157        | A             |
| 5/5/1992  | 69         | A             |

### USGS Station 07366200 - Little Corney Bayou near Little, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed, P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 5/6/1992  | 46         | A             |
| 5/7/1992  | 36         | A             |
| 5/8/1992  | 31         | A             |
| 5/9/1992  | 28         | A             |
| 5/10/1992 | 27         | A             |
| 5/11/1992 | 26         | Ä             |
| 5/12/1992 | 39         | Ä             |
| 5/13/1992 | 76         | A             |
| 5/14/1992 | 76         | A             |
| 6/15/1992 | 59         | A             |
| 6/16/1992 | 46         | A             |
| 5/17/1992 | 42         | A             |
| 5/18/1992 | 38         | A             |
| 5/19/1992 | 38         | A             |
| 5/20/1992 | 51         | A             |
| 5/21/1992 | 98         | Ä             |
| 5/22/1992 | 183        | A             |
| 5/23/1992 | 242        | A             |
| 5/24/1992 | 242        | Å             |
| 5/25/1992 | 210        | A             |
| 5/26/1992 | 148        | A             |
| 5/27/1992 | 166        | A             |
| 5/28/1992 | 198        | X             |
| 5/28/1992 | 179        | A             |
| 6/30/1992 | 193        | A             |
| 5/31/1992 | 162        | A             |
| 6/1/1992  | 168        | A             |
| 6/2/1992  | 264        | A             |
| 6/3/1992  | 493        | A             |
| 6/4/1992  | 2280       | Â             |
| 6/6/1992  | 2640       | A             |
| 6/8/1992  | 1410       | Α             |
| 6/7/1992  | 783        | A             |
| 6/8/1992  | 558        | A             |
| 6/9/1992  | 646        | Α             |
| 6/10/1992 | 517        | A             |
| 6/11/1992 | 284        | Α             |
| 6/12/1992 | 169        | Α             |
| 6/13/1992 | 97         | A             |
| 6/14/1992 | 69         | A             |
| 6/15/1992 | 64         | A             |

USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

209.00 squere miles A = Approved for publication - Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All I      | Code          |
| 6/16/1992 | 76         | Α             |
| 6/17/1992 | 70         | A             |
| 6/18/1992 | 57         | Α             |
| 6/19/1992 | 44         | Α             |
| 6/20/1992 | 36         | A             |
| 6/21/1992 | 34         | A             |
| 6/22/1992 | 31         | A             |
| 8/23/1992 | 27         | A             |
| 6/24/1992 | 24         | A             |
| 6/25/1992 | 21         | Α             |
| 6/26/1992 | 24         | A             |
| 6/27/1992 | 50         | A             |
| 6/28/1992 | 55         | A             |
| 6/29/1992 | 44         | A             |
| 6/30/1992 | 193        | Α             |
| 7/1/1992  | 368        | A             |
| 7/2/1992  | 919        | A             |
| 7/3/1992  | 129        | A             |
| 7/4/1992  | 51         | Α             |
| 7/5/1992  | 40         | Α             |
| 7/6/1992  | 30         | A             |
| 7///1992  | 24         | A             |
| 7/8/1992  | 19         | A             |
| 7/9/1992  | 17         | A             |
| 7/10/1992 | 14         | A             |
| 7/11/1992 | 12         | A             |
| 7/12/1992 | 12         | A             |
| 7/13/1992 | 11         | A             |
| 7/14/1992 | 9.7        | A             |
| 7/15/1992 | 8.8        | A             |
| 7/16/1992 | 8.8        | A             |
| 7/17/1992 | 8.2        | A             |
| 7/18/1992 | 13         | A             |
| 7/19/1992 | 18         | A             |
| 7/20/1992 | 16         | A             |
| 7/21/1992 | 20         | Ä             |
| 7/22/1992 | 23         | A             |
| 7/23/1992 | 42         | Ä             |
| 7/24/1992 | 55         | Ä             |
| 7/26/1992 | 55         | A             |
| 7/26/1992 | 49         | Ä             |

USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication - Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 7/27/1992 | 29         | Α.            |
| 7/28/1992 | 25         | A             |
| 7/29/1992 | 62         | 1 A           |
| 7/30/1992 | 160        | A             |
| 7/31/1992 | 276        | A             |
| 8/1/1992  | 405        | A             |
| 8/2/1992  | 378        | Α             |
| 8/3/1992  | 194        | A             |
| 8/4/1992  | 63         | A             |
| 8/5/1992  | 123        | A             |
| 8/6/1992  | 289        | Α             |
| 8/7/1992  | 230        | A             |
| 8/8/1992  | 218        | A             |
| 8/9/1992  | 242        | A             |
| 8/10/1992 | 210        | A             |
| 8/11/1992 | 73         | A             |
| 8/12/1992 | 36         | A             |
| 8/13/1992 | 36         | A A           |
| 8/14/1992 | 47         | A             |
| 8/15/1992 | 37         | A             |
| 8/16/1992 | 28         | Α             |
| 8/17/1992 | 23         | Α             |
| 8/18/1992 | 19         | A             |
| 8/19/1992 | 16         | A             |
| 8/20/1992 | 14         | A             |
| 8/21/1992 | 14         | A             |
| 8/22/1992 | 14         | A             |
| 8/23/1992 | 13         | A             |
| 8/24/1992 | 12         | A             |
| 8/25/1992 | 13         | A             |
| 8/26/1992 | 13         | Α             |
| 8/27/1992 | 11         | Α             |
| 8/28/1992 | 11         | Α             |
| 8/29/1992 | 13         | Α             |
| 8/30/1992 | 12         | A             |
| 8/31/1992 | t1         | A             |
| 9/1/1992  | 11         | Α             |
| 9/2/1992  | 19         | Α             |
| 9/3/1992  | 25         | A             |
| 9/4/1992  | 39         | A             |
| 9/5/1992  | 38         | A .           |

### USGS Station 07366200 - Little Comey Bayou near Little, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 equare miles A = Approved for publication - Processing and review completed. P = Provisional data subject to revision. a = Value has been estimated.

Date Flow (cfs) All Qualification Code 9/8/1992 9/7/1992 9/7/1992 9/7/1992 9/1/11092 9/1/11092 9/1/11092 9/1/11092 9/1/11092 9/1/11092 9/1/11092 9/1/11092 9/1/11092 9/1/11092 9/1/11092 9/1/11092 9/2/11092 9/2/11092 9/2/11092 9/2/11092 9/2/11092 9/2/11092 9/2/11092 9/2/11092 9/2/11092 9/2/11092 9/2/11092 9/2/11092 9/2/11092 9/2/11092 9/2/11092 9/2/11092 9/2/11092 9/2/11092 9/2/11092 10/2/1092 10/2/1092 10/2/1092 10/2/1092 10/2/1092 10/2/1092 10/2/1092 10/2/1092 10/2/1092 10/2/1092 10/2/1092 10/2/1092 10/2/1092 10/2/1092 26 40 6 13 12 10 10 41 93 91 60 41 31 1

### USGS Station 07366200 - Little Corney Bayou near Liffle, LA Daily Mean Flow Data - (7/\$/1985 - 6/30/2006)

208.00 equare miles

A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision, e = Value has been estimated.

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | All        | Code          |
| 10/17/1992 | 32         | Р             |
| 10/18/1992 | 27         | P             |
| 10/19/1992 | 25         | P             |
| 10/20/1992 | 23         | P             |
| 10/21/1992 | 23         | P             |
| 10/22/1992 | 24         | P             |
| 10/23/1992 | 28         | P             |
| 10/24/1992 | 27         | P             |
| 10/25/1992 | 27         | P             |
| 10/26/1992 | 28         | P             |
| 10/27/1992 | 32         | P             |
| 10/28/1992 | 53         | P m           |
| 10/29/1992 | 47         |               |
| 10/30/1992 | 43         |               |
| 10/31/1992 | 88         | P             |
| 11/1/1992  | 81         | P             |
| 11/2/1992  | 68         |               |
| 11/3/1992  | 68         | P             |
| 11/4/1992  | 92         | P             |
| 11/5/1992  | 89         | P             |
| 11/6/1992  | 53         | P             |
| 11/7/1992  | 38         |               |
| 11/6/1992  | 30         | P             |
| 11/9/1992  | 27         | P             |
| 11/10/1992 | 29         | 9             |
| 11/11/1992 | 28         | P             |
| 11/12/1992 | 33         | P             |
| 11/13/1992 | 54         | P             |
| 11/14/1992 | 54         | P             |
| 11/15/1992 | 50         | P             |
| 11/16/1992 | 46         | P             |
| 11/17/1992 | 40         | P             |
| 11/18/1992 | 35         | P             |
| 11/19/1992 | 33         | P             |
| 11/20/1992 | 50         |               |
| 11/21/1992 | 157        | P             |
| 11/22/1992 | 312        | P             |
| 11/23/1992 | 474        |               |
| 11/24/1992 | 660        | P             |
| 11/25/1992 | 491        | P             |
| 11/26/1992 | 400        |               |

USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | Ali        | Code          |
| 11/27/1992 | 250        | P             |
| 11/28/1992 | 98         | P             |
| 11/29/1992 | 60         | P             |
| 11/30/1992 | 51         | P             |
| 12/1/1992  | 48         | P             |
| 12/2/1992  | 43         | P             |
| 12/3/1992  | 39         | P P           |
| 12/4/1992  | 38         | P             |
| 12/6/1992  | 39         | 4             |
| 12/6/1992  | 42         | P             |
| 12/7/1992  | 47         | P             |
| 12/8/1992  | 48         | 8             |
| 12/9/1992  | 60         | P             |
| 12/10/1992 | 163        | P             |
| 12/11/1992 | 193        | 8             |
| 12/12/1992 | 191        | P             |
| 12/13/1992 | 168        | 9             |
| 12/14/1992 | 112        | P             |
| 12/15/1992 | 153        | P             |
| 12/16/1992 | 444        | P             |
| 12/17/1992 | 657        | P             |
| 12/18/1992 | 627        | P             |
| 12/19/1992 | 657        | P             |
| 12/20/1992 | 753        | P             |
| 12/21/1992 | 851        | Р             |
| 12/22/1992 | 703        | P             |
| 12/23/1992 | 623        | P             |
| 12/24/1992 | 661        | P             |
| 12/25/1992 | 639        | P             |
| 12/26/1992 | 533        | P             |
| 12/27/1992 | 456        | Р             |
| 12/28/1992 | 378        | P             |
| 12/29/1992 | 275        | P             |
| 12/30/1992 | 165        | P             |
| 12/31/1992 | 148        | P             |
| 1/1/1993   | 140        | P             |
| 1/2/1993   | 133        | P             |
| 1/3/1993   | 117        | P             |
| 1/4/1993   | 121        | P             |
| 1/5/1993   | 236        | P             |
| 1/6/1993   | 355        | P             |

USGS Station 07366200 - Lillie Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 1/7/1993  | 401        | P             |
| 1/8/1993  | 475        | P             |
| 1/9/1993  | 534        | P             |
| 1/10/1993 | 517        | P             |
| 1/11/1993 | 519        | P             |
| 1/12/1993 | 520        | P             |
| 1/13/1993 | 631        | P             |
| 1/14/1993 | 478        | P             |
| 1/15/1993 | 361        | Р             |
| 1/16/1993 | 259        | Р             |
| 1/17/1993 | 172        | P             |
| 1/18/1993 | 261        | P             |
| 1/19/1993 | 681        | Р             |
| 1/20/1993 | 1130       | P             |
| 1/21/1993 | 1730       | P             |
| 1/22/1993 | 1520       | P             |
| 1/23/1993 | 1040       | P             |
| 1/24/1993 | 823        | P             |
| 1/25/1993 | 657        | P             |
| 1/26/1993 | 491        | P             |
| 1/27/1993 | 404        | P             |
| 1/28/1993 | 374        | P             |
| 1/29/1993 | 314        | i p           |
| 1/30/1993 | 213        | P             |
| 1/31/1993 | 150        | I P           |
| 2/1/1993  | 124        | P             |
| 2/2/1993  | 110        | P             |
| 2/3/1993  | 100        | P             |
| 2/4/1993  | 91         | Р             |
| 2/5/1993  | 84         | P             |
| 2/6/1993  | 81         | P             |
| 2/7/1993  | 79         | P             |
| 2/8/1993  | 74         | Р             |
| 2/9/1993  | 72         | P             |
| 2/10/1993 | 70         | P             |
| 2/11/1993 | 89         | 9             |
| 2/12/1993 | 112        | 9             |
| 2/13/1993 | 110        | P             |
| 2/14/1993 | 95         | 9             |
| 2/15/1993 | 102        |               |
| 2/16/1993 | 378        |               |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/t/1985 - 6/30/2006)

208.00 square miles A = Approved for publication — Processing and review completed. P = Provisional data subject to ravision.  $_{0}$  = Value has been estimated.

Date

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | A(I        | Code          |
| 2/17/1993 | 564        | P             |
| 2/18/1993 | 480        | P             |
| 2/19/1993 | 413        | P             |
| 2/20/1993 | 363        |               |
| 2/21/1993 | 243        | P             |
| 2/22/1993 | 150        | P             |
| 2/23/1993 | 118        | P             |
| 2/24/1993 | 94         | P             |
| 2/25/1993 | 100        | P             |
| 2/26/1993 | 245        | P             |
| 2/27/1993 | 325        | P             |
| 2/28/1993 | 320        | P P           |
| 3/1/1993  | 314        | P             |
| 3/2/1993  | 600        | P             |
| 3/3/1993  | 853        | P             |
| 3/4/1993  | 765        | P             |
| 3/5/1993  | 873        | P             |
| 3/6/1993  | 750        | P             |
| 3/7/1993  | 491        | P             |
| 3/8/1993  | 289        | P             |
| 3/9/1993  | 162        |               |
| 3/10/1993 | 121        | P             |
| 3/11/1993 | 98         | P             |
| 3/12/1993 | 109        | P             |
| 3/13/1993 | 186        | P             |
| 3/14/1003 | 173        | P             |
| 3/15/1993 | 148        | P             |
| 3/16/1993 | 191        | P             |
| 3/17/1993 | 462        | P             |
| 3/18/1993 | 635        | P             |
| 3/19/1993 | 719        |               |
| 3/20/1993 | 770        | 8             |
| 3/21/1893 | 666        | P             |
| 3/22/1993 | 503        | P             |
| 3/23/1993 | 502        | P             |
| 3/24/1993 | 619        | P             |
| 3/25/1993 | 561        | P             |
| 3/26/1993 | 463        | P             |
| 3/27/1993 | 372        | P             |
| 3/28/1993 | 437        | P             |
| 3/29/1993 | 629        | P             |

\_\_\_\_\_

### USGS Station 07366200 - Little Corney Bayou near Ulile, LA Delly Mean Flow Data - (7/1/1965 - 6/30/2006)

208.00 square miles A ≅ Approved for publication ↔ Processing and review completed. P ≡ Provisional data subject to revision, e ≈ Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 3/30/1993 | 427        | P             |
| 3/31/1993 | 278        | P             |
| 4/1/1993  | 187        |               |
| 4/2/1993  | 139        | P             |
| 4/3/1993  | 114        | P             |
| 4/4/1993  | 98         | p             |
| 4/6/1993  | 129        | P             |
| 4/6/1993  | 152        | P             |
| 4/7/1993  | 194        | P             |
| 4/8/1993  | 1370       | P             |
| 4/9/1993  | 2610       | P             |
| 4/10/1993 | 2940       | P             |
| 4/11/1993 | 1500       |               |
| 4/12/1993 | 813        | P             |
| 4/13/1993 | 532        | P P           |
| 4/14/1993 | 392        |               |
| 4/15/1993 | 1060       | P             |
| 4/16/1993 | 1660       | P P           |
| 4/17/1993 | 1890       | P             |
| 4/18/1993 | 1200       | P             |
| 4/19/1993 | 698        | P P           |
| 4/20/1993 | 461        | t             |
| 4/21/1993 | 306        |               |
| 4/22/1993 | 189        | P             |
| 4/23/1993 | 131        | P             |
| 4/24/1893 | 92         |               |
| 4/25/1993 | 74         | P             |
| 4/26/1993 | 112        |               |
| 4/27/1983 | 129        |               |
| 4/28/1993 | 135        | P             |
| 4/28/1993 | 135        | P             |
| 4/30/1893 | 202        | P             |
| 5/1/1993  | 209        | P             |
| 5/2/1993  | 188        | P             |
| 5/3/1993  | 193        | P             |
| 5/4/1993  | 246        | P             |
| 5/5/1993  | 426        | P             |
| 5/6/1993  | 700        | P             |
| 5/7/1993  | 540        | P             |
| 5/8/1993  | 267        |               |
| 5/9/1993  | 82         |               |

USGS Station 07366200 - Little Comey Bayou near Little, LA Daily Mean Flow Data - (7/f/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date              | Flow (cfs) | Qualification |
|-------------------|------------|---------------|
|                   | All        | Code          |
| 5/10/1993         | 77         | P             |
| 5/11/1993         | 121        |               |
| 5/12/1993         | 189        |               |
| 5/13/1993         | 367        | P             |
| 5/14/1993         | 508        | P             |
| 6/15/1993         | 364        |               |
| 5/16/1993         | 214        | P             |
| 5/17/1993         | 100        | P             |
| 5/18/1993         | 53         | P             |
| 5/19/1993         | 46         | P             |
| 5/20/1993         | 60         | P             |
| 5/21/1993         | 76         | P             |
| 6/22/1993         | 73         | P             |
| 5/23/1993         | 47         |               |
| 5/24/1993         | 36         | P             |
| 5/26/1993         | 35         | P             |
| 5/26/1993         | 48         | P             |
| 5/27/1993         | 82         | P             |
| 5/28/1993         | 83         | P             |
| 5/29/1993         | 57         | P P           |
| 5/30/1993         | 40         | p             |
| <u> 6/31/1993</u> | 33         | P             |
| 6/1/1993          | 30         | P             |
| 6/2/1993          | 30         | P             |
| 6/3/1993          | 28         | P             |
| 6/4/1993          | 25         | P             |
| 6/5/1993          | 22         | P             |
| 6/6/1993          | 19         | P             |
| 6/7/1993          | 18         |               |
| 6/8/1993          | 17         | P             |
| 6/9/1993          | 16         | i p           |
| 6/10/1993         | 14         | P             |
| 6/11/1993         | 12         | P             |
| 6/12/1993         | 11         | P             |
| 6/13/1993         | 14         | P             |
| 6/14/1993         | 28         | P             |
| 6/15/1993         | 27         | P             |
| 6/16/1993         | 21         | P             |
| 6/17/1993         | 29         | P             |
| 6/18/1993         | 33         | P             |
| 6/19/1993         | 23         | P             |

USGS Station 07366200 - Little Corney Bayou near Little, LA Daily Mean Flow Data - (7/1/1965 - 6/30/2006)

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 6/20/1993 | 23         | P             |
| 6/21/1993 | 322        | P             |
| 6/22/1993 | 2160       | P             |
| 6/23/1993 | 3180       | P             |
| 6/24/1993 | 2210       | P             |
| 6/25/1993 | 1090       | P P           |
| 6/26/1993 | 765        |               |
| 6/27/1993 | 508        | P             |
| 6/28/1993 | 233        | P             |
| 6/29/1993 | 83         | P             |
| 6/30/1993 | 51         | P             |
| 7/1/1993  | 37         | P             |
| 7/2/1993  | 30         | P             |
| 7/3/1993  | 26         |               |
| 7/4/1993  | 23         | P             |
| 7/5/1993  | 19         | P             |
| 7/B/1993  | 17         | P             |
| 7/7/1993  |            | P             |
| 7/8/1993  | 14         | P             |
| 7/9/1993  | 13         | P             |
| 7/10/1993 | 13         | P             |
| 7/11/1993 | 28         | P             |
| 7/12/1993 | 23         | Р             |
| 7/13/1993 | 19         | P             |
| 7/14/1993 | 19         | P             |
| 7/15/1993 | 15         | P             |
| 7/16/1993 | 13         | P             |
| 7/17/1993 | 13         | P             |
| 7/18/1993 | 12         | P P           |
| 7/19/1993 | 10         | P             |
| 7/20/1993 | 9          | P             |
| 7/21/1993 | 7.5        | P             |
| 7/22/1993 | 7.2        | P             |
| 7/23/1993 | 6.7        | P             |
| 7/24/1993 | 6.2        | P             |
| 7/25/1993 | 6.4        | P P           |
| 7/26/1993 | 6.2        | P             |
| 7/27/1993 | 5.6        | P             |
| 7/28/1993 | 5          | P             |
| 7/29/1993 | 4,9        | P             |
| 7/30/1993 | 4.8        | P             |

### USGS Station 07386200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional dela subject to revision. = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 7/31/1993 | 5,3        | e 1           |
| 8/1/1993  | 6.2        | P             |
| 8/2/1993  | 5.7        | ρ             |
| 8/3/1993  | 18         | ρ             |
| 8/4/1993  | 35         | P             |
| 8/5/1993  | 31         | Р             |
| 8/6/1993  | 28         | Р             |
| 8/7/1993  | 68         | P             |
| 8/8/1993  | 126        | P             |
| 6/9/1993  | 59         | P             |
| 6/10/1993 | 28         | P             |
| 6/11/1993 | 19         | P             |
| 8/12/1993 | 14         | P             |
| 8/13/1993 | 12         | P             |
| 8/14/1993 | 9,9        | P             |
| 8/15/1993 | 8.3        | P             |
| 8/16/1993 | 10         | P             |
| 8/17/1993 | 6.5        | P             |
| 8/16/1993 | 5.2        | P             |
| 6/19/1993 | 4.8        | P             |
| 6/20/1993 | 4.7        | P             |
| B/21/1993 | 4.4        | P             |
| 8/22/1993 | 6.8        | P             |
| 8/23/1993 | 4.2        | Ρ             |
| 8/24/1993 | 2.5        | P             |
| 8/25/1993 | 2.2        | P             |
| 6/26/1993 | 2.1        | P             |
| 8/27/1993 | 2.1        | P             |
| 8/28/1993 | 2.1        | P             |
| 6/29/1993 | 2          | P             |
| 8/30/1993 | 2.5        | P             |
| 8/31/1993 | 2.5        | Р             |
| 9/1/1993  | 2.6        | P             |
| 9/2/1993  | 2.3        | P             |
| 9/3/1993  | 2          | <u> </u>      |
| 8/4/1993  | 1,9        | P             |
| 9/5/1993  | 1.9        | Р             |
| 9/6/1993  | 1.9        | P             |
| 9/7/1993  | 1.7        | P             |
| 9/8/1993  | 1.4        | P             |
| 9/9/1993  | 1.3        | P             |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Dally Mean Flow Data - (7/1/1965 - 6/30/2006)

208.00 square miles

zuc.ou square miles A ≈ Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e ≈ Value has been estimated.

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | All        | Code          |
| 9/10/1993  | 1.3        | P             |
| 9/11/1993  | 1          | P             |
| 9/12/1993  | 0.79       | P             |
| 9/13/1993  | 0.69       | P             |
| 9/14/1993  | 1.3        | P             |
| 9/15/1993  | 1.3        | P             |
| 9/16/1993  | 1.1        | P             |
| 9/17/1993  | 1          | P             |
| 9/18/1993  | 0.96       | P             |
| 9/19/1993  | 1.1        | P             |
| 9/20/1993  | 1.7        | P             |
| 9/21/1993  | 2          | P             |
| 9/22/1993  | 2.2        | P             |
| 9/23/1993  | 2.3        | P             |
| 9/24/1983  | 2.2        | P             |
| 9/25/1993  | 2,9        | 9             |
| 9/26/1993  | 17         | P             |
| 9/27/1993  | 65         | P             |
| 9/28/1993  | 72         | P             |
| 9/29/1993  | 44         | P             |
| 9/30/1993  | 24         | P             |
| 10/1/1993  | 17         | P             |
| 10/2/1993  | 14         | P             |
| 10/3/1993  | 16         |               |
| 10/4/1993  | 38         |               |
| 10/6/1993  | 36         | P             |
| 10/8/1993  | 26         | P             |
| 10/7/1993  | 20         |               |
| 10/6/1993  | 16         | P             |
| 10/9/1993  | 14         | P P           |
| 10/10/1993 | 15         | P             |
| 10/11/1993 | 16         | P             |
| 10/12/1993 | 17         | P             |
| 10/13/1993 | 21         |               |
| 10/14/1993 | 60         |               |
| 10/16/1993 | 60         | P P           |
| 10/16/1993 | 44         | P             |
| 10/17/1993 | 31         | P             |
| 10/18/1993 | 25         |               |
| 10/19/1993 | 28         | P P           |
| 10/20/1993 | 31         |               |

USGS Station 07366200 - Little Comey Bayos near Lillie, LA Dally Mean Flow Data - (7///1985 - 6/30/2006)

208.00 square miles A = Approved for publication — Processing and review completed, P = Provisional data subject to revision. e = Value has been estimated.

| Date        | Flow (cfs) | Qualification |
|-------------|------------|---------------|
|             | All        | Code          |
| 10/21/1993  | 68         | Р             |
| 10/22/1993  | 102        | P             |
| 10/23/1993  | 99         | P             |
| 10/24/1993  | 62         | P             |
| 10/25/1993  | 36         | P             |
| 10/26/1993  | 29         | P             |
| 10/27/1993  | 25         | P             |
| 10/28/1993  | 22         | P             |
| 10/29/19/93 | 20         | P             |
| 10/30/1993  | 25         | P             |
| 10/31/1993  | 35         |               |
| 11/1/1993   | 33         | P             |
| 11/2/1993   | 33         | P             |
| 11/3/1993   | 31         |               |
| 11/4/1993   | 31         |               |
| 11/5/1993   | 30         | P             |
| 11/6/1993   | 29         | P             |
| 11/7/1993   | 28         | - P           |
| 11/8/1993   | 25         | P             |
| 11/9/1993   | 23         | P             |
| 11/10/10/93 | 22         | P             |
| 11/11/1993  | 24         | P             |
| 11/12/1993  | 22         | P             |
| 11/13/1993  | 22         | P             |
| 11/14/1993  | 33         | P             |
| 11/16/1993  | 139        | P P           |
| 11/16/1993  | 261        | P             |
| 11/17/1993  | 364        |               |
| 11/16/1993  | 456        |               |
| 11/18/1993  | 460        |               |
| 11/20/1993  | 391        | P             |
| 11/21/1993  | 286        |               |
| 11/22/1893  | 134        |               |
| 11/23/1993  | 68         | P             |
| 11/24/1993  | 54         | P             |
| 11/26/1993  | 52         | Р             |
| 11/26/1993  | 52         | P             |
| 11/27/1993  | 56         | P             |
| 11/26/1993  | 56         |               |
| 11/20/1993  |            | P             |
| 11/30/1993  | <u>53</u>  | P             |
| 11/30/18/93 |            | P             |

USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

| Date       | Flow (cfs) | Qualification                         |
|------------|------------|---------------------------------------|
|            | All        | Code                                  |
| 12/1/1993  | 45         | P                                     |
| 12/2/1993  | 43         | P                                     |
| 12/3/1993  | 50         | P                                     |
| 12/4/1993  | 131        | P                                     |
| 12/5/1993  | 242        | P                                     |
| 12/6/1993  | 315        | P                                     |
| 12/7/1993  | 389        | P                                     |
| 12/8/1993  | 441        | P                                     |
| 12/9/1993  | 367        | P                                     |
| 12/10/1993 | 161        | P                                     |
| 12/11/1993 | 88         | P                                     |
| 12/12/1993 | 75         | P                                     |
| 12/13/1993 | 77         | P                                     |
| 12/14/1993 | 174        | P                                     |
| 12/15/1993 | 222        | P                                     |
| 12/16/1993 | 247        | P                                     |
| 12/17/1993 | 230        | P                                     |
| 12/18/1993 | 155        | P                                     |
| 12/19/1993 | 92         | P                                     |
| 12/20/1993 | 71         | P                                     |
| 12/21/1893 | 77         | P                                     |
| 12/22/1993 | 80         | P                                     |
| 12/23/1993 | 76         | P                                     |
| 12/24/1093 | 69         | P                                     |
| 12/25/1993 | 63         | P                                     |
| 12/26/1993 | 57         | P                                     |
| 12/27/1993 | 51         | 1                                     |
| 12/28/1993 | 50         | i i i i i i i i i i i i i i i i i i i |
| 12/29/1993 | 53         | P P                                   |
| 12/30/1983 | 52         | P                                     |
| 12/31/1993 | 50         | P                                     |
| 1/1/1994   | 53         | 8                                     |
| 1/2/1994   | 95         | P                                     |
| 1/3/1994   | 152        | P                                     |
| 1/4/1994   | 268        | P                                     |
| 1/5/1994   | 318        | P                                     |
| 1/6/1994   | 322        | P                                     |
| 1/7/1994   | 291        | P                                     |
| 1/8/1994   | 194        | P                                     |
| 1/9/1994   | 127        | P                                     |
| 1/10/1994  | 93         | P                                     |

### USGS Station 07366200 - Little Comey Bayou near Little, LA Dally Mean Flow Data - {7/1/1985 - 6/30/2006}

206.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. P = Value has been estimated.

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | Alí        | Code          |
| 1/1 1/1994 | 65         | P             |
| 1/12/1994  | 151        | P             |
| 1/13/1994  | 212        | P             |
| 1/14/1994  | 280        | P             |
| 1/15/1994  | 330        | P             |
| 1/16/1994  | 340        | P             |
| 1/17/1984  | 319        | P             |
| 1/18/1994  | 365        | P             |
| 1/19/1994  | 405        | P             |
| 1/20/1994  | 447        | P             |
| 1/21/1894  | 416        | P             |
| 1/22/1994  | 294        | P             |
| 1/23/1994  | 154        | P             |
| 1/24/1894  | 106        | P             |
| 1/25/1994  | 87         | P             |
| 1/26/1994  | 139        | P             |
| 1/27/1994  | 946        | P             |
| 1/28/1994  | 4080       | P             |
| 1/29/1994  | 4340       | P             |
| 1/30/1994  | 2670       | P             |
| 1/31/1994  | 1300       | P             |
| 2/1/1994   | 773        | P             |
| 2/2/1994   | 518        | P             |
| 2/3/1994   | 358        | P             |
| 2/4/1994   | 229        | P             |
| 2/5/1994   | 232        | Р             |
| 2/6/1994   | 278        | P             |
| 2/7/1994   | 228        | P             |
| 2/8/1994   | 176        | P             |
| 2/9/1994   | 152        | P             |
| 2/10/1994  | 550        | P             |
| 2/11/1994  | 1610       | P             |
| 2/12/1994  | 1660       | P             |
| 2/13/1994  | 1700       | P             |
| 2/14/1994  | 1710       | P             |
| 2/15/1994  | 1420       | P             |
| 2/16/1994  | 1040       | P             |
| 2/17/1994  | 762        | 9             |
| 2/18/1994  | 584        | P             |
| 2/19/1994  | 422        | P             |
| 2/20/1994  | 319        | P             |

### USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1986 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed, P = Provisional data subject to revision, e = Value has been estimated.

| Date      | Flow (cfs) | Qualification                         |
|-----------|------------|---------------------------------------|
|           | All        | Code                                  |
| 2/21/1994 | 304        | Р                                     |
| 2/22/1984 | 478        | P                                     |
| 2/23/1994 | 676        | P                                     |
| 2/24/1994 | 1130       | P                                     |
| 2/25/1994 | 1300       | P                                     |
| 2/26/1994 | 1050       | P                                     |
| 2/27/1994 | 699        | 4                                     |
| 2/28/1994 | 478        | P P                                   |
| 3/1/1994  | 457        | ρ                                     |
| 3/2/1994  | 618        | P                                     |
| 3/3/1994  | 1080       | P                                     |
| 3/4/1994  | 1280       | P                                     |
| 3/5/1994  | 1080       | P                                     |
| 3/6/1994  | 768        | i i i i i i i i i i i i i i i i i i i |
| 3/7/1994  | 562        | P P                                   |
| 3/8/1994  | 437        | P                                     |
| 3/9/1994  | 519        | P                                     |
| 3/10/1994 | 803        | P                                     |
| 3/11/1994 | 785        | P.                                    |
| 3/12/1994 | 863        | P                                     |
| 3/13/1994 | 817        | P                                     |
| 3/14/1994 | 609        | P                                     |
| 3/15/1994 | 438        | P                                     |
| 3/16/1994 | 315        | P                                     |
| 3/17/1994 | 213        | P                                     |
| 3/18/1994 | 155        |                                       |
| 3/19/1994 | 127        |                                       |
| 3/20/1994 | 112        | P                                     |
| 3/21/1994 | 103        | P                                     |
| 3/22/1994 | 94         | p p                                   |
| 3/23/1994 | 66         | P                                     |
| 3/24/1994 | 84         | P                                     |
| 3/25/1994 | 80         | P                                     |
| 3/26/1994 | 71         | P                                     |
| 3/27/1994 | 91         |                                       |
| 3/28/1994 | 276        | P                                     |
| 3/29/1994 | 376        | P                                     |
| 3/30/1994 | 425        | P                                     |
| 3/31/1994 | 663        | P                                     |
| 4/1/1994  | 611        | P                                     |
| 4/2/1994  | 403        | P                                     |

USGS Station 07366200 - Little Comey Bayou near Lillie, LA Delly Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 4/3/1994  | 215        | Р             |
| 4/4/1994  | 121        | P             |
| 4/5/1994  | 91         | P P           |
| 4/6/1994  | 97 -       | P             |
| 4/7/1994  | 91         | P             |
| 4/8/1994  | 79         | P             |
| 4/9/1994  | 75         | P             |
| 4/10/1994 | 67         | P             |
| 4/11/1994 | 65         | P             |
| 4/12/1994 | 238        | P             |
| 4/13/1894 | 486        | P             |
| 4/14/1994 | 516        | P             |
| 4/15/1994 | 478        | P             |
| 4/16/1994 | 539        | P             |
| 4/17/1994 | 437        | P             |
| 4/18/1994 | 296        | P             |
| 4/19/1994 | 195        | P             |
| 4/20/1994 | 116        | P             |
| 4/21/1994 | 74         | P             |
| 4/22/1994 | 89         | P P           |
| 4/23/1994 | 80         | P             |
| 4/24/1994 | 53         | P             |
| 4/25/1994 | 46         | P             |
| 4/26/1994 | 45         | P             |
| 4/27/1994 | 42         | Р             |
| 4/28/1994 | 38         | P             |
| 4/29/1994 | 35         | P             |
| 4/30/1994 | 38         | Р             |
| 5/1/1994  | 76         | P             |
| 5/2/1994  | 57         | P             |
| 5/3/1994  | 266        | P             |
| 5/4/1994  | 500        | P             |
| 5/5/1994  | 473        | P             |
| 5/6/1994  | 380        | P             |
| 5/7/1994  | 254        | P P           |
| 5/6/1994  | 108        | P             |
| 5/9/1994  | 64         | P             |
| 5/10/1994 | 64         | P             |
| 5/11/1994 | 57         | 1 P           |
| 5/12/1994 | 53         | P             |
| 5/13/1994 | 49         | P             |

USGS Station 07366200 - Little Comey Bayou near Little, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

| Date      | Flow (cfs) | Qualification                         |
|-----------|------------|---------------------------------------|
|           | A1I        | Code                                  |
| 5/14/1994 | 76         | Р                                     |
| 5/15/1994 | 322        | P P                                   |
| 5/16/1994 | 647        | P                                     |
| 6/17/1994 | 764        | P                                     |
| 5/18/1994 | 576        | P                                     |
| 5/19/1984 | 391        | P                                     |
| 5/20/1994 | 162        | P                                     |
| 5/21/1994 | 65         | P                                     |
| 5/22/1994 | 46         | P                                     |
| 5/23/1994 | 38         | P                                     |
| 5/24/1994 | 35         | P                                     |
| 5/25/1994 | 32         | P P                                   |
| 5/26/1994 | 30         | P                                     |
| 6/27/1994 | 31         | P                                     |
| 5/28/1994 | 37         | P                                     |
| 5/29/1994 | 40         | P                                     |
| 5/30/1994 | 46         | P                                     |
| 5/31/1994 | 54         | P                                     |
| 6/1/1994  | 62         | P                                     |
| 6/2/1994  | 106        | P                                     |
| 6/3/1994  | 103        | P                                     |
| 6/4/1994  | 59         | Р                                     |
| 6/6/1994  | 42         | P                                     |
| 6/6/1994  | 37         | P                                     |
| 6/7/1994  | 35         | P                                     |
| 6/8/1994  | 50         | P                                     |
| 6/9/1994  | 77         | P                                     |
| 6/10/1994 | 55         | P                                     |
| 6/11/1994 | 58         | P                                     |
| 6/12/1994 | 52         | P                                     |
| 6/13/1994 | 51         | P                                     |
| 6/14/1994 | 48         | P                                     |
| 6/15/1994 | 41         | P                                     |
| 6/16/1994 | 35         | P                                     |
| 6/17/1994 | 31         | P                                     |
| 6/18/1994 | 27         | P                                     |
| 6/19/1994 | 27         | P                                     |
| 6/20/1994 | 27         | P                                     |
| 6/21/1994 | 26         | P                                     |
| 6/22/1994 | 24         | P                                     |
| 6/23/1994 | 25         | · · · · · · · · · · · · · · · · · · · |

### USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

Dale Flow (cfs) Qualification Code 8/24/1994 8/25/1994 8/25/1994 8/25/1994 8/25/1994 8/25/1994 8/25/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 7/27/1994 47 79 11 13 <u>8,1</u> 8,3 9,3 5 80 14 18 18 17 49 31 20 19 16

### USGS Station 07366200 - Little Corney Bayou near Lillie, LA Dally Mean Flow Data - (7/1/1965 - 6/30/2006)

208.00 square miles

2 octor equate miles
 A = Approved for publication -- Processing and review completed.
 P = Provisional data subject to revision.
 e ≃ Value has been estimated.

| Date      | Flow (cfs) | Qualification                         |
|-----------|------------|---------------------------------------|
|           | All        | Code                                  |
| 8/4/1994  | 21         | P                                     |
| 8/5/1994  | 25         | P                                     |
| 8/6/1994  | 28         | P                                     |
| 8/7/1994  | 29         | P                                     |
| 6/8/1994  | 26         | P                                     |
| 8/0/1994  | 23         | P                                     |
| 8/10/1994 | 19         | P                                     |
| 6/11/1994 | 18         | P                                     |
| 8/12/1994 | 14         | P                                     |
| 8/13/1994 | 12         |                                       |
| 8/14/1994 | 11         |                                       |
| 8/15/1994 | 8.8        | F                                     |
| B/16/1994 | 8          | P                                     |
| 8/17/1994 | 7.1        | P                                     |
| 8/16/1994 | 8.1        | P                                     |
| 8/19/1994 | 7.6        | P                                     |
| 8/20/1994 | 24         |                                       |
| 6/21/1994 | 64         | P                                     |
| 8/22/1994 | 149        |                                       |
| 8/23/1994 | 168        |                                       |
| 8/24/1994 | 104        | p p                                   |
| 8/25/1994 | 36         | P                                     |
| 8/26/1994 | 23         |                                       |
| 8/27/1994 | 19         | · · · · · · · · · · · · · · · · · · · |
| 8/28/1994 | 16         | P                                     |
| 8/29/1994 | 17         |                                       |
| 8/30/1994 | 16         |                                       |
| 6/31/1994 | 14         |                                       |
| 9/1/1994  | 13         | P                                     |
| 9/2/1994  | 12         | P                                     |
| 9/3/1994  | 13         | P                                     |
| 9/4/1994  | 13         | P                                     |
| 9/5/1994  | 11         | P                                     |
| 9/6/1994  | 10         | P                                     |
| 9/7/1994  | 9.6        | P                                     |
| 9/8/1994  | 16         |                                       |
| 9/9/1994  | 18         | P                                     |
| 9/10/1994 | 15         | P                                     |
| 9/11/1994 | 12         | P                                     |
| 9/12/1994 | 10         |                                       |
| 9/13/1994 | 6          |                                       |

### USGS Station 07366200 - Little Comey Bayou near Little, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A ≈ Approved for publication → Processing and review completed. P = Provisional data subject to revision. e ≃ Value has been estimated.

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | IA         | Code          |
| 8/14/1994  | 6.2        | P             |
| 9/15/1994  | 5.3        | P             |
| 9/16/1994  | 4.7        | Р             |
| 9/17/1994  | 5.1        | P             |
| 9/18/1994  | 5          | P             |
| 9/19/1994  | 4.5        | P             |
| 9/20/1994  | 3.6        | P             |
| 9/21/1994  | 2.9        | P             |
| 9/22/1994  | 2.8        |               |
| 9/23/1994  | 2.9        | P             |
| 9/24/1994  | 3.3        | P             |
| 9/25/1994  | 4.2        | P             |
| 8/26/1994  | 3.5        | P             |
| 9/27/1994  | 3.3        | P             |
| 9/28/1994  | 2.9        | Р             |
| 9/29/1994  | 2.3        | Р             |
| 9/30/19 94 | 2.1        | P P           |
| 10/1/1994  | 1.9        | A             |
| 10/2/19/94 | 2.1        | A A           |
| 10/3/1994  | 2.5        | A A           |
| 10/4/1994  | 2.7        | A             |
| 10/5/1994  | 2.3        | A             |
| 10/6/1994  | 2.3        | A             |
| 10/7/1994  | 2.1        |               |
| 10/8/19 94 | 2          | <u> </u>      |
| 10/9/19 94 | 2.6        |               |
| 10/10/1994 | 4.8        | 1 Â           |
| 10/11/1994 | 7.4        | Â             |
| 10/12/1994 | 17         | <u> </u>      |
| 10/13/1994 | 26         | A             |
| 10/14/1994 | 27         | - <u>â</u>    |
| 10/16/1994 | 19         | A A           |
| 10/16/1994 | 75         | Â             |
| 10/17/1994 | 336        | Â             |
| 10/18/1994 | 481        | L. Â          |
| 10/19/1994 | 518        |               |
| 10/20/1994 | 540        | Â             |
| 10/21/1994 | 511        | <u> </u>      |
| 10/22/1994 | 513        | A             |
| 10/23/1994 | 458        |               |
| 10/24/1994 | 380        | A             |

USGS Stallon 07366200 - Little Corney Bayou near Little, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

| Date       | Flow (cfs) | Qualification    |
|------------|------------|------------------|
|            | All        | Code             |
| 10/25/1994 | 358        | A                |
| 10/26/1894 | 364        | Ä                |
| 10/27/1994 | 297        |                  |
| 10/28/1994 | 248        | A                |
| 10/28/1994 | 224        | A                |
| 10/30/1994 | 109        | 1                |
| 10/31/1994 | 58         | A                |
| 11/1/1994  | 43         | A                |
| 11/2/1994  | 34         | A                |
| 11/3/1994  | 30         | <u> </u>         |
| 11/4/1994  | 33         | 1 <del>- 2</del> |
| 11/5/1994  | 45         | Ä                |
| 11/6/1994  | 122        | A                |
| 11/7/1994  | 129        | Ä                |
| 11/8/1994  | 155        |                  |
| 11/9/1994  | 169        | A                |
| 11/10/1994 | 163        | Â                |
| 11/11/1094 | 159        | Â                |
| 11/12/1994 | 135        | A A              |
| 11/13/1994 | 130        | A A              |
| 11/14/1994 | 116        | A                |
| 11/16/1994 | 95         | 1                |
| 11/16/1994 | 77         | <u> </u>         |
| 11/17/1994 | 69         | <u> </u>         |
| 11/18/1994 | 70         | A                |
| 11/19/1994 | 82         | A                |
| 11/20/1994 | 75         | A                |
| 11/21/1994 | 68         | 1 <u> </u>       |
| 11/22/1994 | 66         |                  |
| 11/23/1994 | 66         | L. A             |
| 11/24/1994 | 60         | L                |
| 11/25/1994 | 51         | <u> </u>         |
| 11/26/1994 | 46         | Â                |
| 11/27/1994 | 46         | A                |
| 11/28/1994 | 77         |                  |
| 11/29/1994 | 81         | Â                |
| 11/30/1994 | 66         | <u>A</u>         |
| 12/1/1994  | 55         | Å                |
| 12/2/1994  | 49         | <u> </u>         |
| 12/3/1994  | 47         | <u>A</u>         |
| 12/4/1994  | 47         |                  |

### USGS Station 07366200 - Little Comey Bayou near Lille, LA Dally Mean Flow Data - (7/1/1965 - 6/30/2006)

208.00 equare miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. ja = Value has been estimated.

| Date       | Flow (cfs) | Qualification                         |
|------------|------------|---------------------------------------|
|            | All        | Code                                  |
| 12/5/1994  | 47         | A                                     |
| 12/8/1994  | 48         | A                                     |
| 12/7/1994  | 48         | A                                     |
| 12/8/1994  | 66         | A                                     |
| 12/9/1994  | 172        | Α                                     |
| 12/10/1994 | 308        | A                                     |
| 12/11/1994 | 539        | A                                     |
| 12/12/1994 | 690        | A                                     |
| 12/13/1994 | 889        | A                                     |
| 12/14/1994 | 1020       | A                                     |
| 12/15/1994 | 994        | Å                                     |
| 12/16/1994 | 1630       | A                                     |
| 12/17/1994 | 2260       | Α                                     |
| 12/18/1994 | 2420       | Α                                     |
| 12/19/1994 | 1580       | Α                                     |
| 12/20/1994 | 992        | Α                                     |
| 12/21/1994 | 698        | A                                     |
| 12/22/1994 | 524        | A                                     |
| 12/23/1994 | 399        | A                                     |
| 12/24/1994 | 295        | A                                     |
| 12/25/1994 | 219        | A                                     |
| 12/26/1994 | 155        | Α                                     |
| 12/27/1994 | 116        | Α                                     |
| 12/26/1994 | 98         | Α                                     |
| 12/29/1994 | 102        | A                                     |
| 12/30/1994 | 146        | A                                     |
|            | 152        | Α                                     |
| 1/1/1995   | 134        | A                                     |
| 1/3/1995   | 96         | A                                     |
| 1/4/1995   | 90         | A                                     |
| 1/5/1995   | 66         | <u>A</u>                              |
| 1/6/1995   | 97         | A                                     |
| 1/7/1995   | 198        | A                                     |
| 1/8/1985   | 266        |                                       |
| 1/9/1995   | 200        | A                                     |
| 1/10/1995  | 315        | A                                     |
| 1/11/1995  | 323        | A                                     |
| 1/12/1995  | 247        | Å                                     |
| 1/13/1995  | 175        | Â                                     |
| 1/14/1995  | 254        | Â                                     |
|            |            | · · · · · · · · · · · · · · · · · · · |

### USGS Station 07386200 - Little Corney Bayou near Little, LA Dally Mean Flow Data - (7/1/1985 - 8/30/2006)

205.00 square miles A = Approved for publication — Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 1/16/1995 | 354        | A             |
| 1/16/1995 | 419        | A             |
| 1/17/1995 | 442        | A             |
| 1/18/1095 | 1100       | A             |
| 1/19/1995 | 2710       | A             |
| 1/20/1995 | 3260       | A             |
| 1/21/1995 | 2470       | A             |
| 1/22/1995 | 1260       | A             |
| 1/23/1985 | 793        | A             |
| 1/24/1995 | 592        | A             |
| 1/26/1995 | 444        | Å             |
| 1/26/1995 | 367        | Á             |
| 1/27/1995 | 402        | A             |
| 1/28/1995 | 478        | A             |
| 1/29/1995 | 523        | Δ             |
| 1/30/1995 | 652        | A             |
| 1/31/1995 | 678        | A             |
| 2/1/1995  | 535        | A             |
| 2/2/1995  | 401        | A             |
| 2/3/1995  | 282        | A             |
| 2/4/1995  | 169        | Å             |
| 2/6/1995  | 133        | A             |
| 2/6/1895  | 104        | A             |
| 2/7/1995  | 90         | A .           |
| 2/8/1995  | 81         | A A           |
| 2/9/1995  | 78         | A             |
| 2/10/1995 | 78         | A             |
| 2/11/1995 | 81         | A             |
| 2/12/1995 | 81         | A             |
| 2/13/1995 | 79         | A             |
| 2/14/1995 | 81         | A             |
| 2/15/1995 | 95         | A             |
| 2/16/1995 | 249        | A             |
| 2/17/1995 | 316        | A             |
| 2/16/1995 | 323        | A             |
| 2/19/1995 | 274        | A             |
| 2/20/1995 | 189        | A             |
| 2/21/1995 | 128        | A             |
| 2/22/1995 | 98         | Ä             |
| 2/23/1995 | 83         | A             |
| 2/24/1995 | 82         | A             |

USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication — Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | All        | Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2/25/1995 | 84         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2/26/1995 | 78         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2/27/1995 | 91         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2/28/1995 | 430        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/1/1995  | 1040       | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/2/1995  | 1070       | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/3/1995  | 1010       | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/4/1995  | 762        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/5/1995  | 676        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/6/1995  | 619        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/7/1995  | 1330       | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/8/1995  | 2620       | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/9/1995  | 2910       | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/10/1995 | 2090       | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/11/1995 | 1070       | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/12/1995 | 682        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/13/1995 | 486        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/14/1995 | 389        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/15/1995 | 363        | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/16/1995 | 357        | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/17/1995 | 382        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/18/1995 | 371        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/18/1995 | 342        | A .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3/20/1995 | 310        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/21/1995 | 263        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/22/1995 | 188        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/23/1995 | 143        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/24/1995 | 121        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/26/1995 | 109        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/26/1995 | 105        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/27/1995 | 110        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/28/1995 | 124        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/29/1995 | 103        | Ä                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/30/1995 | 103        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/31/1995 | 99         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4/1/1095  | 89         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4/2/1995  | 78         | 1 <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4/3/1995  | 69         | - A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4/4/1995  | 67         | A The second sec |
| 4/5/1995  | 77         | Ä                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4/6/1995  | 81         | Ä                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

USGS Station 07366200 - Little Corney Bayou near Little, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 4/7/1995  | 87         | Α             |
| 4/8/1995  | 81         | A             |
| 4/9/1995  | 72         | A             |
| 4/10/1995 | 63         | A             |
| 4/11/1995 | 408        | A             |
| 4/12/1995 | 830        | A             |
| 4/13/1995 | 687        | Α             |
| 4/14/1995 | 825        | Α             |
| 4/15/1995 | 767        | A             |
| 4/16/1995 | 506        | A             |
| 4/17/1995 | 241        | A             |
| 4/18/1995 | 106        | A             |
| 4/10/1995 | 77         | A             |
| 4/20/1995 | 84         | A             |
| 4/21/1995 | 138        | A             |
| 4/22/1995 | 264        | A             |
| 4/23/1995 | 738        | A             |
| 4/24/1995 | 1090       | A             |
| 4/25/1995 | 1380       | A             |
| 4/26/1995 | 1520       | A             |
| 4/27/1995 | 858        | A             |
| 4/28/1995 | 523        | A             |
| 4/29/1995 | 258        | A             |
| 4/30/1995 | 112        | Α             |
| 5/1/1995  | 85         | A .           |
| 5/2/1995  |            | A             |
| 5/3/1995  | 75         | A             |
| 5/4/1995  | 108        | A             |
| 5/6/1995  | 180        | A             |
| 5/6/1995  | 179        | A A           |
| 5/7/1995  | 164        | A             |
| 5/8/1995  | 156        | A             |
| 5/9/1995  | 203        | Á Á           |
| 5/10/1995 |            | A             |
| 5/11/1995 | 243        | A             |
| 5/12/1995 | 219        | A             |
| 5/13/1995 | 133        | A             |
| 5/14/1995 | 77         | A             |
| 5/15/1995 | 61         | A             |
| 5/16/1995 | 64         | A             |
| 5/17/1095 | 48         | A             |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1965 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Dale                   | Flow (cfs) | Qualification |
|------------------------|------------|---------------|
|                        | All        | Code          |
| 5/16/1995              | 45         | A             |
| 5/19/1995              | 92         | Α             |
| 6/20/1995              | 135        | Α             |
| 5/21/1995              | 123        | Α             |
| 5/22/1995              | 76         | Ă Ă           |
| 5/23/1995              | 50         | A             |
| 5/24/1995              | 40         | A             |
| 5/25/1995              | 34         | A             |
| 6/26/1995              | 31         | A             |
| 6/27/1995              | 29         | A             |
| 5/28/1995              |            | A             |
| 5/29/1995              | 31         | Α             |
| 5/30/1995              | 61         | A             |
| 6/31/1995              | 277        | A             |
| 6/1/1995               | 222        | A             |
| 6/2/1995               | 216        | A             |
| 6/3/1995               | 138        | Α             |
| 6/4/1995               | 74         | A             |
| 6/5/1995               | 51         | A             |
| 6/6/1995               | 40         | A             |
| 6/7/1985               | 34         | A             |
| 6/8/1995               | 30         | A             |
| 6/9/1995               | 27         | A             |
| 6/10/1995              | 25         | A             |
| 6/11/1995              | 25         | Α             |
| 6/12/1995              | 32         | AA            |
| 6/13/1895              | 38         | A             |
| 6/14/1995              | 34         | A             |
| 6/16/1995              | 29         | Α             |
| 6/16/1995<br>6/17/1995 | 25         | A             |
| 6/18/1995              | 22         | A             |
| 6/19/1995              | 21         | <u>A</u>      |
| 6/20/1995              | 19         | A             |
| 6/21/1995              | 18         | A             |
| 6/22/1995              | 17         | <u> </u>      |
| 6/23/1995              | 16         | Å             |
| 6/24/1995              | 16         | A             |
| 6/25/1995              | 15         | A             |
| 6/26/1995              | 15         | A             |
| 6/27/1995              | 14         | A             |
|                        |            | A]            |

### USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs)      | Qualification                                    |
|-----------|-----------------|--------------------------------------------------|
|           | All             | Code                                             |
| 6/28/1995 | 14              | A                                                |
| 6/29/1995 | 13              | Â                                                |
| 6/30/1995 | 13              | Â                                                |
| 7/1/1995  | 14              | L Â                                              |
| 7/2/1095  | 22              | Â                                                |
| 7/3/1995  | 23              | Â                                                |
| 7/4/1995  | 20              | Â                                                |
| 7/5/1995  | 28              | A A A A A A A A A A A A A A A A A A A            |
| 7/6/1995  | 76              |                                                  |
| 7/7/1995  | 105             | <del>†                                    </del> |
| 7/8/1995  | 116             | -                                                |
| 7/9/1995  | 84              | <u> </u>                                         |
| 7/10/1995 | 35              | Â                                                |
| 7/11/1995 | 18              | A                                                |
| 7/12/1995 | 13              |                                                  |
| 7/13/1995 | 9.7             | A                                                |
| 7/14/1995 | 7.5             | A                                                |
| 7/15/1995 | 6.3             | A                                                |
| 7/16/1995 | 5.4             | <u> </u>                                         |
| 7/17/1995 | 4.8             | <u> </u>                                         |
| 7/18/1995 | 4.8             | A                                                |
| 7/19/1995 | 4.9             | A                                                |
| 7/20/1995 | 5.7             | A                                                |
| 7/21/1995 | 8,5             | A                                                |
| 7/22/1995 | 6.4             | A                                                |
| 7/23/1995 | 5               | Α                                                |
| 7/24/1995 | 4.2             | A                                                |
| 7/25/1995 | 3,4             | A                                                |
| 7/26/1995 | 3.3             | <u>A</u>                                         |
| 7/27/1995 | 2,9             | A                                                |
| 7/28/1995 | 2.8             | A                                                |
| 7/29/1995 | 2.5             | Å                                                |
| 7/30/1995 | 2.5             | Α                                                |
| 7/31/1995 |                 | Α                                                |
| B/1/1995  | 2,3             | Α                                                |
| 8/2/1995  | 2.5             | A.                                               |
| 8/3/1995  |                 | A                                                |
| 8/4/1995  | 3.1             | A                                                |
| 8/5/1995  | 4.3             | A                                                |
| 8/6/1995  |                 | <u>A</u>                                         |
| 6/7/1995  | <u>6</u><br>9.4 | <u> </u>                                         |

### USGS Station 07365200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication — Processing and review completed. P = Provisional data subject to revision, e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 8/8/1995  | 21         | Α             |
| 8/9/1995  | 13         | A             |
| 8/10/1995 | 8.7        | A A           |
| 6/11/1995 | 6.7        | A             |
| 8/12/1995 | 5.6        | Ae            |
| 8/13/1995 | 4.5        | Ae            |
| 8/14/1995 | 3.7        | Aa            |
| 8/16/1995 | 3.1        | Ae            |
| 8/16/1995 | 2.6        | Ae            |
| 8/17/1995 | 2.2        | Ae            |
| 8/18/1995 | 1.9        | Ae            |
| 6/19/1995 | 1,6        | Ae            |
| 8/20/1995 | 1.4        | Ae            |
| 6/21/1995 | 1.2        | Ae            |
| 8/22/1995 | 1.1        | Aa            |
| 8/23/1995 | 1          | Ae            |
| 8/24/1995 | 0.9        | Ae            |
| 8/26/1995 | 0.8        | Ae            |
| 8/26/1995 | 0.72       | Ae            |
| 8/27/1995 | 0.64       | Ae            |
| 8/28/1995 | 0.58       | Ae            |
| 8/29/1995 | 0.52       | Ae            |
| 6/30/1995 | 0.46       | Ae            |
| 6/31/1995 | 0.39       | Ae            |
| 9/1/1995  | 0.34       | Ae            |
| 9/2/1995  | 0,3        | Ae            |
| 9/3/1995  | 0.26       | As            |
| 9/4/1995  | 0.22       | Ä             |
| 9/5/1995  | 0.18       | Ä             |
| 9/6/1995  | 0,13       |               |
| 9/7/1995  | 0.09       | A             |
| 9/8/1995  | 0.06       | A             |
| 9/9/1995  | 0.04       | A             |
| 9/10/1995 | 0.03       | A             |
| 9/11/1995 | 0.01       | 1 Â           |
| 9/12/1995 | 0.01       | Â             |
| 9/13/1995 | 0.04       | 1 <u> </u>    |
| 9/14/1995 | 0.03       | t             |
| 9/15/1995 | 0.04       | Â             |
| 9/16/1995 | 0.13       | <u> </u>      |
| 9/17/1995 | 0.56       | Â             |

USGS Station 07366200 - Little Corney Bayou near Litlie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | All        | Code          |
| 9/18/1995  | 1.2        | Α             |
| 8/19/1995  | 4          | A             |
| 9/20/1995  | 13         | A             |
| 9/21/1995  | 21         | A             |
| 9/22/1995  | 17         | A             |
| 9/23/1995  | 13         | Ae            |
| 8/24/1995  | 10         | Aa            |
| 9/25/1995  | 7          | Ae            |
| 8/26/1995  | 5.8        | Ae            |
| 9/27/1995  | 4.6        | Aa            |
| 9/28/1995  | 3,8        | Ae            |
| 9/29/1995  | 3.2        | Ae            |
| 9/30/1995  | 2.9        | Ae            |
| 10/1/1995  | 13         | P             |
| 10/2/1995  | 15         | P             |
| 10/3/1995  | 15         | P             |
| 10/4/1995  | 16         | P             |
| 10/5/1995  | 16         | P             |
| 10/6/1995  | 16         | P P           |
| 10/7/1995  | 16         | P             |
| 10/8/1995  | 16         | P P           |
| 10/9/1995  | 16         | P             |
| 10/10/1995 | 16         | P             |
| 10/11/1995 | 16         | P             |
| 10/12/1995 | 16         | P             |
| 10/13/1995 | 15         | P             |
| 10/14/1995 | 15         | P             |
| 10/15/1995 | 14         |               |
| 10/16/1995 | 14         | P P           |
| 10/17/1995 | 14         |               |
| 10/18/1995 | 14         | P             |
| 10/19/1995 | 14         | P             |
| 10/20/1995 | 12         | P             |
| 10/21/1995 | 11         | P             |
| 10/22/1995 | 11         | P             |
| 10/23/1995 | 11         | P             |
| 10/24/1995 | 10         | P             |
| 10/26/1995 | 11         | P             |
| 10/26/1995 |            | P             |
| 10/27/1995 |            | P             |
| 10/28/1995 | 10         | P             |

### USGS Station 07366200 - Little Comey Bayou near Lilile, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. • Value has been estimated.

| Data       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | All        | Code          |
| 10/29/1995 | 11         | P             |
| 10/30/1995 | 11         | P             |
| 10/31/1995 | 9.7        |               |
| 11/1/1995  | 10         | P             |
| 11/2/1995  | 16         | Ρ             |
| 11/3/1995  | 16         | P             |
| 11/4/1995  | 14         | P             |
| 11/5/1995  | 12         | P             |
| 11/0/1995  | 10         | P             |
| 11/7/1985  | 10         |               |
| 11/8/1995  | 12         | P             |
| 11/9/1995  | 11         | P             |
| 11/10/1995 | 10         | P             |
| 11/11/1995 | 9          | P             |
| 11/12/1995 | 9          |               |
| 11/13/1995 | 9,3        | P             |
| 11/14/1995 | 8.5        | P             |
| 11/16/1995 | 7.9        | P             |
| 11/16/1995 | 7          | P             |
| 11/17/1995 | 7          | P             |
| 11/18/1995 | 8.1        | P             |
| 11/19/1995 | 5.9        | P             |
| 11/20/1995 | 5.1        | P             |
| 11/21/1995 | 5.2        | P             |
| 11/22/1995 | 5.8        | P             |
| 11/23/1895 | 5.8        | P             |
| 11/24/1995 | 6.2        |               |
| 11/25/1995 | 6.7        | P             |
| 11/26/1995 | 7.4        | P             |
| 11/27/1995 | 7.6        |               |
| 11/28/1995 | 7.8        | P             |
| 11/29/1995 | 7.8        | Р             |
| 11/30/1995 | 8.2        |               |
| 12/1/1995  | 9.1        | P             |
| 12/2/1995  | 9.7        | P             |
| 12/3/1995  | 10         | P             |
| 12/4/1995  | 11         | P             |
| 12/5/1995  | 8.1        | P             |
| 12/6/1995  | 5.2        | P P           |
| 12/7/1995  | 4          | P             |
| 12/8/1995  | 12         | Р             |

### USGS Station 07366200 - Little Comey Bayou near Little, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication — Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | All        | Code          |
| 12/9/1995  | 25         | Р             |
| 12/10/1995 | 20         | P             |
| 12/11/1995 | 12         | P             |
| 12/12/1995 | 6.4        | 9             |
| 12/13/1995 | 4.7        | 9             |
| 12/14/1995 | 4          |               |
| 12/15/1995 | 11         | P             |
| 12/16/1995 | 52         |               |
| 12/17/1995 | 62         | P             |
| 12/18/1995 | 215        | P             |
| 12/19/1995 | 264        | P             |
| 12/20/1995 | 288        | P             |
| 12/21/1095 | 224        | P             |
| 12/22/1995 | 118        | P             |
| 12/23/1995 | 58         | P             |
| 12/24/1995 | 42         | P             |
| 12/25/1995 | 36         | P             |
| 12/26/1995 | 32         | P             |
| 12/27/1995 | 30         | P             |
| 12/28/1995 | 28         | P             |
| 12/29/1995 | 29         | P             |
| 12/30/1995 | 30         | P             |
| 12/31/1995 | 38         | <u>р</u>      |
| 1/1/1996   | 60         | P             |
| 1/2/1996   | 114        | P             |
| 1/3/1996   | 122        | P             |
| 1/4/1996   | 93         | P             |
| 1/5/1996   | 59         | P             |
| 1/6/1996   | 46         | P             |
| 1/7/1996   | 39         |               |
| 1/6/1996   | 35         | P             |
| 1/9/1996   | 33         | P             |
| 1/10/1996  | 32         | P P           |
| 1/11/1996  | 31         | P             |
| 1/12/1996  | 30         |               |
| 1/13/1996  | 28         | P             |
| 1/14/1996  | 27         | P             |
| 1/15/1996  | 28         |               |
| 1/16/1996  | 25         | P             |
| 1/17/1996  | 27         | P             |
| 1/18/1996  | 41         |               |

USGS Station 07366200 - Little Comey Bayou near Little, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification                         |
|-----------|------------|---------------------------------------|
|           | All        | Code                                  |
| 1/19/1996 | 48         | P                                     |
| 1/20/1996 | 47         | P                                     |
| 1/21/1996 | 44         | P                                     |
| 1/22/1996 | 39         | P                                     |
| 1/23/1996 | 62         | P                                     |
| 1/24/1996 | 184        | P P                                   |
| 1/25/1996 | 249        | P                                     |
| 1/26/1996 | 213        | P                                     |
| 1/27/1996 | 133        | - P                                   |
| 1/28/1996 | 84         | P                                     |
| 1/29/1996 | 68         | P                                     |
| 1/30/1996 | 61         | P                                     |
| 1/31/1996 | 59         | P                                     |
| 2/1/1996  | 58         | ρ                                     |
| 2/2/1996  | 61         | P                                     |
| 2/3/1996  | 60         | P                                     |
| 2/4/1996  | 56         | P                                     |
| 2/5/1996  | 53         | P                                     |
| 2/6/1996  | 62         | P                                     |
| 2/7/1996  | 75         | Р                                     |
| 2/8/1996  | 85         | P                                     |
| 2/9/1996  | 94         | P                                     |
| 2/10/1996 | 100        | 8                                     |
| 2/11/1996 | 86         | Р                                     |
| 2/12/1996 | 68         | P                                     |
| 2/13/1996 | 55         | P                                     |
| 2/14/1996 | 49         | P                                     |
| 2/15/1996 | 45         | · · · · · · · · · · · · · · · · · · · |
| 2/16/1996 | 42         | Р                                     |
| 2/17/1996 | 40         | P                                     |
| 2/18/1996 | 39         | P                                     |
| 2/19/1996 | 53         | P                                     |
| 2/20/1996 | 79         | P                                     |
| 2/21/1996 | 73         | P                                     |
| 2/22/1996 | 65         | P                                     |
| 2/23/1996 | 56         | P                                     |
| 2/24/1996 | 49         | P                                     |
| 2/25/1996 | 44         | P                                     |
| 2/26/1996 | 42         | P                                     |
| 2/27/1996 | 43         | P                                     |
| 2/28/1996 | 48         | P                                     |

USGS Station 07366200 - Little Corney Bayou near Lifile, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

| Dale      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 2/29/1996 | 47         | Р             |
| 3/1/1996  | 43         | P             |
| 3/2/1996  | 40         | P             |
| 3/3/1996  | 38         | P             |
| 3/4/1996  | 36         | P             |
| 3/5/1996  | 36         | P             |
| 3/6/1996  | 50         | P             |
| 3/7/1996  | 72         |               |
| 3/8/1996  | 65         | P             |
| 3/9/1996  | 62         | P             |
| 3/10/1996 | 62         | P             |
| 3/11/1996 | 46         | P             |
| 3/12/1996 | 45         | P             |
| 3/13/1996 | 46         | 1 P           |
| 3/14/1996 | 44         | P             |
| 3/15/1996 | 40         | P P           |
| 3/16/1996 | 39         | P             |
| 3/17/1996 | 43         | P             |
| 3/18/1996 | 83         | P             |
| 3/19/1996 | 141        | P             |
| 3/20/1996 | 152        |               |
| 3/21/1996 | 147        |               |
| 3/22/1996 | 103        |               |
| 3/23/1996 | 65         | P             |
| 3/24/1996 | 147        | P             |
| 3/25/1996 | 462        | P             |
| 3/26/1996 | 610        | P             |
| 3/27/1996 | 507        | P             |
| 3/28/1996 | 448        | P             |
| 3/29/1996 | 448        |               |
| 3/30/1996 | 388        | P             |
| 3/31/1998 | 209        | P             |
| 4/1/1996  | 134        | P             |
| 4/2/1998  | 111        |               |
| 4/3/1996  | 111        | P             |
| 4/4/1996  | 76         | P             |
| 4/5/1896  | 88         |               |
| 4/8/1996  | 157        |               |
| 4/7/1996  | 188        | P             |
| 4/8/1996  | 178        | P             |
| 4/9/1996  | 137        | P             |

### USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional dela subject to revision. e = Value has been estimated.

Date Flow (cfs) All Qualification Code 4/10/1996 4/11/1996 4/11/1996 4/12/1996 4/13/1995 4/14/1996 4/14/1996 4/14/1996 4/14/1996 4/14/1996 4/14/1996 4/23/1996 4/23/1996 4/23/1996 4/23/1996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 5/21996 80 54 55 149 185 168 130 142 163 165 140 287 308 201 156 116 66 45 37 63 98 142 134 81 42 30 24 16 15 12 9.6 5/19/199 5/20/199 11 7,3

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1965 - 6/30/2006)

208.00 square miles

A = Approved for publication ~ Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | Ali        | Code          |
| 5/21/1996 | 5.3        | P             |
| 5/22/1996 | 4.2        | P             |
| 5/23/1996 | 3,5        | P             |
| 5/24/1996 | 2.9        | P             |
| 5/25/1996 | 2.6        | P             |
| 5/26/1996 | 2.1        | P             |
| 5/27/1996 | 1.9        | P             |
| 5/26/1996 | 2.1        | f P           |
| 5/29/1996 | 3.1        | 1             |
| 5/30/1996 | 2.4        |               |
| 5/31/1996 | 2.3        |               |
| 6/1/1996  | 4.7        | P             |
| 6/2/1996  | 14         |               |
| 6/3/1996  | 14         | P P           |
| 6/4/1996  | 12         | P P           |
| 6/5/1996  | 10         | 1             |
| 6/6/1996  | 8.8        |               |
| 6/7/1996  | 11         |               |
| 6/8/1996  | 18         | P             |
| 6/0/1996  | 19         | P P           |
| 6/10/1996 | 14         | P             |
| 6/11/1996 | 11         | P             |
| 6/12/1996 | 15         | P             |
| 6/13/1996 |            | †             |
| 6/14/1996 | 185        | P             |
| 6/15/1996 | 176        | P             |
| 6/16/1996 | 152        | P             |
| 6/17/1996 | 72         | P             |
| 6/18/1996 | 31         | P             |
| 6/19/1996 | 25         | P             |
| 6/20/1996 | 46         |               |
| 6/21/1996 | 66         | P             |
| 6/22/1996 | 104        |               |
| 6/23/1896 | 101        | P             |
| 6/24/1996 | 44         | P             |
| 6/25/1998 | 30         | P             |
| 6/26/1996 | 26         | P             |
| 6/27/1998 | 18         | P             |
| 6/28/1996 | 16         | P             |
| 6/29/1996 | 12         | P             |
| 6/30/1996 | 11         | 8             |

### USGS Station 07366200 - Little Comey Bayou near Liflie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A \* Approved for publication — Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 7/1/1996  | 9.4        | P             |
| 7/2/1996  | 8          | P             |
| 7/3/1996  | 6,3        | P             |
| 7/4/1996  | 6.5        | P             |
| 7/5/1998  | 7          | P             |
| 7/6/1996  | 7,5        | Р             |
| 7/7/1996  | 7          | P             |
| 7/8/1996  | 7.3        | P             |
| 7/8/1996  | 7.1        | P             |
| 7/10/1996 | 6.8        | P             |
| 7/11/1996 | 8.5        | Р             |
| 7/12/1996 | 6.9        | P             |
| 7/13/1996 | 9,1        | P             |
| 7/14/1996 | 11         | P             |
| 7/15/1996 | 22         | P             |
| 7/16/1996 | 47         | P             |
| 7/17/1996 | 40         | P             |
| 7/18/1996 | 40         | P             |
| 7/18/1996 | 42         | P             |
| 7/20/1996 | 33         |               |
| 7/21/1996 | 24         | P             |
| 7/22/1996 | 17         |               |
| 7/23/1996 | 14         | P             |
| 7/24/1996 | 13         | P             |
| 7/26/1996 | 33         | 4             |
| 7/26/1996 | 43         |               |
| 7/27/1996 | 65         |               |
| 7/28/1996 | 147        | P             |
| 7/29/1996 | 204        | P             |
| 7/30/1996 | 256        |               |
| 7/31/1996 | 308        |               |
| 8/1/1996  | 367        |               |
| 8/2/1996  | 304        |               |
| 8/3/1996  | 449        | P             |
| 6/4/1996  | 801        |               |
| 6/5/1996  | 591        | P             |
| 8/6/1996  | 368        | P             |
| 8/7/1996  | 306        | P             |
| 8/8/1996  | 224        |               |
| 8/8/1996  | 85         |               |
| 6/10/1996 | 65         | P             |

USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 8/11/1996 | 58         | P             |
| 8/12/1996 | 64         | P             |
| 8/13/1996 | 114        | P             |
| 8/14/1996 | 69         | P             |
| 8/15/1996 | 83         | P             |
| 8/16/1996 | 62         | P             |
| 8/17/1996 | 31         | P             |
| 6/18/1996 | 23         | P             |
| 6/19/1996 | . 16       | P P           |
| 8/20/1996 | 13         | P             |
| 8/21/1996 | 12         | P             |
| 8/22/1996 | 13         | P             |
| 8/23/1996 | 10         | P             |
| 8/24/1996 | 8.4        | P             |
| 8/26/1996 | 7.1        | P             |
| 8/26/1996 | 6,4        | P             |
| 8/27/1996 | 6.7        | P             |
| 8/28/1996 | 15         | P             |
| 8/29/1996 | 120        | P             |
| 8/30/1996 | 688        | P             |
| B/31/1996 | 1300       | P             |
| 9/1/1996  | 1230       | P             |
| 9/2/1996  | 896        | 9             |
| 9/3/1996  | 526        | P             |
| 9/4/1996  | 172        | P             |
| 9/5/1998  | 47         | P             |
| 9/6/1996  | 32         | P             |
| 9/7/1996  | 28         | P             |
| 9/8/1996  | 24         | P             |
| 9/9/1996  | 20         | P             |
| 9/10/1996 | 16         | P             |
| 9/11/1996 | 13         | P             |
| 8/12/1996 | 11         | P             |
| 9/13/1996 | 9.5        | P             |
| 9/14/1996 | 8.8        | P             |
| 9/15/1996 | 8.3        | P             |
| 9/16/1996 | 8.7        | P             |
| 9/17/1996 | 8.5        | P             |
| 9/18/1996 | 9,3        | P             |
| 9/19/1996 | 8.6        | P             |
| 9/20/1996 | 8.7        | P             |

### USGS Station 07366200 - Little Comey Bayou near Little, LA Daily Mean Flow Data - (7/1/1965 - 6/30/2006)

208.00 square miles A = Approved for publication ~ Processing and review completed. P = Provisional deta subject to revision. t = Value has been estimated.

Date Qualification Code Flow (cfs) All 9/21/1996 9/22/1996 9/23/1996 9/23/1996 9/23/1996 9/25/1996 9/25/1996 9/25/1996 9/26/1996 9/26/1996 9/26/1996 10/21/996 10/21/996 10/21/996 10/21/996 10/21/996 10/22/1996 10/22/1996 10/22/1996 10/22/1996 10/22/1996 10/22/1996 10/22/1996 10/22/1996 10/22/1996 10/22/1996 87 329 152 30 29 34 1130 1760 1310 1140 795 503 190 58 4( 28 23 20 14 13 60 40 30 44 140 158 303 373 1<u>94</u> 88 10/31/1996

### USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1965 - 6/30/2006)

### 208.00 square miles

A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date         | Flow (cts) | Qualification |
|--------------|------------|---------------|
|              | All        | Code          |
| 11/1/1996    | 55         | Р             |
| 11/2/1996    | 135        | P             |
| 11/3/1996    | 140        | P             |
| 11/4/1996    | 100        | P             |
| 11/5/1996    | 6D         | P             |
| 11/6/1995    | 68         | P             |
| 11/7/1996    | 100        | P             |
| 11/8/1996    | 270        | P             |
| 11/9/1996    | 330        | P             |
| 11/10/1996   | 292        |               |
| 11/11/1996   | 285        | P             |
| 11/12/1996   | 244        | P             |
| 11/13/1996   | 125        | P             |
| , 11/14/1996 | 79         |               |
| 11/15/1996   | 65         | P             |
| 11/16/1996   | 65         | P             |
| 11/17/1996   |            | P             |
| 11/18/1996   | 62         | P             |
| 11/19/1996   | 75         | P             |
| 11/20/1996   | 92         | P P           |
| 11/21/1996   | 99         | P             |
| 11/22/1996   | 86         | P             |
| 11/23/1996   | 73         | P P           |
| 11/24/1996   | 70         | P P           |
| 11/25/1996   | 274        |               |
| 11/26/1996   | 473        | P             |
| 11/27/1996   | 566        | P             |
| 11/28/1996   | 736        |               |
| 11/29/1996   | 808        | P             |
| 11/30/1996   | 739        | P P           |
| 12/1/1996    | 766        | P             |
| 12/2/1996    | 910        | P             |
| 12/3/1996    | 1090       | P P           |
| 12/4/1896    | 878        | P             |
| 12/5/1996    | 648        | P             |
| 12/6/1996    | 435        | P             |
| 12/7/1996    | 232        |               |
| 12/8/1996    | 140        | P             |
| 12/9/1996    | 112        | P P           |
| 12/10/1996   | 96         | P             |
| 12/11/1996   | 83         | P             |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Velue has been estimated.

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | ILA        | Code          |
| 12/12/1996 | 76         | P             |
| 12/13/1996 | 71         | P             |
| 12/14/1996 | 68         | P             |
| 12/15/1996 | 64         | P             |
| 12/16/1996 | 133        | P             |
| 12/17/1996 | 332        | P             |
| 12/18/1996 | 392        | P             |
| 12/19/1996 | 386        | P             |
| 12/20/1996 | 364        | 9             |
| 12/21/1996 | 366        | P             |
| 12/22/1996 | 239        | P             |
| 12/23/1996 | 144        | P             |
| 12/24/1996 | 147        | P             |
| 12/26/1996 | 186        | P             |
| 12/26/1996 | 209        | P             |
| 12/27/1996 | 394        | P P           |
| 12/28/1996 | 565        | P             |
| 12/29/1996 | 625        | Pe            |
| 12/30/1996 | 700        | Pe            |
| 12/31/1996 | 500        | Pe            |
| 1/1/1997   | 380        | Pe            |
| 1/2/1997   | 280        | Pe            |
| 1/3/1997   | 220        | Pe            |
| 1/4/1997   | 170        | Pe            |
| 1/5/1997   | 210        | Pe            |
| 1/6/1997   | 335        | P             |
| 1/7/1997   | 459        |               |
| 1/8/1997   | 670        | P             |
| 1/9/1997   | 1110       |               |
| 1/10/1997  | 1340       |               |
| 1/11/1997  | 1390       | P             |
| 1/12/1997  | 1130       | P             |
| 1/13/1997  | 684        | P             |
| 1/14/1997  | 424        |               |
| 1/15/1997  | 269        |               |
| 1/16/1997  | 293        | P             |
| 1/17/1997  | 297        | P             |
| 1/18/1997  | 289        | P             |
| 1/19/1997  | 277        | P P           |
| 1/20/1997  | 213        |               |
| 1/21/1997  | 158        | P             |

USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 1/22/1997 | 180        | P             |
| 1/23/1997 | 211        | P             |
| 1/24/1997 | 946        | P             |
| 1/25/1997 | 1600       | P             |
| 1/26/1997 | 1660       | P             |
| 1/27/1997 | 1280       | P             |
| 1/26/1997 | 830        | P             |
| 1/29/1997 | 601        | Р             |
| 1/30/1997 | 435        | P             |
| 1/31/1997 | 319        | - P           |
| 2/1/1997  | 221        | P             |
| 2/2/1997  | 160        | P             |
| 2/3/1997  | 129        | P             |
| 2/4/1997  | 133        | P             |
| 2/6/1997  | 158        | Р             |
| 2/6/1997  | 190        | Р             |
| 2/7/1997  | 338        | P             |
| 2/8/1997  | 723        | P             |
| 2/9/1997  | 768        | 9             |
| 2/10/1997 | 956        | P             |
| 2/11/1997 | 864        | P             |
| 2/12/1997 | 717        | P             |
| 2/13/1997 | 1910       | P             |
| 2/14/1997 | 2520       | P             |
| 2/15/1997 | 2670       | Р             |
| 2/16/1997 | 1610       | P             |
| 2/17/1997 | 841        | P             |
| 2/16/1997 | 547        | P             |
| 2/19/1997 | 367        | P             |
| 2/20/1997 | 256        | P.            |
| 2/21/1997 | 499        | P             |
| 2/22/1997 | 738        | P             |
| 2/23/1997 | 650        | P             |
| 2/24/1997 | 658        | P             |
| 2/25/1997 | 603        | P             |
| 2/28/1997 | 478        | P             |
| 2/27/1997 | 562        | P             |
| 2/28/1997 | 609        | P             |
| 3/1/1997  | 696        | P             |
| 3/2/1997  | 5330       | P             |
| 3/3/1997  | 6820       | P             |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2008)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to ravision. e > Value has been estimated.

Date

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | Afi        | Code          |
| 3/4/1997  | 4580       | P             |
| 3/5/1997  | 2360       | P             |
| 3/6/1997  | 1830       | P             |
| 3/7/1997  | 931        | P             |
| 3/6/1997  | 763        | P             |
| 3/9/1997  | 731        | P             |
| 3/10/1997 | 549        | P             |
| 3/11/1997 | 407        | P             |
| 3/12/1997 | 313        |               |
| 3/13/1997 | 415        |               |
| 3/14/1997 | 673        | P             |
| 3/15/1997 | 710        | P             |
| 3/16/1997 | 636        | P             |
| 3/17/1997 | 722        | P             |
| 3/18/1997 | 523        | P             |
| 3/19/1997 | 390        | P P           |
| 3/20/1997 | 333        | P             |
| 3/21/1997 | 356        | P P           |
| 3/22/1997 | 512        | P             |
| 3/23/1997 | 461        | P P           |
| 3/24/1997 | 305        | P             |
| 3/25/1997 | 195        | P             |
| 3/26/1997 | 258        | P             |
| 3/27/1997 | 325        |               |
| 3/28/1997 | 355        | P             |
| 3/29/1997 | 302        | P             |
| 3/30/1997 | 202        | 1 P           |
| 3/31/1997 | 124        | P             |
| 4/1/1997  | 91         | P             |
| 4/2/1997  | 80         | P P           |
| 4/3/1997  | 66         | P             |
| 4/4/1997  | 147        | P             |
| 4/5/1997  | 3490       | P             |
| 4/6/1997  | 8210       | P             |
| 4/7/1997  | 4420       | P P           |
| 4/8/1997  | 1690       | P             |
| 4/9/1997  | 819        | P             |
| 4/10/1997 | 511        | P             |
| 4/11/1997 | 314        | Ρ             |
| 4/12/1997 | 191        | P             |
| 4/13/1997 | 173        | P             |

### USGS Station 07366200 - Little Corney Bayou near 1.Illie, LA Daily Mean Flow Data - (7/1/1965 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e ≃ Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | AU         | Code          |
| 4/14/1997 | 161        | P             |
| 4/15/1997 | 142        |               |
| 4/16/1997 | 111        |               |
| 4/17/1997 | 93         | 2             |
| 4/18/1997 | 80         | P             |
| 4/19/1997 | 70         | P             |
| 4/20/1997 | 63         | P             |
| 4/21/1997 | 59         | P P           |
| 4/22/1997 | 134        | P             |
| 4/23/1997 | 295        | P P           |
| 4/24/1997 | 298        | P             |
| 4/25/1997 | 294        | P P           |
| 4/26/1997 | 482        |               |
| 4/27/1997 | 792        | P             |
| 4/26/1997 | 1740       | P             |
| 4/29/1997 | 1880       |               |
| 4/30/1997 | 1390       | P             |
| 5/1/1997  | 1070       | P P           |
| 5/2/1997  | 895        | P             |
| 5/3/1997  | 1390       | P             |
| 5/4/1997  | 932        | P             |
| 5/5/1997  | 1150       | P             |
| 5/6/1997  | 1000       | P             |
| 5/7/1997  | 582        | P             |
| 5/8/1997  | 311        | P             |
| 5/9/1997  | 145        |               |
| 5/10/1997 | 96         | P             |
| 5/11/1997 | 77         | P             |
| 5/12/1997 | 64         |               |
| 5/13/1997 | 55         | P             |
| 5/14/1997 | 49         | P             |
| 5/16/1997 | 44         |               |
| 5/16/1997 | 41         | P             |
| 5/17/1997 | 39         | P             |
| 5/18/1997 | 38         | P             |
| 5/19/1997 | 38         | P             |
| 5/20/1997 | 39         | P             |
| 5/21/1997 | 72         |               |
| 5/22/1997 | 162        | P             |
| 5/23/1997 | 160        | P             |
| 5/24/1997 | 111        | P             |

USG\$ Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Vatue has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 5/25/1997 | 98         | P             |
| 5/26/1997 | 178        | P             |
| 5/27/1997 | 524        | P             |
| 5/26/1997 | 749        | P             |
| 5/29/1997 | 469        | P             |
| 5/30/1997 | 224        | P             |
| 5/31/1997 | 307        | P             |
| 6/1/1997  | 967        | P             |
| 6/2/1997  | 1890       | P             |
| 6/3/1997  | 1170       | P             |
| 6/4/1997  | 605        | P             |
| 6/5/1997  | 284        | P             |
| 6/6/1997  | 150        | P             |
| 6/7/1997  | 181        | P             |
| 6/8/1997  | 214        | P             |
| 6/9/1997  | 174        | P             |
| 6/10/1997 | 399        | P             |
| 6/11/1997 | 485        | P             |
| 6/12/1997 | 264        | P             |
| 6/13/1997 | 154        | P             |
| 6/14/1997 | 133        | P             |
| 6/15/1997 | 109        | R             |
| 6/16/1997 | 78         | P             |
| 6/17/1997 | 68         | P             |
| 6/18/1997 | 103        | P             |
| 6/19/1997 | 129        | P P           |
| 6/20/1997 | 96         |               |
| 6/21/1997 | 62         |               |
| 6/22/1997 | 46         |               |
| 6/23/1997 | 37         |               |
| 6/24/1997 | 32         | 2             |
| 6/25/1997 | 27         | P             |
| 6/26/1997 | 31         | P             |
| 6/27/1997 | 68         | P             |
| 6/28/1997 | 42         | P P           |
| 6/29/1997 | 64         | P             |
| 6/30/1997 | 62         | P             |
| 7/1/1997  | 68         | P             |
| 7/2/1997  | 51         | P             |
| 7/3/1997  | 35         | P             |
| 7/4/1997  | 28         | P             |

USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 7/5/1997  | 23         | P             |
| 7/6/1997  | 20         | p             |
| 7/7/1997  | 20         | P             |
| 7/8/1997  | 24         |               |
| 7/9/1997  | 24         | P             |
| 7/10/1997 | 21         | P             |
| 7/11/1997 | . 19       | P P           |
| 7/12/1997 | 17         | P             |
| 7/13/1997 | 16         | P             |
| 7/14/1997 | 15         | P             |
| 7/15/1997 | 14         |               |
| 7/16/1997 | 14         | P             |
| 7/17/1997 | 14         | P             |
| 7/18/1997 | 13         | P             |
| 7/19/1997 | 12         | i p           |
| 7/20/1997 | 15         | P P           |
| 7/21/1997 | 16         | P             |
| 7/22/1997 | 13         | P             |
| 7/23/1997 | 12         | P             |
| 7/24/1997 |            | P             |
| 7/25/1997 | 11         | P             |
| 7/26/1997 | 12         | P             |
| 7/27/1997 |            | P             |
| 7/28/1997 | 10         | P             |
| 7/29/1997 | 9.9        | P             |
| 7/30/1997 | 15         | P             |
| 7/31/1997 | 20         | 2             |
| 8/1/1997  | 15         | P             |
| 8/2/1997  | 14         | P             |
| 8/3/1997  | 14         | P             |
| 8/4/1997  | 12         | P             |
| 8/5/1997  | 11         | P             |
| 8/6/1997  | 10         | 9             |
| 8/7/1997  | 9.5        |               |
| 8/8/1997  | 10         | P             |
| 8/9/1997  | 17         | P             |
| 8/10/1997 | 27         | P P           |
| 8/11/1997 | 41         | P P           |
| 8/12/1997 | 61         | P P           |
| 8/13/1997 | 113        |               |
| 8/14/1997 | 218        | P P           |

### USGS Station 07366200 - Little Comay Bayou near Lille, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed, P= Provisional data subject to ravision, P = Value has been estimated,

Date Flow (cfs) Qualification Code ΔI 8/15/1697 9/14/1097 8/14/1097 6/14/1097 6/12/1097 8/201097 8/201097 8/22/1097 8/23/1097 8/23/1097 8/24/1097 8/28/1097 8/28/1097 9/21/097 9/21/097 9/21/097 9/21/097 9/21/097 9/22/097 9/21/097 9/21/097 9/22/097 9/22/097 9/21/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 9/22/097 410 176 40 25 29 15 17 76 57 31 10 Pe Pe Pe 7.6 6.6

### USGS Station 07366200 - Little Corney Bayou near Lilike, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles

A = Approved for publication -- Processing and review completed.
 P = Provisional data subject to revision.
 e = Value has been estimated.

| Date       | Flow (cfs) | Qualification                           |
|------------|------------|-----------------------------------------|
|            | All        | Code                                    |
| 9/25/1997  | 5.7        | Pe                                      |
| 9/26/1997  | 5          | Pe                                      |
| 8/27/1997  | 5.6        | Pe                                      |
| 9/28/1997  | 4.7        | Pe                                      |
| 9/29/1997  | 3.9        | Pe                                      |
| 9/30/1997  | 3          | Pa                                      |
| 10/1/1997  | 2.5        | Ae                                      |
| 10/2/1997  | 1.9        | Ag                                      |
| 10/3/1997  | 1.4        | Aa                                      |
| 10/4/1997  | 1          | Ae                                      |
| 10/5/1997  | 0.8        | Ae                                      |
| 10/6/1997  | 0.6        | Ae                                      |
| 10/7/1997  | 0.45       | Ae                                      |
| 10/8/1997  | 0.35       | Ae                                      |
| 10/9/1997  | 0.85       | As                                      |
| 10/10/1997 | 1.7        | As                                      |
| 10/11/1997 | 4          | Aa                                      |
| 10/12/1997 | 8.5        | As                                      |
| 10/13/1997 | 19         | Ae                                      |
| 10/14/1997 | 29         | A                                       |
| 10/15/1997 | 17         | Ä                                       |
| 10/16/1997 | 12         | Ä                                       |
| 10/17/1997 | 7.6        | A                                       |
| 10/18/1997 | 7          | A                                       |
| 10/19/1997 | 5.2        | × · · · · · · · · · · · · · · · · · · · |
| 10/20/1997 | 4.6        | A                                       |
| 10/21/1997 | 5.6        | A                                       |
| 10/22/1997 | 23         | A                                       |
| 10/23/1997 | 23         | A                                       |
| 10/24/1097 | 80         | A                                       |
| 10/25/1997 | 139        | A                                       |
| 10/26/1997 | 168        | Ä                                       |
| 10/27/1997 | 189        | Å                                       |
| 10/28/1997 | 88         | A                                       |
| 10/29/1997 | 33         | A                                       |
| 10/30/1997 | 18         | Ä                                       |
| 10/31/1997 | 14         | <u>A</u>                                |
| 11/1/1997  | 31         | 1                                       |
| 11/2/1997  | 24         | A                                       |
| 11/3/1997  | 17         | A                                       |
| 11/4/1997  | 13         | <u> </u>                                |

### USGS Station 07366200 - Little Comey Bayou near Little, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication — Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | All        | Code          |
| 11/5/1997  | 22         | Í A           |
| 11/6/1997  | 91         | Α             |
| 11/7/1897  | 92         | A             |
| 11/8/1997  | 76         |               |
| 11/8/1897  | 62         | A             |
| 11/10/1997 | 40         | A             |
| 11/11/1997 | 30         | A             |
| 11/12/1997 | 29         | A             |
| 11/13/1997 | 69         | A             |
| 11/14/1997 | 106        | A             |
| 11/15/1997 | 107        | A             |
| 11/16/1997 | 100        | A             |
| 11/17/1997 | 86         | 1 A           |
| 11/18/1997 | 58         | A             |
| 11/19/1997 | 40         | A             |
| 11/20/1997 | 31         | A             |
| 11/21/1997 | 27         | Α             |
| 11/22/1997 | 25         | Α             |
|            | 23         | A .           |
| 11/24/1997 | 23         | A             |
| 11/25/1997 | 22         | A             |
| 11/26/1997 | 18         | Α.            |
| 11/27/1997 | 18         | Α             |
| 11/28/1997 | 25         | A             |
| 11/29/1997 | 173        | A             |
| 11/30/1997 | 307        | Α Ι           |
| 12/1/1997  | 249        | A             |
| 12/2/1997  | 194        | A             |
| 12/3/1997  | 210        | A             |
| 12/4/1997  | 237        | A             |
| 12/5/1997  | 160        | A             |
| 12/6/1997  | 94         | A             |
| 12/7/1997  | 75         | A             |
| 12/8/1997  | 144        | A             |
| 12/9/1997  | 276        | A             |
| 12/10/1997 | 245        | A             |
| 12/11/1997 | 202        | A             |
| 12/12/1997 | 177        | A             |
| 12/13/1997 | 111        | A             |
| 12/14/1997 | 64         | A             |
| 12/15/1997 | 49         | Ă             |

### USGS Station 07366200 - Little Corney Bayou near Little, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

.

| Date       | Flow (cfs) | Qualification    |
|------------|------------|------------------|
|            | All        | Code             |
| 12/16/1997 | 41         | Α                |
| 12/17/1997 | 36         | Ä                |
| 12/18/1997 | 35         | A                |
| 12/19/1997 | 33         | Α                |
| 12/20/1997 | 29         | A                |
| 12/21/1997 | 163        | Α                |
| 12/22/1997 | 391        | A                |
| 12/23/1997 | 442        | A                |
| 12/24/1997 | 1030       | A                |
| 12/25/1997 | 1680       | A                |
| 12/26/1997 | 1260       | A                |
| 12/27/1997 | 1220       | Ā                |
| 12/28/1997 | 753        | A                |
| 12/29/1997 | 415        | Α                |
| 12/30/1997 | 222        | A                |
| 12/31/1997 | 109        | A                |
| 1/1/1998   | 73         | A                |
| 1/2/1998   | 58         | A                |
| 1/3/1998   | 52         | A                |
| 1/4/1998   | 51         | A                |
| 1/5/1998   | 85         | Ä                |
| 1/8/1998   | 262        | Ä                |
| 1/7/1998   | 1100       | A                |
| 1/8/1998   | 1600       | A                |
| 1/9/1998   | 1850       | Ä                |
| 1/10/1998  | 1590       | A                |
| 1/11/1998  | 960        | A                |
| 1/12/1998  | 768        | A                |
| 1/13/1998  | 723        | A                |
| 1/14/1998  | 637        | A                |
| 1/15/1998  | 990        | Ä                |
| 1/16/1998  | 776        | A                |
| 1/17/1998  | 532        | Ä                |
| 1/18/1998  | 390        | 1 7              |
| 1/19/1998  | 324        | 1 <del>- 2</del> |
| 1/20/1998  | 257        | Â                |
| 1/21/1998  | 181        |                  |
| 1/22/1998  | 267        | Â                |
| 1/23/1998  | 417        | . Â              |
| 1/24/1998  | 490        | Â                |
| 1/25/1998  | 617        | <u>À</u>         |

### USGS Station 07366200 - Little Comey Bayou near Lille, LA Daily Mean Flow Date - (7/1/1965 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed, P = Provisional data subject to revision. P = Value has been estimated,

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | Ali        | Code          |
| 1/26/1998 | 669        | A             |
| 1/27/1998 | 561        | A             |
| 1/28/1998 | 432        | A             |
| 1/29/1998 | 402        | A             |
| 1/30/1998 | 472        | A             |
| 1/31/1998 | 410        | A             |
| 2/1/1998  | 270        | A             |
| 2/2/1998  | 247        | A             |
| 2/3/1996  | 249        | A             |
| 2/4/1998  | 233        | A             |
| 2/5/1998  | 246        | A             |
| 2/6/1998  | 207        | A             |
| 2/7/1998  | 136        | A             |
| 2/8/1998  | 100        | A             |
| 2/9/1998  | 84         | A             |
| 2/10/1998 | 61         | A             |
| 2/11/1998 | 154        | A             |
| 2/12/1996 | 198        | A             |
| 2/13/1996 | 198        | A             |
| 2/14/1998 | 230        | A             |
| 2/15/1996 | 231        | A             |
| 2/16/1096 | 361        | A             |
| 2/17/1998 | 560        | Α             |
| 2/18/1998 | 666        | A             |
| 2/19/1998 | 763        | Α.            |
| 2/20/1998 | 725        | Α             |
| 2/21/1998 | 566        | A             |
| 2/22/1998 | 431        | <u>A</u>      |
| 2/23/1998 | 390        | A             |
| 2/24/1998 | 339        | Α             |
| 2/25/1998 | 310        | Α             |
| 2/26/1998 | 391        | Α             |
| 2/27/1998 | 589        | A             |
| 2/28/1998 | 580        | <u> </u>      |
| 3/1/1998  | 643        | Α             |
| 3/2/1998  | 699        | A             |
| 3/3/1998  | 514        | A             |
| 3/5/1998  | 306        | A             |
| 3/6/1998  | 166        | A             |
| 3/7/1998  | 156        | A             |
| 3///1980  | 314        | Α             |

### USGS Station 07366200 - Little Corney Bayou near Lillie, LA Dally Mean Flow Data - (7/1/1965 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Velue has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 3/8/1996  | 1220       | A             |
| 3/8/1996  | 1300       | A             |
| 3/10/1998 | 1540       | A             |
| 3/11/1998 | 1300       | A             |
| 3/12/1998 | 745        | A             |
| 3/13/1998 | 465        | A             |
| 3/14/1998 | 283        | A             |
| 3/15/1998 | 181        | A             |
| 3/16/1998 | 209        | A             |
| 3/17/1998 | 786        | A             |
| 3/18/1998 | 1130       | A             |
| 3/19/1998 | 1750       | 1             |
| 3/20/1998 | 1250       | A A           |
| 3/21/1998 | 726        | A             |
| 3/22/1998 | 485        | A             |
| 3/23/1996 | 327        | Ä             |
| 3/24/1998 | 205        |               |
| 3/25/1998 | 154        | A             |
| 3/26/1998 | 132        | A             |
| 3/27/1998 | 125        | <u> </u>      |
| 3/28/1998 | 118        | A             |
| 3/29/1998 | 105        |               |
| 3/30/1998 | 95         | <u> </u>      |
| 3/31/1998 | 118        | A             |
| 4/1/1998  | 210        |               |
| 4/2/1998  | 243        | A             |
| 4/3/1998  | 287        | A             |
| 4/4/1998  | 262        | <u> </u>      |
| 4/5/1998  | 162        | 1 Â           |
| 4/6/1998  | 109        | 1 Â           |
| 4/7/1998  | 89         | A             |
| 4/8/1998  | 79         | 1 Â           |
| 4/9/1998  | 91         | Â             |
| 4/10/1998 | 95         |               |
| 4/11/1998 | 95         | <u> </u>      |
| 4/12/1998 | 83         | Â             |
| 4/13/1998 | 71         | 1             |
| 4/14/1995 | 63         | 1 â           |
| 4/15/1998 | 61         | 1 Â           |
| 4/16/1998 | 57         | Â             |
| 4/17/1998 | 60         | Â             |

USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 equate miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Vake has been estimated.

Date Flow (cfs) All Qualification 4/18/1996 4/18/1996 4/18/1996 4/20/1998 4/22/1998 4/22/1998 4/22/1998 4/26/1998 4/26/1998 4/26/1998 4/26/1998 4/26/1998 4/28/1996 4/28/1996 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/4/1998 5/22/1998 5/22/1998 5/22/1998 58 101 100 А 66 58 49 44 77 A A 621 520 195 91 69 64 Α 5 41 А А Α A А A A

USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 5/29/1998 | 28         | A             |
| 5/30/1998 | 30         | Α             |
| 5/31/1998 | 35         | A             |
| 6/1/1998  | 30         | A             |
| 6/2/1998  | 26         | A             |
| 6/3/1998  | 22         | А             |
| 6/4/1998  | 19         | Α             |
| 6/5/1998  | 18         | A             |
| 6/6/1998  | 18         | Α             |
| 6/7/1998  | 19         | A             |
| 6/8/1998  | 25         | A             |
| 6/9/1998  | 26         | A             |
| 6/10/1998 | 24         | A             |
| 6/11/1998 | 16         | Ae            |
| 6/12/1998 | 6.5        | Ae            |
| 6/13/1998 | 3          | Ae            |
| 6/14/1998 | 1.6        | Ae            |
| 6/15/1998 | 2.3        | Ae            |
| 6/16/1998 | 3.6        | Ae            |
| 6/17/1998 | 4.2        | Ae            |
| 6/18/1998 | 2.6        | Ae            |
| 6/19/1998 | 3.6        | Ae            |
| 6/20/1998 | 2,5        | Ae            |
| 6/21/1998 | 1.7        | Aa            |
| 6/22/1998 | 1.1        | Aa            |
| 6/23/1998 | 0.7        | Ae            |
| 6/24/1998 | 1.1        | Aə            |
| 6/25/1998 | 2          | Ae            |
| 6/26/1998 | 1.3        | Ae            |
| 6/27/1998 | 1          | Ae            |
| 6/28/1996 | 0,7        | Ae            |
| 6/29/1998 | 0.5        | Ae            |
| 6/30/1998 | 0.39       | Ae            |
| 7/1/1998  | 0.3        | Ae            |
| 7/2/1998  | 0.25       | Ae            |
| 7/3/1998  | 0.23       | Ae            |
| 7/4/1998  | 0.2        | Ae            |
| 7/5/1898  | 0,3        | Aa            |
| 7/6/1998  | 0.2        | Ae            |
| 7/7/1998  | 0.1        | Ae            |
| 7/8/1998  | NA         | 1 A           |

### USGS Station 07366200 - Little Corney Bayou near Litile, LA Daily Mean Flow Data - (7/1/1965 - 6/30/2006)

206.00 square miles A = Approved for publication  $\sim$  Processing and review completed, P = Provisional data subject to revision. e  $\approx$  Value has been estimated,

Date

| 1/816     | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | Ali        | Code          |
| 7/8/1998  | NA         | A             |
| 7/10/1998 | 0.1        | Ae            |
| 7/11/1998 | 0.25       | Ae            |
| 7/12/1998 | NA         | A             |
| 7/13/1998 | NA NA      | A             |
| 7/14/1998 | NA         | A             |
| 7/16/1898 | NA         | A             |
| 7/16/1998 | NÄ         | A             |
| 7/17/1998 | NA         | A             |
| 7/18/1998 | NA         | Ā             |
| 7/19/1998 | NA         | A             |
| 7/20/1998 | NA         | A             |
| 7/21/1998 | NA         | A             |
| 7/22/1998 | NA         | A             |
| 7/23/1098 | NA         | A             |
| 7/24/1998 | 0.85       | Aa            |
| 7/25/1998 | 25         | A             |
| 7/26/1998 | 29         | A             |
| 7/27/1998 | 22         | A .           |
| 7/28/1998 | 15         | A             |
| 7/29/1998 | 14         | A             |
| 7/30/1998 | 19         | Α             |
| 7/31/1998 | 20         | A             |
| 8/1/1998  | 14         | A             |
| 8/2/1998  | 9,1        | A             |
| 8/3/1998  | 6.5        | A             |
| 8/4/1998  | 9.2        | A             |
| 8/5/1996  | 21         | A             |
| 8/6/1996  | 26         | A             |
| 8/7/1998  | 28         | A             |
| 6/8/1996  | 24         | A             |
| 8/9/1998  | 22         | A             |
| 6/10/1998 | 20         | A             |
| B/11/1998 | 19         | A             |
| 6/12/1998 | 26         | A             |
| 8/13/1998 | 64         | A             |
| 8/14/1998 | 99         | Α             |
| 8/15/1998 | 184        | A             |
| 8/16/1998 | 272        | Â             |
| 8/17/1998 | 165        | A             |
| 8/18/1998 | 73         | Α             |

Elow (etc)

.....

### USGS Station 07366200 - Little Corney Bayou near Lillie, LA Dally Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 8/19/1996 | 43         | A             |
| 8/20/1998 | 32         | A             |
| 8/21/1998 | 26         | A             |
| 8/22/1998 | 25         | Å             |
| 8/23/1998 | 24         | A             |
| 8/24/1998 | 22         | A             |
| 8/25/1996 | 21         |               |
| 6/26/1998 | 21         | A             |
| 8/27/1998 | 21         | A             |
| 8/28/1998 | 20         | A             |
| 8/29/1998 | 19         | A             |
| 8/30/1998 | 19         | A             |
| 8/31/1998 | 18         |               |
| 9/1/1996  | 17         | A             |
| 9/2/1996  | 17         | A             |
| 9/3/1998  | 17         | A             |
| 9/4/1998  | 16         | A A           |
| 9/5/1998  | 16         | A             |
| 9/6/1998  | 15         | A             |
| 9/7/1998  | 14         | A             |
| 9/8/1998  | 12         | Ä             |
| 9/9/1998  | 6,8        |               |
| 9/10/1998 | 7.1        | A             |
| 9/11/1998 | 8.3        | Ä             |
| 9/12/1998 | 30         |               |
| 9/13/1998 | 135        |               |
| 9/14/1996 | 167        | A             |
| 9/15/1996 | 203        | A             |
| 0/16/1998 | 292        | A             |
| 9/17/1998 | 282        | A             |
| 9/18/1998 | 255        | A             |
| 9/19/1998 | 177        | A             |
| 9/20/1998 | π          | A             |
| 9/21/1998 | 43         | A             |
| 9/22/1998 | 35         | Ä             |
| 9/23/1998 | 30         | A             |
| 9/24/1998 | 27         | A             |
| 9/25/1998 | 26         | Ä             |
| 9/26/1998 | 25         | . A           |
| 9/27/1998 | 24         | A             |
| 9/28/1998 | 22         | Ä             |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Date - (7/1/1 985 - 6/30/2006)

206.00 square miles A  $\approx$  Approved for publication — Processing and review completed. P = Provisional data subject to revision,  $\approx$  Value has been estimated.

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | All        | Code          |
| 9/29/1998  | 21         | Α             |
| 9/30/1998  | 20         | A .           |
| 10/1/1998  | 21         | A             |
| 10/2/1998  | 20         | A             |
| 10/3/1998  | 21         | A             |
| 10/4/1998  | 27         | - A           |
| 10/5/1998  | 38         | A             |
| 10/6/1998  | 42         | Α             |
| 10/7/1998  | 94         | A             |
| 10/8/1998  | 82         | A             |
| 10/9/1998  | 86         | A             |
| 10/10/1998 | 106        | A             |
| 10/11/1998 | 86         | Å             |
| 10/12/1998 | 51         | A             |
| 10/13/1998 | 37         | A             |
| 10/14/1998 | 32         | A             |
| 10/15/1998 | 29         | A             |
| 10/16/1998 | 27         |               |
| 10/17/1998 | 25         | A             |
| 10/18/1998 | 26         | A             |
| 10/19/1998 | 26         | A             |
| 10/20/1998 | 29         | A             |
| 10/21/1996 | 32         | A             |
| 10/22/1998 | 32         | A             |
| 10/23/1998 | 33         | Ä             |
| 10/24/1996 | 31         | A A           |
| 10/26/1998 | 29         | Ā             |
| 10/26/1998 | 27         | A A           |
| 10/27/1998 | 27         | A             |
| 10/28/1998 | 27         | 1             |
| 10/29/1998 | 27         | A             |
| 10/30/1996 | 27         | Â             |
| 10/31/1998 | 27         | Â             |
| 11/1/1998  | 28         | Â             |
| 11/2/1998  | 43         | Â             |
| 11/3/1998  | 44         | Ä             |
| 11/4/1998  | 98         | Â             |
| 11/5/1998  | 37         | Â             |
| 11/6/1998  | 35         | A             |
| 11/7/1998  | 34         | Â             |
| 11/8/1998  | 40         | Â             |

### USGS Station 07366200 - Little Corney Bayou near Little, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | All        | Code          |
| 11/9/1998  | 47         | A             |
| 11/10/1998 | 49         | A             |
| 11/11/1998 | 52         | Ä             |
| 11/12/1998 | 54         | Ä             |
| 11/13/1998 | 86         | A             |
| 11/14/1998 | 145        | A             |
| 11/15/1998 | 212        |               |
| 11/16/1998 | 151        | A             |
| 11/17/1998 | 120        | A             |
| 11/18/1998 | 105        | Ä             |
| 11/19/1998 | 91         | A             |
| 11/20/1998 | 119        | A             |
| 11/21/1998 | 188        | Å             |
| 11/22/1998 | 148        | A             |
| 11/23/1998 | 95         | A             |
| 11/24/1998 | 76         | A             |
| 11/25/1998 | 64         | A             |
| 11/26/1998 | 55         | A             |
| 11/27/1998 |            | A             |
| 11/28/1998 | 53         | A             |
| 11/29/1998 | 48         | A             |
| 11/30/1998 | 54         | A             |
| 12/1/1998  | 97         | A             |
| 12/2/1998  |            | A             |
| 12/3/1996  | 66         | A             |
| 12/4/1998  | 65         | A A           |
| 12/5/1998  | 68         | A             |
| 12/6/1998  | 70         | A             |
| 12/7/1998  | 69         | A             |
| 12/8/1998  | 276        | A             |
| 12/9/1998  | 378        | A             |
| 12/10/1998 | 323        | A             |
| 12/11/1998 | 503        | A A           |
| 12/12/1998 | 806        | A             |
| 12/13/1998 | 858        | A             |
| 12/14/1998 | 1020       | A             |
| 12/16/1998 | 862        | A             |
| 12/16/1998 | 676        | A             |
| 12/17/1998 | 510        | A             |
| 12/18/1998 | 343        | A             |
| 12/19/1998 | 242        | A             |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Dally Mean Flow Data - (7/1/1985 - 6/30/2006)

### 208.00 square miles

A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. 3 = Value has been estimated.

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | All        | Code          |
| 12/20/1998 | 247        | A             |
| 12/21/1998 | 243        | A             |
| 12/22/1998 | 392        | A             |
| 12/23/1998 | 663        | A             |
| 12/24/1998 | 753        | Α             |
| 12/25/1998 | 766        | A             |
| 12/26/1998 | 690        | A             |
| 12/27/1998 | 589        | Α             |
| 12/28/1998 | 501        | A             |
| 12/29/1998 | 419        |               |
| 12/30/1998 | 338        | Å             |
| 12/31/1998 | 265        | A             |
| 1/1/1999   | 259        | A             |
| 1/2/1999   | 1860       | A             |
| 1/3/1999   | 2890       | A             |
| 1/4/1999   | 2600       | Α             |
| 1/5/1999   | 1640       | Ä             |
| 1/6/1999   | 906        | A             |
| 1/7/1999   | 636        | A             |
| 1/8/1999   | 488        | A             |
| 1/9/1999   | 408        | A             |
| 1/10/1999  | 379        | A             |
| 1/11/1999  | 374        | A             |
| 1/12/1999  | 363        | A             |
| 1/13/1999  |            | A             |
| 1/14/1899  | 226        | A             |
| 1/15/1099  | 175        | A             |
| 1/16/1999  | 159        | A             |
| 1/17/1999  | 142        | A             |
| 1/18/1999  | 128        | A             |
| 1/19/1999  | 115        | A             |
| 1/20/1999  | 108        | A             |
| 1/21/1999  | 117        | A             |
| 1/22/1999  | 409        | A             |
| 1/23/1999  | 1300       | A             |
| 1/24/1999  | 972        | A             |
| 1/25/1999  |            | A             |
| 1/26/1999  | 661        | Α             |
| 1/27/1999  | 521        | A             |
| 1/28/1999  | 369        | A             |
| 1/29/1999  | 1760       | A             |

### USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles

A = Approved for publication — Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 1/30/1999 | 5100       | A             |
| 1/31/1099 | 6790       | A             |
| 2/1/1999  | 4170       | A             |
| 2/2/1999  | 2270       | A             |
| 2/3/1999  | 1190       | A             |
| 2/4/1999  | 773        | A             |
| 2/5/1999  | 562        | A             |
| 2/6/1999  | 418        | A             |
| 2/7/1999  | 316        | A             |
| 2/8/1999  | 245        | A             |
| 2/9/1999  | 220        | Ă T           |
| 2/10/1999 | 218        | A A           |
| 2/11/1999 | 209        | A             |
| 2/12/1999 | 231        | A             |
| 2/13/1999 | 261        | A             |
| 2/14/1999 | 212        | A             |
| 2/16/1999 | 190        | A             |
| 2/16/1999 | 171        | A             |
| 2/17/1999 | 152        | A             |
| 2/18/1999 | 144        | . A -         |
| 2/19/1999 | 135        | A             |
| 2/20/1999 | 122        | A             |
| 2/21/1999 | 114        | A             |
| 2/22/1999 | 106        | A             |
| 2/23/1999 | 99         | A             |
| 2/24/1999 | 95         | A             |
| 2/25/1999 | 90         | A             |
| 2/26/1909 | 69         | A             |
| 2/27/1999 | 91         | A             |
| 2/28/1999 | 96         | Α             |
| 3/1/1999  | 90         | A             |
| 3/2/1999  | 84         | A             |
| 3/3/1999  | 170        | A             |
| 3/4/1999  | 150        | A             |
| 3/5/1999  | 114        | A             |
| 3/6/1999  | 97         | A             |
| 3/7/1999  | 86         | A             |
| 3/8/1999  | 80         | A             |
| 3/9/1999  | 103        | Α             |
| 3/10/1999 | 137        | A             |
| 3/11/1999 | 151        | A             |

USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication — Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated,

Date Flow (cfs) Ali Qualification 912/1939 313/1995 314/1995 314/1995 314/1995 314/1995 314/1995 314/1995 312/1995 312/1995 312/1995 312/1995 312/1995 312/1995 312/1995 312/1995 312/1995 312/1995 312/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/1995 41/ 142 548 944 1170 1320 911 595 388 227 163 141 134 130 152 189 176 184 151 143 183 198 190 179 750 3100 3670 2360 1450 A Ae Ae Ae Ae Ae Ae Ae Aø A A 847 553

35 188 122

79 67

Α

USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 4/22/1999 | 60         | A             |
| 4/23/1999 | 64         | A             |
| 4/24/1999 | 50         | Α             |
| 4/25/1999 | 48         | A             |
| 4/26/1999 | 47         | A             |
| 4/27/1999 | 61         | A             |
| 4/28/1999 | 62         | A             |
| 4/29/1999 | 56         | A             |
| 4/30/1999 | 52         | A             |
| 5/1/1999  | 43         | A             |
| 5/2/1999  | 39         | A             |
| 5/3/1999  | 37         | A .           |
| 5/4/1999  | 37         | A             |
| 5/5/1999  | 53         | A             |
| 5/6/1999  | 54         | A             |
| 5/7/1999  | 45         | A             |
| 5/8/1999  | 55         | A             |
| 5/9/1999  | 51         | A             |
| 5/10/1999 | 41         | A             |
| 5/11/1999 | 37         | A             |
| 5/12/1999 | 35         | Ä             |
| 6/13/1999 | 42         | Ä             |
| 5/14/1999 | 40         | A             |
| 5/15/1999 | 36         | A             |
| 5/16/1999 | 33         | A             |
| 5/17/1999 | 29         | A             |
| 6/18/1999 | 45         | A             |
| 5/19/1999 | 79         | A             |
| 6/20/1999 | 74         | A             |
| 5/21/1999 | 57         | A             |
| 5/22/1999 | 42         | A             |
| 5/23/1999 | 35         | A             |
| 5/24/1999 | 32         | A.            |
| 5/25/1999 | 30         | A             |
| 5/26/1999 | 35         | Ä             |
| 5/27/1999 | 33         | A A           |
| 5/28/1999 | 29         | A A           |
| 5/29/1999 | 26         | A             |
| 5/30/1999 | 26         | A             |
| 5/31/1999 | 36         | Â             |
| 6/1/1999  | 72         | A             |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed, P = Provisional data subject to revision. e = Value has been estimated.

Date Flow (cfs) All Qualification Code 6/211939 6/411999 6/411999 6/511998 6/611999 6/711999 6/711999 6/111990 6/111990 6/111990 6/111990 6/1211999 6/1211999 6/1211999 6/1211999 6/1211999 6/1211999 6/1211999 6/1211999 6/1211999 6/1211999 6/1211999 6/1211999 6/1211999 6/1211999 6/1211999 6/1211999 6/1211999 6/1211999 6/1211999 6/1211999 6/1211999 6/1211999 6/1211999 6/1211999 6/1211999 6/1211999 69 74 53 41 33 21 2 3 33 <u>31</u> 24 20 18 16 1 93 6/26/1999 6/27/1999 6/26/1999 369 561 67 8/29/1999 6/30/1999 7/1/1999 7/3/1999 7/3/1999 7/3/1999 7/5/1999 7/6/1999 7/6/1999 7/6/1999 7/9/1999 7/10/1999 7/11/1999 7/11/1999 855 513 28 A

### USGS Station 07366200 - Little Corney Bayou near Lillie, LA Deily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication — Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | All        | Code          |
| 7/13/1999  | 72         | A             |
| 7/14/1999  | 72         | A             |
| 7/16/1999  | 44         | A             |
| 7/16/1999  | 30         | A             |
| 7/17/1999  | 23         | A             |
| 7/18/1999  | 19         | A             |
| 7/19/1999  | 16         | A             |
| 7/20/1999  | 14         | A             |
| 7/21/1999  | 12         | A             |
| 7/22/1999  | 10         | A             |
| 7/23/1999  | 8.9        | A             |
| 7/24/1999  | 8          | A             |
| 7/25/1999  | 8.6        |               |
| 7/26/1999  | 12         | A             |
| 7/27/1999  | 16         | A             |
| 7/28/1999  |            | A             |
| 7/29/1999  | 8.6        | A             |
| 7/30/1999  | 7.7        | A             |
| 7/31/1999  | 6.8        | A             |
| 8/1/1999   | 5.4        | A             |
| 8/2/1999   | 4.7        | A             |
| 8/3/1999   | 4.1        | A             |
| 8/4/1999   | 3.6        | A             |
| 8/5/1999 * | 3.3        | A             |
| 8/6/1999   | 3.3        | A             |
| 8/7/1999   | 4          | A             |
| 8/8/1999   | 4          | A             |
| 8/9/1999   | 3.6        | A             |
| 8/10/1999  | 3.1        | A             |
| 8/11/1999  | 2.6        | Ā             |
| 8/12/1999  | 2.3        | A             |
| 6/13/1999  | 1.9        | A             |
| 8/14/1999  | 1.6        | A             |
| 8/15/1999  | 1.5        | A             |
| 8/16/1999  | 1.4        | A             |
| 8/17/1999  | 1.3        | A             |
| 8/18/1999  | 1.2        | A             |
| 8/19/1999  | 1.1        | Ā             |
| 8/20/1999  | 1          | A             |
| 6/21/1999  | 0.94       | Α             |
| B/22/1999  | 0.83       | A             |

USGS Station 07366200 - Little Corney Bayou near Little, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication — Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated. Date Flow (cfs) All Qualification Code 8/23/1999 8/24/1999 8/25/1999 8/25/1999 8/26/1999 8/26/1999 8/26/1999 8/26/1999 0,79 0.7 0.68 8/28/1999 8/30/1999 9/1/1999 9/1/1999 9/2/1999 8/3/1999 8/3/1999 9/5/1999 0.05 1.1 1.2 1.3 14 14 13 9/6/1999 9/7/1999 9/8/1999 1.9 5.2 4.4 2.9 9/8/1996 9/10/1993 9/12/1995 9/12/1995 9/12/1995 9/12/1995 9/12/1995 9/12/1995 9/12/1995 9/12/1995 9/22/1995 9/22/1995 9/22/1995 9/22/1995 9/22/1995 9/22/1995 9/22/1995 9/22/1995 9/22/1995 9/22/1995 9/22/1995 9/22/1995 2.1 1.6 1.4 A 1.1 0.78 0.6 0.65 0.52 0.55 0.46 0,41 0.4 0.19 0.18 0.18 0.15 0.13 0.12 А 10/2/1996

USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | All        | Code          |
| 10/3/1999  | 0.1        | Α             |
| 10/4/1999  | 0.09       | A             |
| 10/5/1999  | 0.07       | A             |
| 10/6/1999  | 0.06       | Α             |
| 10/7/1999  | 0.07       | A             |
| 10/8/1999  | 0.12       | Α             |
| 10/9/1999  | 0.21       | Α             |
| 10/10/1999 | 6.2        | A             |
| 10/11/1999 | 8.2        | A             |
| 10/12/1999 | 6.5        | A             |
| 10/13/1999 | 5.3        | A             |
| 10/14/1989 | 4,9        | A             |
| 10/15/1989 | 6.7        | A             |
| 10/16/1999 | 7.9        | Α             |
| 10/17/1999 | 8.2        | Α             |
| 10/16/1999 | 7.5        | A             |
| 10/19/1989 | 6.5        | A             |
| 10/20/1999 | 6.8        | A             |
| 10/21/1999 | 7.1        | A             |
| 10/22/1999 | 6.1        | A             |
| 10/23/1999 | 9.6        | A             |
| 10/24/1999 | 9.7        | A             |
| 10/25/1999 | 9.6        | A             |
| 10/26/1999 | 9.6        | A             |
| 10/27/1999 | 10         | A             |
| 10/28/1999 | <b>i</b> 1 | A             |
| 10/29/1999 | 11         | A             |
| 10/30/1999 | 11         | A             |
| 10/31/1999 | 13         | A             |
| 11/1/1999  | 18         | A             |
| 11/2/1999  | 20         | A             |
| 11/3/1999  | 20         | A             |
| 11/4/1999  | 19         | A             |
| 11/5/1999  | 20         | A             |
| 11/6/1999  | 20         | A             |
| 11/7/1999  | 18         | A             |
| 11/6/1999  | 18         | A             |
| 11/9/1999  | 20         | A             |
| 11/10/1999 | 20         | A             |
| 11/11/1999 | 21         | Â             |
| 11/12/1999 | 22         | A             |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Delly Mean Flow Data - (7/1/1965 - 6/30/2006)

206.00 square miles A = Approved for publication -- Processing and review completed,<math>P = Provisional data subject to ravision,<math>P = Value has been estimated.

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | AI         | Code          |
| 11/13/1999 | 24         | A             |
| 11/14/1999 | 24         | A             |
| 11/15/1999 | 24         | A             |
| 11/16/1999 | 24         | A             |
| 11/17/1999 | 23         | A             |
| 11/18/1999 | 23         | A             |
| 11/19/1999 | 24         | A             |
| 11/20/1999 | 26         | A             |
| 11/21/1999 | 30         | A             |
| 11/22/1999 | 26         | A             |
| 11/23/1999 | 23         | A             |
| 11/24/1999 | 27         | A             |
| 11/26/1099 | 16         | Α             |
| 11/26/1099 | 18         | A             |
| 11/27/1999 | 16         | A             |
| 11/28/1999 | 13         | A             |
| 11/29/1999 | 15         | Ä             |
| 11/30/1999 | 17         | A             |
| 12/1/1999  | 18         | A             |
| 12/2/1999  | 20         | A             |
| 12/3/1999  | 23         | Ā             |
| 12/4/1999  | 27         | A             |
| 12/5/1999  | 51         | Α             |
| 12/6/1999  | 63         | A             |
| 12/7/1999  | 48         | Ā             |
| 12/8/1899  | 37         | A             |
| 12/9/1999  | 30         | Α             |
| 12/10/1999 | 33         | Α             |
| 12/11/1999 | 35         | À             |
| 12/12/1999 | 36         | Α             |
| 12/13/1999 | 70         | Α             |
| 12/14/1999 | 76         | A             |
| 12/15/1999 | 67         | Α             |
| 12/16/1999 | 51         | Α             |
| 12/17/1999 | 38         | A             |
| 12/18/1999 | 32         | A             |
| 12/19/1999 | 28         | A             |
| 12/21/1999 | 26         | Α             |
| 12/22/1999 | 24         | A             |
| 12/23/1999 | 22         | A             |
| 12/20/1999 | 22         | A             |

### USGS Station 07366200 - Little Corney Bayou near Little, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication - Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | All        | Code          |
| 12/24/1999 | 22         | A             |
| 12/25/1999 | 24         | A             |
| 12/26/1999 | 23         |               |
| 12/27/1999 | 22         | A A           |
| 12/28/1999 | 21         | A             |
| 12/29/1999 | 21         | A             |
| 12/30/1999 | 22         | A             |
| 12/31/1999 | 22         |               |
| 1/1/2000   | 21         |               |
| 1/2/2000   | 22         | <u></u>       |
| 1/3/2000   | 22         | A             |
| 1/4/2000   | 22         | A             |
| 1/5/2000   | 21         | Ä             |
| 1/6/2000   | 20         |               |
| 1/7/2000   | 23         |               |
| 1/6/2000   | 38         | Â             |
| 1/9/2000   | 79         | Â             |
| 1/10/2000  | 70         | Â             |
| 1/11/2000  | 60         |               |
| 1/12/2000  | 46         | Â             |
| 1/13/2000  | 37         | <u> </u>      |
| 1/14/2000  | 30         | <u>A</u>      |
| 1/15/2000  | 28         |               |
| 1/16/2000  | 28         | A             |
| 1/17/2000  | 26         | Â             |
| 1/18/2000  | 25         | A             |
| 1/19/2000  | . 25       | 1             |
| 1/20/2000  | 26         | A             |
| 1/21/2000  | 25         | Ä             |
| 1/22/2000  | 23         | 1 2           |
| 1/23/2000  | 23         | Â             |
| 1/24/2000  | 23         |               |
| 1/25/2000  | 21         | 1             |
| 1/26/2000  | 21         | Â             |
| 1/27/2000  | 23         |               |
| 1/28/2000  | 43         | A             |
| 1/29/2000  | 62         | <u> </u>      |
| 1/30/2000  | 64         | <u> </u>      |
| 1/31/2000  | 69         | A             |
| 2/1/2000   | 69         | <u> </u>      |
| 2/2/2000   | 68         | 1 <u>x</u>    |

USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

203.00 square miles A = Approved for publication — Processing and review completed.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 2/3/2000  | 65         | A             |
| 2/4/2000  | 62         | A             |
| 2/5/2000  | 58         | A             |
| 2/6/2000  | 54         | A             |
| 2/7/2000  | 48         | A             |
| 2/8/2000  | 42         | A             |
| 2/9/2000  | 38         | A             |
| 2/10/2000 | 35         | A             |
| 2/11/2000 | 32         | A             |
| 2/12/2000 | 30         | A             |
| 2/13/2000 | 28         | A             |
| 2/14/2000 | 27         | A             |
| 2/15/2000 | 25         | A             |
| 2/16/2000 | 25         | A             |
| 2/17/2000 | 25         | Å             |
| 2/18/2000 | 25         | Å             |
| 2/19/2000 | 30         | A             |
| 2/20/2000 | 35         | A             |
| 2/21/2000 | 32         | A             |
| 2/22/2000 | 29         | A             |
| 2/23/2000 | 28         | A             |
| 2/24/2000 | 27         | Α             |
| 2/25/2000 | 26         | A             |
| 2/26/2000 | 31         | A             |
| 2/27/2000 | 72         | 1 1           |
| 2/28/2000 | 109        | A             |
| 2/29/2000 | 142        | A             |
| 3/1/2000  | 128        | A A           |
| 3/2/2000  | 71         | A .           |
| 3/3/2000  | 45         | A             |
| 3/4/2000  | 36         | A             |
| 3/5/2000  | 31         | Â             |
| 3/6/2000  | 29         | Â             |
| 3/7/2000  | 27         | Ä             |
| 3/8/2000  | 25         | A             |
| 3/9/2000  | 24         | Å             |
| 3/10/2000 | 28         | Å             |
| 3/11/2000 | 118        | Ä             |
| 3/12/2000 | 214        | Â             |
| 3/13/2000 | 198        | - Â           |
| 3/14/2000 | 123        | Â             |

USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | Ali        | Code          |
| 3/15/2000 | 70         | Α             |
| 3/16/2000 | 141        | Ä             |
| 3/17/2000 | 251        | A             |
| 3/18/2000 | 252        | A             |
| 3/19/2000 | 336        | A A           |
| 3/20/2000 | 371        | A             |
| 3/21/2000 | 261        | A             |
| 3/22/2000 | 170        | A             |
| 3/23/2000 | 145        | A             |
| 3/24/2000 | 84         | A             |
| 3/25/2000 | 58         | A             |
| 3/26/2000 | 56         | A             |
| 3/27/2000 | 88         | Ā             |
| 3/28/2000 | 144        | A             |
| 3/29/2000 | 173        | A             |
| 3/30/2000 | 294        | A             |
| 3/31/2000 | 347        | A             |
| 4/1/2000  | 321        | A             |
| 4/2/2000  | 1150       | A             |
| 4/3/2000  | 1980       | A             |
| 4/4/2000  | 1190       | A             |
| 4/5/2000  | 952        | A             |
| 4/6/2000  | 868        | A             |
| 4/7/2000  | 702        | A             |
| 4/8/2000  | 526        | A             |
| 4/9/2000  | 335        | Ă             |
| 4/10/2000 | 155        | A             |
| 4/11/2000 | 91         | A             |
| 4/12/2000 | 115        | A             |
| 4/13/2000 | 203        | A             |
| 4/14/2000 | 214        | A             |
| 4/15/2000 | 189        | Α             |
| 4/16/2000 | 154        | A             |
| 4/17/2000 | 104        | Α             |
| 4/18/2000 | 72         | A             |
| 4/19/2000 | 55         | A             |
| 4/20/2000 | 44         | A             |
| 4/21/2000 | 36         | A             |
| 4/22/2000 | 30         | A             |
| 4/23/2000 | 26         | A             |
| 4/24/2000 | 25         | A             |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

206.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to ravision. a = Value as been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | Ali        | Code          |
| 4/25/2000 | 27         | Α             |
| 4/26/2000 | 38         | A             |
| 4/27/2000 | 67         | A             |
| 4/28/2000 | 56         | Α             |
| 4/29/2000 | 38         | A             |
| 4/30/2000 | 29         | A             |
| 5/1/2000  | 24         | A             |
| 6/2/2000  | 22         | A             |
| 6/3/2000  | 22         | Â             |
| 5/4/2000  | 79         | Ä             |
| 5/5/2000  | 316        | A             |
| 5/6/2000  | 491        | A             |
| 5/7/2000  | 688        | A             |
| 5/6/2000  | 668        | A             |
| 5/9/2000  | 537        | A             |
| 5/10/2000 | 430        | A             |
| 5/11/2000 | 259        | A             |
| 5/12/2000 | 73         | A             |
| 5/13/2000 | 80         | A             |
| 5/14/2000 | 148        | A A           |
| 5/15/2000 | 161        | A             |
| 5/16/2000 | 147        | A             |
| 5/17/2000 | 94         | A             |
| 5/18/2000 | 51         | A             |
| 5/19/2000 | 60         | A             |
| 5/20/2000 | 437        | A             |
| 5/21/2000 | 924        | A             |
| 5/22/2000 | 912        | A             |
| 6/23/2000 | 790        | A             |
| 5/24/2000 | 599        | Α             |
| 5/25/2000 | 347        | A             |
| 5/26/2000 | 85         | A             |
| 6/27/2000 | 45         | A             |
| 5/28/2000 | 62         | A             |
| 6/28/2000 | 141        | A             |
| 5/30/2000 | 197        | A             |
| 5/31/2000 | 261        | A             |
| 6/1/2000  | 123        | A             |
| 6/2/2000  | 44         | A             |
| 6/3/2000  | 30         | Α             |
| 6/4/2000  | 26         | A             |

### USGS Station 07366200 - Little Corney Bayou near Little, LA Daily Mean Flow Data - (7/1/1965 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
| ,         | Ali        | Code          |
| 6/5/2000  | 56         | Α             |
| 6/6/2000  | 94         | A             |
| 6/7/2000  | 85         | A             |
| 6/8/2000  | 53         | A             |
| 6/9/2000  | 35         | A             |
| 6/10/2000 | 27         | A             |
| 6/11/2000 | 24         | A             |
| 6/12/2000 | 21         | A             |
| 6/13/2000 | 17         | 1             |
| 6/14/2000 | 14         | 1             |
| 6/16/2000 | 12         | A             |
| 6/16/2000 |            | A             |
| 6/17/2000 | 13         |               |
| 6/18/2000 | 38         | Â             |
| 6/19/2000 | 62         |               |
| 6/20/2000 | 50         | Â             |
| 6/21/2000 | - 48       | Â             |
| 6/22/2000 | 76         | <u>A</u>      |
| 6/23/2000 | 144        | A             |
| 6/24/2000 | 92         | A             |
| 6/25/2000 | 45         |               |
| 6/26/2000 | 28         | 1 2           |
| 6/27/2000 | 21         | A             |
| 6/28/2000 | 21         | Å             |
| 6/29/2000 | 32         | A             |
| 6/30/2000 | 50         | Ä             |
| 7/1/2000  | 48         | Ä             |
| 7/2/2000  | 38         | A             |
| 7/3/2000  | 33         | Ä             |
| 7/4/2000  | 35         | A             |
| 7/5/2000  | 26         | A             |
| 7/6/2000  | 19         | A             |
| 7/7/2000  | 14         | A             |
| 7/8/2000  | 12         | A             |
| 7/9/2000  | 9.5        | Ä             |
| 7/10/2000 | 8.1        | A             |
| 7/11/2000 | 7.3        | A             |
| 7/12/2000 | 7.8        | A             |
| 7/13/2000 | 8.6        | A             |
| 7/14/2000 | 9.4        | A             |
| 7/15/2000 | 19         | A             |

.

USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication — Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 7/16/2000 | 22         | A             |
| 7/17/2000 | 16         | A 1           |
| 7/16/2000 | 12         | A             |
| 7/19/2000 | 9.3        | A             |
| 7/20/2000 | 7.5        | Α             |
| 7/21/2000 | 6          | A             |
| 7/22/2000 | 4.6        | A             |
| 7/23/2000 | 3          | A             |
| 7/24/2000 | 2.4        | A             |
| 7/25/2000 | 1.6        | A             |
| 7/26/2000 | 1.9        | A             |
| 7/27/2000 | 1.3        | A .           |
| 7/28/2000 | 1.1        | A .           |
| 7/29/2000 | 0.99       | A             |
| 7/30/2000 | 1.7        | A             |
| 7/31/2000 | 3          | A             |
| 8/1/2000  | 9          | A             |
| 8/2/2000  | 6.9        | 1 ×           |
| 8/3/2000  | 7,3        | A             |
| 8/4/2000  | 5,4        | A             |
| 8/5/2000  | 3.5        | 1 6           |
| 8/6/2000  | 2.4        | A             |
| 8/7/2000  | 1.7        | A             |
| 8/8/2000  | 1.4        | A             |
| 8/9/2000  | 0.89       | 1 A           |
| 8/10/2000 | 0.77       | 1 A           |
| 8/11/2000 | 0.78       |               |
| 8/12/2000 | 0,74       | Ä             |
| 8/13/2000 | 0.65       | 1 X           |
| 8/14/2000 | 0,54       | Ă             |
| 8/15/2000 | 0.46       | A             |
| 8/16/2000 | 0,41       | A             |
| 8/17/2000 | 0.43       | 1 2           |
| 8/18/2000 | 0,36       | Â             |
| 8/19/2000 | 0.32       | i â           |
| 8/20/2000 | 0.29       | <u> </u>      |
| 8/21/2000 | 0.23       | Â             |
| 8/22/2000 | 0,18       | Â             |
| B/23/2000 | 0.13       | Â             |
| 8/24/2000 | 0.08       | <u>à</u>      |
| 8/25/2000 | 0.08       | Â             |

USGS Station 07366200 - Little Corney Bayou near Litlie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 8/26/2000 | 0.03       | A             |
| 8/27/2000 | 0.02       | A             |
| 8/28/2000 | 0.01       | A             |
| 8/28/2000 | 0.01       | A             |
| 8/30/2000 | NA         | A             |
| 8/31/2000 | NA         | Α             |
| 9/1/2000  | NA         | A             |
| 9/2/2000  | NA         | A             |
| 9/3/2000  | NA         | A             |
| 9/4/2000  | NA         | A             |
| 9/5/2000  | NA         | A             |
| 9/6/2000  | NA         | A             |
| 9/7/2000  | NA         | A             |
| 9/8/2000  | NA         | Α             |
| 9/9/2000  | NA         | A             |
| 9/10/2000 | NA         | A             |
| 9/11/2000 | NA         | A             |
| 9/12/2000 | NA         | A             |
| 9/13/2000 | NA         | Α             |
| 9/14/2000 | NA         | A             |
| 9/16/2000 | NA         | A             |
| 9/16/2000 | NA         | A             |
| 9/17/2000 | NA         | A             |
| 9/18/2000 | NA         | A             |
| 9/19/2000 | NĂ         | A             |
| 8/20/2000 | NA         | A             |
| 9/21/2000 | NA         | A             |
| 9/22/2000 | NA         | Α             |
| 9/23/2000 | NA         | A             |
| 9/24/2000 | NA         | A             |
| 9/25/2000 | NA         | A             |
| 9/26/2000 | NA         | A             |
| 9/27/2000 | NA         |               |
| 9/28/2000 | NA         | A             |
| 9/29/2000 | NA         | A             |
| 9/30/2000 | NA         | 1 <u>A</u>    |
| 10/1/2000 | NA         | A             |
| 10/2/2000 | NA         | 1 Å           |
| 10/3/2000 | NA         | Â             |
| 10/4/2000 | NA         | A             |
| 10/5/2000 | NA         |               |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | Ali        | Code          |
| 10/6/2000  | NA         | A             |
| 10/7/2000  | NA         | Α             |
| 10/8/2000  | NA         | A             |
| 10/9/2000  | 0.88       | A             |
| 10/10/2000 | 1.1        | A             |
| 10/11/2000 | 0.53       | Α             |
| 10/12/2000 | 0.37       | A             |
| 10/13/2000 | 0.34       | A             |
| 10/14/2000 | 0.4        | A             |
| 10/15/2000 | 0.36       | Ă             |
| 10/16/2000 | 0.24       | A             |
| 10/17/2000 | 0.19       | Α             |
| 10/18/2000 | 0,05       | Α             |
| 10/19/2000 | 0.02       | A             |
| 10/20/2000 | 0.01       | A             |
| 10/21/2000 | NA         | A             |
| 10/22/2000 | NA NA      | À             |
| 10/23/2000 | NA         | A             |
| 10/24/2000 | NA         | Α             |
| 10/25/2000 | NA         | A             |
| 10/26/2000 | NA         | A             |
| 10/27/2000 | NA         | Α             |
| 10/28/2000 | NA         | Α             |
| 10/29/2000 | NA         | A             |
| 10/30/2000 | NA         | Α             |
| 10/31/2000 | NA         | <u>A</u>      |
| 11/1/2000  | NA         | Α             |
| 11/2/2000  | 1.2        | Α             |
| 11/3/2000  | 2.1        | A             |
| 11/4/2000  | 11         | A             |
| 11/6/2000  | 23         | A             |
| 11/6/2000  | 22         | A             |
| 11/8/2000  | 19         | A             |
| 11/9/2000  | 52         | A             |
| 11/10/2000 | 90         | A             |
| 11/10/2000 | 60         | <u>^</u>      |
| 11/12/2000 |            | <u>A</u>      |
| 11/13/2000 | 39         | A             |
| 11/14/2000 | 34         | A             |
| 11/15/2000 | 30         | A             |
|            |            | A             |

### USGS Station 07366200 - Little Corney Bayou near Little, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication  $\sim$  Processing and review completed. P = Provisional date subject to revision. e = Value has been estimated.

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | All        | Code          |
| 11/16/2000 | 28         | A             |
| 11/17/2000 | 32         | A A           |
| 11/18/2000 | 31         | A A           |
| 11/19/2000 | 29         | A             |
| 11/20/2000 | 29         | A             |
| 11/21/2000 | 27         | Â             |
| 11/22/2000 | 24         | Â             |
| 11/23/2000 | 24         | Â             |
| 11/24/2000 | 484        | Å             |
| 11/25/2000 | 1050       | A             |
| 11/26/2000 | 834        | 1 A           |
| 11/27/2000 | 620        | A             |
| 11/28/2000 | 709        | Ă             |
| 11/29/2000 | 643        | A             |
| 11/30/2000 | 427        | A             |
| 12/1/2000  | 188        | Â             |
| 12/2/2000  | 88         | A             |
| 12/3/2000  | 66         | A             |
| 12/4/2000  | 54         | A             |
| 12/5/2000  | 46         | A             |
| 12/6/2000  | 41         | Ä             |
| 12/7/2000  | 38         | A             |
| 12/8/2000  | 36         | A             |
| 12/9/2000  | 35         | A             |
| 12/10/2000 | 33         | A             |
| 12/11/2000 | 33         | A             |
| 12/12/2000 | 33         | A             |
| 12/13/2000 | 59         | A             |
| 12/14/2000 | 235        | A             |
| 12/15/2000 | 352        | A             |
| 12/16/2000 | 728        | A             |
| 12/17/2000 | 1060       | A             |
| 12/18/2000 | 965        | A             |
| 12/19/2000 |            | A             |
| 12/20/2000 | 612        | Ä             |
| 12/21/2000 | 509        | <u>A</u>      |
| 12/22/2000 | 354        | A             |
| 12/23/2000 | 165        | A             |
| 12/24/2000 | 93         | <u>A</u>      |
| 12/25/2000 | 81         | A             |
| 12/26/2000 | 113        | A             |

USGS Station 07366200 - Little Comey Bayou near Little, LA Dally Mean Flow Data - (7/1/1985 - 6/30/2008)

208.00 square miles A = Approved for publication  $\rightarrow$  Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | All        | Code          |
| 12/27/2000 | 1550       | Α             |
| 12/28/2000 | 3390       | Ä             |
| 12/29/2000 | 3540       | A             |
| 12/30/2000 | 2770       | A             |
| 12/31/2000 | 1570       | A             |
| 1/1/2001   | 935        | A             |
| 1/2/2001   | 628        | A             |
| 1/3/2001   | 439        | Α             |
| 1/4/2001   | 292        | A             |
| 1/5/2001   | 211        | A             |
| 1/6/2001   | 164        | А             |
| 1/7/2001   | 143        | A             |
| 1/8/2001   | 131        | A             |
| 1/9/2001   | 115        | A             |
| 1/10/2001  | 100        | Α .           |
| 1/11/2001  | 104        | A             |
| 1/12/2001  | 140        | A             |
| 1/13/2001  | 152        | A             |
| 1/14/2001  | 170        | A             |
| 1/15/2001  | 177        | A             |
| 1/16/2001  | 165        | A             |
| 1/17/2001  | 299        | A             |
| 1/18/2001  | 1600       | A             |
| 1/19/2001  | 3580       | A             |
| 1/20/2001  | 3920       | A             |
| 1/21/2001  | 2630       | A             |
| 1/22/2001  | 1540       | Á             |
| 1/23/2001  | 955        | A             |
| 1/24/2001  | 676        | A             |
| 1/25/2001  | 504        | A             |
| 1/26/2001  | 366        | A             |
| 1/27/2001  | 254        | A             |
| 1/28/2001  | 178        | A             |
| 1/29/2001  | 266        | A             |
| 1/30/2001  | 586        | A             |
| 1/31/2001  | 600        | A             |
| 2/1/2001   | 559        | A             |
| 2/2/2001   | 575        | A             |
| 2/3/2001   | 563        | A             |
| 2/4/2001   | 436        | A             |
| 2/5/2001   | 276        | Ā             |

USGS Station 07366200 - Little Corney Bayou near Little, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | Aji        | Code          |
| 2/6/2001  | 153        | A             |
| 2/7/2001  | 110        | A             |
| 2/8/2001  | 95         | A             |
| 2/9/2001  | 91         | A             |
| 2/10/2001 | 96         | A             |
| 2/11/2001 | 108        | A             |
| 2/12/2001 | 371        | A             |
| 2/13/2001 | 742        | A             |
| 2/14/2001 | 855        | A             |
| 2/15/2001 | 1350       | A             |
| 2/16/2001 | 2050       | A             |
| 2/17/2001 | 3570       | A             |
| 2/18/2001 | 4430       | A             |
| 2/19/2001 | 2520       | Α             |
| 2/20/2001 | 1230       | Α             |
| 2/21/2001 | 771        | Α             |
| 2/22/2001 | 575        | A             |
| 2/23/2001 | 445        | A             |
| 2/24/2001 | 356        | A             |
| 2/25/2001 | 302        | A             |
| 2/26/2001 | 254        | Α             |
| 2/27/2001 | 340        | A             |
| 2/28/2001 | 1850       | <u>A</u>      |
| 3/1/2001  | 6370       | A             |
| 3/2/2001  | 5250       | A             |
| 3/3/2001  | 3250       | A             |
| 3/4/2001  | 2660       | A             |
| 3/5/2001  | 2120       | A             |
| 3/6/2001  | 1430       | Α             |
| 3/7/2001  | 1020       | A             |
| 3/6/2001  | 730        | A             |
| 3/9/2001  | 599        | A             |
| 3/10/2001 | 556        | A             |
| 3/11/2001 | 469        | A             |
| 3/12/2001 | 497        | Α             |
| 3/13/2001 | 790        | A             |
| 3/14/2001 | 1240       | A             |
| 3/16/2001 | 2180       | A             |
| 3/16/2001 | 1830       | A             |
| 3/17/2001 | 1240       | A             |
| 3/18/2001 | 1140       | A             |

### USGS Station 07366200 - Little Comay Bayou near Lille, LA Daily Mean Flow Data - (7/1/1965 - 6/30/2005)

### 208.00 square miles

A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. a = Value has been estimated.

Date Flow (cfs) All Qualification Code All 759 536 385 266 181 3/19/2001 3/20/2001 3/20/2001 3/21/2001 3/21/2001 3/21/2001 3/22/2001 3/24/2001 3/24/2001 3/26/2001 3/26/2001 3/26/2001 3/26/2001 3/30/2001 3/30/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/1/2001 4/2/2001 4/2/2001 4/2/2001 4/2/2001 4/2/2001 4/2/2001 4/2/2001 4/2/2001 4/2/2001 4/2/2001 4/2/2001 4/2/2001 4/2/2001 4/2/2001 4/2/2001 4/2/2001 4/2/2001 4/2/2001 4/2/2001 4/2/2001 4/2/2001 4/2/2001 4/2/2001 4/2/2001 4/2/2001 4/2/2001 4/2/2001 4/2/2001 4/2/2001 4/2/2/2001 4/2/2/2001 4/2/2/2001 4/2/2/2001 4/2/2/2001 4/2/2/2001 4/2/2/2001 4/2/2/2001 4/2/2/2001 4/2/2/2001 4/2/2/2001 4/2/2/2001 4/2/2/2001 4/2/2/2001 4/2/2/2001 4/2/2/2001 4/2/2/2001 4/2/2/2001 4/2/2/2001 4/2/2/2001 4/2/2/2001 4/2/2/2001 4/2/2/2001 4/2/2/2001 4/2/2/2001 4/2/2/2001 4/2/2/2001 4/2/2/2001 4/2/2/2001 4/2/2/2001 4/2/2/200 166 298 340 312 329 356 A 398 364 360 357 353 307 218 149 116 96 81 70 61 58 132 207 239 544 711 653 522 390 223 92 66 65 59 55 46 38

### USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1965 - 6/30/2006)

206.00 square miles

A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision, e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 4/29/2001 | 32         | A             |
| 4/30/2001 | 29         |               |
| 5/1/2001  | 27         | A A           |
| 5/2/2001  | 25         | <u> </u>      |
| 5/3/2001  | 23         | Â             |
| 5/4/2001  | 20         | Â             |
| 5/5/2001  | 19         | Â             |
| 5/6/2001  | 20         | Â             |
| 5/7/2001  | 165        | A             |
| 6/8/2001  | 960        | A             |
| 5/9/2001  | 1590       | Â             |
| 5/10/2001 | 1360       | Â.            |
| 5/11/2001 | 978        | A             |
| 5/12/2001 | 618        | A             |
| 5/13/2001 | 347        | A             |
| 5/14/2001 | 111        |               |
| 5/15/2001 | 50         | A             |
| 5/16/2001 | 38         | 1             |
| 5/17/2001 | 32         |               |
| 5/18/2001 | 29         | <u>A</u>      |
| 5/19/2001 | 28         | A             |
| 5/20/2001 | <u> </u>   |               |
| 5/21/2001 | 180        | <u>A</u>      |
| 5/22/2001 | 86         | Α             |
| 5/23/2001 | 35         | <u> </u>      |
| 5/24/2001 | 26         | A             |
| 5/26/2001 | 20         | Ā             |
| 5/26/2001 | 20         | <u>A</u>      |
| 5/27/2001 | 17         | 1             |
| 5/28/2001 | 16         | A             |
| 5/29/2001 | 17         | <u>A</u>      |
| 5/30/2001 | 17         | <u>A</u>      |
| 5/31/2001 | 47         | A             |
| 6/1/2001  | 124        | <u>A</u>      |
| 6/2/2001  | 151        | A             |
| 6/3/2001  | 144        | <u>^</u>      |
| 6/4/2001  | 165        | <u>A</u>      |
| 6/5/2001  | 164        | A             |
| 6/6/2001  | 91         | A             |
| 6/7/2001  | BO         |               |
| 6/8/2001  | 94         | A             |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication — Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

٠

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | Ali        | Code          |
| 6/9/2001  | 100        | A             |
| 6/10/2001 | 202        | A             |
| 6/11/2001 | 206        | A             |
| 6/12/2001 | 86         | A             |
| 6/13/2001 | 44         | A             |
| 6/14/2001 | 31         | Ä             |
| 6/15/2001 | 30         | A             |
| 6/16/2001 | 41         |               |
| 6/17/2001 | 36         | A             |
| 6/18/2001 | 29         | A             |
| 6/19/2001 | 23         | Ä             |
| 6/20/2001 | 18         | A             |
| 6/21/2001 | 14         | Ä             |
| 6/22/2001 | 12         | A             |
| 6/23/2001 | 13         | A             |
| 6/24/2001 | 18         | A             |
| 6/25/2001 | 37         | A             |
| 6/26/2001 | 30         | A             |
| 6/27/2001 | 23         | Â             |
| 6/28/2001 | 26         | A             |
| 6/29/2001 | 34         | Ä             |
| 6/30/2001 | 50         | A             |
| 7/1/2001  | 84         | <u> </u>      |
| 7/2/2001  | 59         |               |
| 7/3/2001  | 51         |               |
| 7/4/2001  | 49         | Ä             |
| 7/5/2001  | 44         | A             |
| 7/6/2001  | 28         | Ä             |
| 7/7/2001  | 22         | A             |
| 7/8/2001  | 17         | A             |
| 7/9/2001  | 14         | Ä             |
| 7/10/2001 | 12         | A             |
| 7/11/2001 | 9.7        | Ä             |
| 7/12/2001 | 7.9        | Â             |
| 7/13/2001 | 6.7        | Â             |
| 7/14/2001 | 6.5        | A A           |
| 7/15/2001 | 7.4        | 1 ····        |
| 7/16/2001 | 6.5        | A             |
| 7/17/2001 | 5.5        | Å             |
| 7/18/2001 | 4.9        | Â             |
| 7/19/2001 | 4.6        | Â             |

USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 7/20/2001 | 4.2        | A             |
| 7/21/2001 | 5.8        | A             |
| 7/22/2001 | 5.9        | Ā             |
| 7/23/2001 | 4.8        | A             |
| 7/24/2001 | 3.5        | A             |
| 7/25/2001 | 2.8        | A             |
| 7/26/2001 | 2.4        | A             |
| 7/27/2001 | 2.3        | Ä             |
| 7/28/2001 | 2.3        | A             |
| 7/29/2001 | 2.3        | A             |
| 7/30/2001 | 2.3        | A             |
| 7/31/2001 | 2.3        | A             |
| 8/1/2001  | 2,1        | A             |
| 8/2/2001  | 1.9        | A A           |
| 8/3/2001  | 2.8        | 1 <u>x</u>    |
| 8/4/2001  | 5.3        | A             |
| 8/5/2001  | 5.2        | A             |
| 8/6/2001  | 6,4        | A             |
| 8/7/2001  | 5,1        | . <u>A</u>    |
| 8/8/2001  | 4          | Ä             |
| 8/9/2001  | 3.1        | Â             |
| 8/10/2001 | 2.6        | A             |
| 8/11/2001 | 2,3        | A             |
| 8/12/2001 | 2          | 1             |
| 8/13/2001 | 1.9        | A             |
| 8/14/2001 | 1.8        | A             |
| 8/16/2001 | 3          | A             |
| 8/16/2001 | 3,5        | A             |
| 8/17/2001 | 3.2        | A             |
| 8/18/2001 | 7.3        | A             |
| 8/19/2001 | 11         | Å             |
| 8/20/2001 | 8          |               |
| 8/21/2001 | 5.4        | A A           |
| 8/22/2001 | 4.5        |               |
| 8/23/2001 | 3.7        | A             |
| 8/24/2001 | 3.2        | <u> </u>      |
| 8/25/2001 | 2.8        | 1 Â           |
| 8/26/2001 | 2.3        | <u> </u>      |
| 8/27/2001 | 1.9        | <u></u>       |
| 8/26/2001 | 2          | <u> </u>      |
| 8/29/2001 | 2.6        |               |
| 0/20/2001 | 2.0        | A             |

### USGS Station 07386200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1965 - 6/30/2006)

206.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. • = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 8/30/2001 | 4.8        | A             |
| 8/31/2001 | 13         | A             |
| 9/1/2001  | 24         | A             |
| 9/2/2001  | 37         | A             |
| 9/3/2001  | 41         | A             |
| 9/4/2001  | 43         | A             |
| 9/5/2001  | 34         | Ae            |
| 9/6/2001  | 26         | Ae            |
| 9/7/2001  | 19         | A             |
| 9/8/2001  | 12         | A             |
| 9/9/2001  | 12         | A             |
| 9/10/2001 | 20         | A A           |
| 9/11/2001 | 15         | A             |
| 9/12/2001 | 11         | A             |
| 9/13/2001 | 6          | A             |
| 9/14/2001 | 5,4        | A             |
| 9/15/2001 | 3.9        | A             |
| 9/16/2001 | 3          | A             |
| 9/17/2001 | 2.4        | Α             |
| 9/16/2001 | 2          | Α             |
| 9/19/2001 | 2.2        | A             |
| 9/20/2001 | 2.4        | A             |
| 8/21/2001 | 3.7        | A             |
| 9/22/2001 | 6          | A             |
| 9/23/2001 | 5.4        | Α             |
| 9/24/2001 | 4.1        | A             |
| 9/25/2001 | 4.1        | A             |
| 9/26/2001 | 3.5        | A             |
| 9/27/2001 | 2.8        | A             |
| 9/28/2001 | 2.2        | A             |
| 9/28/2001 | 1.9        | A             |
| 9/30/2001 | 2          | A             |
| 10/1/2001 | 1.9        | A             |
| 10/2/2001 | 2.4        | <u>A</u>      |
| 10/3/2001 | 2.8        | A             |
| 10/4/2001 | 2.8        | Α             |
| 10/5/2001 | 3          | <u>A</u>      |
| 10/6/2001 | 5.4        | A             |
| 10/7/2001 | 5,5        | Α             |
| 10/8/2001 | 5.3        | <u> </u>      |
| 10/8/2001 | 5.2        | Α             |

### USGS Station 07366200 - Little Corney Bayou near Lilke, LA Daily Mean Flow Data - (7/1/1986 - 6/30/2006)

206.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date       | Flow (cfs) | Qualification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | AU         | Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10/10/2001 | 4.7        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10/11/2001 | 22         | Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10/12/2001 | 64         | Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10/13/2001 | 134        | 1 Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10/14/2001 | 238        | 1 Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10/15/2001 | 228        | †                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10/16/2001 | 207        | A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10/17/2001 | 246        | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10/18/2001 | 298        | 1 <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10/19/2001 | 231        | Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10/20/2001 | 61         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10/21/2001 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10/22/2001 | 14         | É la companya di compa |
| 10/23/2001 | 11         | Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10/24/2001 | 9.6        | 1 Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10/25/2001 | 8.8        | i â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10/26/2001 | 9.9        | Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10/27/2001 | 9          | 1 <u>A</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10/28/2001 | 8          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10/29/2001 | 8.5        | Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10/30/2001 | 8.6        | Ä                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10/31/2001 | 8.9        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11/1/2001  | 11         | Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11/2/2001  | 14         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11/3/2001  | 17         | Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11/4/2001  | 20         | A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11/5/2001  | 21         | Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11/6/2001  | 21         | A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11/7/2001  | 22         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11/8/2001  | 22         | Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11/9/2001  | 22         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11/10/2001 | 23         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11/11/2001 | 24         | Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11/12/2001 | 24         | Ă                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11/13/2001 | 25         | Ä                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11/14/2001 | 26         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11/15/2001 | 26         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11/16/2001 | 26         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11/17/2001 | 25         | Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11/18/2001 | 25         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11/19/2001 | 26         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

USGS Station 07366200 - Little Comey Bayou near Little, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

206.00 square miles A = Approved for publication — Processing and review completed. P = Provision. e = Value has been estimated.

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | All        | Code          |
| 11/20/2001 | 26         | A             |
| 11/21/2001 | 27         | A             |
| 11/22/2001 | 28         | 1 A           |
| 11/23/2001 | 28         | A             |
| 11/24/2001 | 31         | A A           |
| 11/25/2001 | 35         | A             |
| 11/26/2001 | 36         | A             |
| 11/27/2001 | 67         | A             |
| 11/28/2001 | 343        | A             |
| 11/29/2001 | 2310       | A             |
| 11/30/2001 | 2820       | A             |
| 12/1/2001  | 2440       | A             |
| 12/2/2001  | 2090       | A             |
| 12/3/2001  | 1240       | A             |
| 12/4/2001  | 709        | A             |
| 12/5/2001  | 449        | A             |
| 12/6/2001  | 257        | A             |
| 12/7/2001  | 110        | A             |
| 12/8/2001  | 96         | A             |
| 12/9/2001  | 190        | A             |
| 12/10/2001 | 239        | A             |
| 12/11/2001 | 277        | A             |
| 12/12/2001 | 2330       | A             |
| 12/13/2001 | 5000       | A             |
| 12/14/2001 | 5450       | A             |
| 12/15/2001 | 4640       | Ä             |
| 12/16/2001 | 3080       |               |
| 12/17/2001 | 2930       |               |
| 12/18/2001 | 1880       | A A           |
| 12/19/2001 | 2990       |               |
| 12/20/2001 | 1780       | Ä             |
| 12/21/2001 | 677        | A             |
| 12/22/2001 | 546        | A             |
| 12/23/2001 | 372        | A             |
| 12/24/2001 | 261        | Â             |
| 12/26/2001 | 191        | A             |
| 12/26/2001 | 180        | Ä             |
| 12/27/2001 | 200        | Â             |
| 12/26/2001 | 199        |               |
| 12/28/2001 | 139        | - Â           |
| 12/30/2001 | 92         | <u> </u>      |

USGS Station 07366200 - Little Corney Bayou near Little, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | All        | Code          |
| 12/31/2001 | 75         | A             |
| 1/1/2002   | 68         | A             |
| 1/2/2002   | 60         | A             |
| 1/3/2002   | 56         | A .           |
| 1/4/2002   | 54         | A             |
| 1/5/2002   | 61         | A             |
| 1/6/2002   | 156        | A             |
| 1/7/2002   | 214        | A             |
| 1/8/2002   | 225        | A .           |
| 1/9/2002   | 241        | A             |
| 1/10/2002  | 236        | A             |
| 1/11/2002  | 187        | A             |
| 1/12/2002  | 113        | A             |
| 1/13/2002  | 82         | A             |
| 1/14/2002  | 69         | A             |
| 1/15/2002  | 60         | A             |
| 1/16/2002  | 55         | Ā             |
| 1/17/2002  | 52         | A             |
| 1/18/2002  | 54         | A             |
| 1/19/2002  | 72         | A             |
| 1/20/2002  | 169        | A             |
| 1/21/2002  | 261        | A             |
| 1/22/2002  | 372        | A             |
| 1/23/2002  | 547        | A             |
| 1/24/2002  | 578        | Å             |
| 1/25/2002  | 712        | Ä             |
| 1/26/2002  | 1500       | A             |
| 1/27/2002  | 1460       | A             |
| 1/28/2002  | 1040       | A             |
| 1/29/2002  | 630        | A             |
| 1/30/2002  | 402        | A             |
| 1/31/2002  | 273        | A             |
| 2/1/2002   | 226        | A             |
| 2/2/2002   | 207        | A             |
| 2/3/2002   | 173        | <u>A</u>      |
| 2/4/2002   | 126        | Â             |
| 2/5/2002   | 98         | Ä             |
| 2/6/2002   | 189        | Â             |
| 2/7/2002   | 316        | Â             |
| 2/8/2002   | 336        | <u> </u>      |
| 2/9/2002   | 355        |               |

### USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

|    | Date      | Flow (cfs) | Qualification |
|----|-----------|------------|---------------|
|    |           | All        | Code          |
|    | 2/10/2002 | 376        | A             |
|    | 2/11/2002 | 327        | A             |
|    | 2/12/2002 | 220        | A             |
|    | 2/13/2002 | 123        | A             |
|    | 2/14/2002 | 64         | A             |
|    | 2/15/2002 | 70         | A             |
|    | 2/16/2002 | 63         | A             |
|    | 2/17/2002 | 58         | Ā             |
|    | 2/18/2002 | 55         | A             |
|    | 2/19/2002 | 114        | Ae            |
| L  | 2/20/2002 | 201        | Ae            |
|    | 2/21/2002 | 327        | A             |
|    | 2/22/2002 | 328        | A             |
|    | 2/23/2002 | 376        | Ä             |
|    | 2/24/2002 | 397        | A             |
|    | 2/25/2002 | 288        | A             |
|    | 2/26/2002 | 144        | A             |
|    | 2/27/2002 | 77         | A             |
|    | 2/28/2002 | 60         | <u> </u>      |
| _  | 3/1/2002  | 56         | A             |
| L. | 3/2/2002  | 68         | A             |
|    | 3/3/2002  | 117        | A             |
|    | 3/4/2002  | 116        | Ä             |
| _  | 3/5/2002  | 101        | A             |
|    | 3/6/2002  | 80         | A             |
|    | 3/7/2002  | 65         | A             |
| L  | 3/8/2002  | 58         | A             |
|    | 3/9/2002  | 60         | A             |
|    | 3/10/2002 | 74         | A             |
|    | 3/11/2002 | 90         | A             |
|    | 3/12/2002 | 407        | A             |
|    | 3/13/2002 | 642        | A             |
|    | 3/14/2002 | 1180       | A             |
|    | 3/15/2002 | 998        | A             |
|    | 3/16/2002 | 742        | A             |
|    | 3/17/2002 | 487        | Ä             |
|    | 3/18/2002 | 342        | A             |
|    | 3/19/2002 | 270        | A             |
|    | 3/20/2002 | 887        | A             |
|    | 3/21/2002 | 2620       | Α             |
| L  | 3/22/2002 | 1530       | A             |

### USGS Station 07366200 - Little Comay Bayou near Lillie, LA Dally Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision.  $\mathbf{s} = \forall alue has been estimated.$ 

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 3/23/2002 | 1250       | A             |
| 3/24/2002 | 896        | Â             |
| 3/26/2002 | 551        | Â             |
| 3/26/2002 | 390        | n A           |
| 3/27/2002 | 366        | A A           |
| 3/28/2002 | 411        | Â             |
| 3/29/2002 | 364        | A             |
| 3/30/2002 | 323        | Â             |
| 3/31/2002 | 1120       | T Â           |
| 4/1/2002  | 1440       |               |
| 4/2/2002  | 1710       |               |
| 4/3/2002  | 1460       | <u> </u>      |
| 4/4/2002  | 736        |               |
| 4/5/2002  | 432        |               |
| 4/6/2002  | 260        | A             |
| 4/7/2002  | 138        |               |
| 4/8/2002  | 325        | A A           |
| 4/9/2002  | 762        | A A           |
| 4/10/2002 | 772        |               |
| 4/11/2002 | 944        | <u> </u>      |
| 4/12/2002 | 758        | A             |
| 4/13/2002 | 470        | A             |
| 4/14/2002 | 277        |               |
| 4/15/2002 | 145        | A             |
| 4/16/2002 | 86         | Â             |
| 4/17/2002 | 67         | L Â           |
| 4/18/2002 | 56         | A             |
| 4/19/2002 | 49         | Â             |
| 4/20/2002 | 45         | <u> </u>      |
| 4/21/2002 | 42         | Â             |
| 4/22/2002 | 38         | Â             |
| 4/23/2002 | 36         | Â             |
| 4/24/2002 | 33         | Â             |
| 4/25/2002 | 31         | Â             |
| 4/26/2002 | 29         | Â.            |
| 4/27/2002 | 31         | A             |
| 4/28/2002 | 32         | Ä             |
| 4/29/2002 | 33         | Â             |
| 4/30/2002 | 32         | A             |
| 5/1/2002  | 29         | Â             |
| 5/2/2002  | 27         | <u> </u>      |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1965 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P= Provisional data subject to revision. e = Velue has been esimated.

| Date              | Flow (cfs) | Qualification |
|-------------------|------------|---------------|
|                   | Ali        | Code          |
| 5/3/2002          | 25         | A             |
| 5/4/2002          | 49         | A             |
| 5/6/2002          | 76         | Ă             |
| 5/6/2002          | π          | A             |
| 5/7/2002          | 62         | A             |
| 5/8/2002          | 41         | A             |
| 5/9/2002          | 31         | A             |
| 5/10/2002         | 28         | A             |
| 5/11/2002         | 26         | A             |
| 5/12/2002         | 27         | A             |
| 5/13/2002         | 30         | A             |
| 5/14/2002         | 39         | A             |
| 5/15/2002         | 33         | A             |
| 5/16/2002         | 27         | A             |
| 5/17/2002         | 25         | A             |
| 5/18/2002         | 34         | A             |
| 5/19/2002         | . 38       | A             |
| <u> 5/20/2002</u> | 41         | A             |
| 5/21/2002         | 29         | A             |
| 5/22/2002         | 23         | A             |
| 5/23/2002         | 19         | A             |
| 5/24/2002         | 16         | A             |
| 5/26/2002         | 16         | A             |
| 5/26/2002         | 15         | A             |
| 5/27/2002         | 17         | A             |
| 5/28/2002         | 19         | A             |
| 5/29/2002         | 28         | A             |
| 5/30/2002         | 130        | A             |
| 5/31/2002         | 200        | A             |
| 6/1/2002          | 191        |               |
| 6/2/2002          | 181        | <u> </u>      |
| 6/3/2002          | 162        | Â             |
| 6/4/2002          | 83         | 1             |
| 6/5/2002          | 29         | A             |
| 6/6/2002          | 22         | A A           |
| 6/7/2002          | 19         | 1 <u>2</u>    |
| 6/8/2002          | 21         | A             |
| 6/9/2002          | 20         | <u> </u>      |
| 6/10/2002         | 19         | Â             |
| 6/11/2002         | 24         |               |
| 6/12/2002         | 23         | A             |

USGS Station 07366200 - Little Corney Bayou near Little, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

| Date      | Flow (cfs) | Qualification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | All        | Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6/13/2002 | 19         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6/14/2002 | 17         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6/15/2002 | 14         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6/16/2002 | 12         | Ae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6/17/2002 | 11         | Ae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6/18/2002 | 15         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6/19/2002 | 16         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6/20/2002 | 16         | Ā                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6/21/2002 | 16         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6/22/2002 | 16         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6/23/2002 | 15         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6/24/2002 | 14         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6/25/2002 | 14         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6/26/2002 | 17         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6/27/2002 | 26         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6/28/2002 | 26         | 1 <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6/29/2002 | 28         | A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6/30/2002 | 26         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7/1/2002  | 26         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7/2/2002  | 25         | Ä                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7/3/2002  | 24         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7/4/2002  | 26         | A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7/5/2002  | 27         | <u>A</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7/6/2002  | 26         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7/7/2002  | 31         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7/8/2002  | 27         | A more than the second |
| 7/9/2002  | 23         | A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7/10/2002 | 20         | 1 <u>A</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7/11/2002 | 18         | Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7/12/2002 | 18         | A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7/13/2002 | 19         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7/14/2002 | 27         | Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7/16/2002 | 43         | <u>A</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7/16/2002 | 54         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7/17/2002 | 53         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7/18/2002 | 39         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7/19/2002 | 31         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7/20/2002 | 37         | <u>A</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7/21/2002 | 34         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7/22/2002 | 26         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7/23/2002 | 22         | <u>A</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

### USGS Station 07366200 - Liltie Comey Bayou hear Lille, LA Dally Mean Flow Data - (7/1/1885 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional dela subject to revision. e = Vetue has been estimated.

Bala

| 1        | Date      | Flow (cfa) | Qualification |
|----------|-----------|------------|---------------|
|          |           | All        | Code          |
|          | 7/24/2002 | 19         | Α             |
| <u> </u> | 7/25/2002 | 18         | A             |
|          | 7/26/2002 | 18         | A             |
|          | 7/27/2002 | 19         | A             |
|          | 7/28/2002 | 19         | A             |
|          | 7/29/2002 | 16         | A             |
|          | 7/30/2002 | 15         | A             |
|          | 7/31/2002 | 14         | A             |
|          | 8/1/2002  | 13         | A             |
|          | 8/2/2002  | 13         | A             |
|          | 6/3/2002  | 13         | A             |
|          | 6/4/2002  | 13         | A             |
|          | 6/5/2002  | 12         | A             |
|          | 8/6/2002  | 11 11      | Á             |
|          | 8/7/2002  | 10         | A             |
|          | 8/8/2002  | 9.8        | A             |
|          | 8/9/2002  | 9.2        | A             |
| _        | 8/10/2002 | 8.0        | Ā             |
|          | 8/11/2002 | 8,5        | Ä             |
| _        | 8/12/2002 | 8.3        | A             |
|          | 8/13/2002 | 8          | A             |
|          | 8/14/2002 | 8.6        | A             |
|          | 8/15/2002 | 9,6        | A             |
|          | 8/16/2002 | 22         | A             |
|          | 6/17/2002 | 85         | A             |
|          | 6/18/2002 | 72         | A             |
|          | 8/19/2002 | 31         | A             |
| _        | 8/20/2002 | 27         | A             |
|          | 8/21/2002 | 18         | Α             |
| <b></b>  | 8/22/2002 | 13         | A             |
|          | 8/23/2002 | 10         | A             |
|          | B/24/2002 | 8.2        | Α             |
| <u> </u> | 8/25/2002 | 7.4        | A             |
|          | 8/26/2002 | 6.2        | Α             |
|          | 8/27/2002 | 6.3        | A             |
| <u> </u> | 8/26/2002 | 6.1        | A             |
| j        | 8/29/2002 | 5.5        | A             |
| <b>—</b> | 6/30/2002 |            | A             |
| L        | 8/31/2002 | 4.7        | A             |
| <b>—</b> | 9/1/2002  | 4.3        | A             |
| L        | 9/2/2002  | 3.9        | A             |

### USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daity Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional date subject to revision. e = Value has been estimated.

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | All        | Code          |
| 9/3/2002   | 3,5        |               |
| 9/4/2002   | 3.4        | A             |
| 9/5/2002   | 3.8        | A             |
| 9/6/2002   | 4.3        | A             |
| 9/7/2002   | 6.2        | A             |
| 9/8/2002   | 6          | A             |
| 9/9/2002   | 6.7        | A             |
| 9/10/2002  | 6.9        | Ä             |
| 9/11/2002  | 6,6        | A             |
| 9/12/2002  | 6.1        | A             |
| 9/13/2002  | 5.2        | 1 <u>A</u>    |
| 9/14/2002  | 4.4        | Ä             |
| 9/15/2002  | 4,6        |               |
| 9/16/2002  | 6.9        |               |
| 9/17/2002  | 7          | A             |
| 9/18/2002  | 6,5        | A             |
| 9/19/2002  | 6.4        | <u>A</u>      |
| 9/20/2002  | 6.9        | T             |
| 9/21/2002  | 17         | <u> </u>      |
| 9/22/2002  | 15         | Â             |
| 9/23/2002  | 12         | Ă             |
| 9/24/2002  | 9,9        | Ae            |
| 9/25/2002  | 8.8        | Ae            |
| 9/26/2002  | 8.5        | Ae            |
| 9/27/2002  | 10         | Ae            |
| 9/28/2002  | 15         | Ae            |
| 9/29/2002  | 12         | Ae            |
| 8/30/2002  | 10         | Ae            |
| 10/1/2002  | 13         | Ae            |
| 10/2/2002  | 12         | Ae            |
| 10/3/2002  | 13         | Ae            |
| 10/4/2002  | 25         | Ae            |
| 10/5/2002  | 28         | Ae            |
| 10/6/2002  | 21         | Ae            |
| 10/7/2002  | 17         | Ae            |
| 10/8/2002  | 16         | Ae            |
| 10/9/2002  | 16         | A             |
| 10/10/2002 | 17         | Ae            |
| 10/11/2002 | 18         | Ae            |
| 10/12/2002 | 18         | Ae            |
| 10/13/2002 | 17         | Ae            |

### USGS Station 07366200 - Little Comey Bayou near Little, LA Daity Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | All        | Code          |
| 10/14/2002 | 14         | Ae            |
| 10/15/2002 | 12         | A             |
| 10/16/2002 | 10         | A             |
| 10/17/2002 | 11         | A             |
| 10/18/2002 | 9.9        | A             |
| 10/19/2002 | 13         | A             |
| 10/20/2002 | 27         | A             |
| 10/21/2002 | 29         | A             |
| 10/22/2002 | 25         | A             |
| 10/23/2002 | 17         | A             |
| 10/24/2002 | 13         | Α             |
| 10/25/2002 | 15         | A             |
| 10/26/2002 | 23         | A             |
| 10/27/2002 | 27         | A             |
| 10/28/2002 | 37         | Α             |
| 10/29/2002 | 42         | A             |
| 10/30/2002 | 48         | A             |
| 10/31/2002 | 36         | A             |
| 11/1/2002  | 25         | A             |
| 11/2/2002  |            | A             |
| 11/3/2002  | 15         | A             |
| 11/4/2002  | 21         | A             |
| 11/5/2002  | 84         | A             |
| 11/6/2002  | 177        | A             |
| 11/7/2002  | 194        | A             |
| 11/8/2002  | 184        | A             |
| 11/9/2002  | 164        | A             |
| 11/10/2002 | 92         | A             |
| 11/11/2002 | 48         | A             |
| 11/12/2002 | 33         | A             |
| 11/13/2002 | 27         | A             |
| 11/14/2002 | 25         | A             |
| 11/15/2002 | 26         | A             |
| 11/16/2002 | 25         | A             |
| 11/17/2002 | 26         | A             |
| 11/18/2002 | 25         | Ă             |
| 11/19/2002 | 25         | Ä             |
| 11/20/2002 | 25         | <u> </u>      |
| 11/21/2002 | 25         | <u>à</u>      |
| 11/22/2002 | 26         | <u> </u>      |
| 11/23/2002 | 26         | <u> </u>      |

USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication - Processing and review completed. P = Provisional data subject to revision, e = Value has been estimated,

,

| Date       | Flow (cfs) | Qualification  |
|------------|------------|----------------|
|            | Ali        | Code           |
| 11/24/2002 | 26         | Α              |
| 11/25/2002 | 27         | A              |
| 11/26/2002 | 36         | A              |
| 11/27/2002 | 69         | A              |
| 11/28/2002 | 72         | A              |
| 11/29/2002 | 74         | A              |
| 11/30/2002 | 65         | A              |
| 12/1/2002  | 47         | A              |
| 12/2/2002  | 38         | A              |
| 12/3/2002  | 33         | A              |
| 12/4/2002  | 90         | A              |
| 12/5/2002  | 213        | Α              |
| 12/6/2002  | 267        | A              |
| 12/7/2002  | 257        | A              |
| 12/8/2002  | 262        | A              |
| 12/9/2002  | 226        | A              |
| 12/10/2002 | 107        | A.             |
| 12/11/2002 | 54         | Ā              |
| 12/12/2002 | 44         |                |
| 12/13/2002 | 69         | A              |
| 12/14/2002 | 143        | Â              |
| 12/15/2002 | 162        | A              |
| 12/16/2002 | 179        | <u>A</u>       |
| 12/17/2002 | 163        | A              |
| 12/18/2002 | 162        | A              |
| 12/19/2002 | 435        | A              |
| 12/20/2002 | 2280       | Â              |
| 12/21/2002 | 4320       | 1 <del>à</del> |
| 12/22/2002 | 2420       |                |
| 12/23/2002 | 1400       | t - â          |
| 12/24/2002 | 1800       | <u>à</u>       |
| 12/25/2002 | 1570       | A A            |
| 12/26/2002 | 1330       | A              |
| 12/27/2002 | 1350       | A              |
| 12/28/2002 | 998        | A              |
| 12/29/2002 | 637        |                |
| 12/30/2002 | 416        | A              |
| 12/31/2002 | 444        | <u>A</u>       |
| 1/1/2003   | 604        | A              |
| 1/2/2003   | 639        | A              |
| 1/3/2003   | 644        | A              |

### USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2005)

208.00 square miles A = Approved for publication -- Processing and review completed, P = Provisional data subject to revision, e = Value has been estimated,

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 1/4/2003  | 908        | A A           |
| 1/5/2003  | 631        | A             |
| 1/6/2003  | 406        | A             |
| 1/7/2003  | 207        | A             |
| 1/8/2003  | 108        | Α             |
| 1/9/2003  | 83         | A             |
| 1/10/2003 | 74         | Α             |
| 1/11/2003 | 66         | A             |
| 1/12/2003 | 60         | A             |
| 1/13/2003 | 65         | A             |
| 1/14/2003 | 53         | Α             |
| 1/15/2003 | 51         | <u>A</u>      |
| 1/16/2003 | 50         | A             |
| 1/17/2003 | 49         | A             |
| 1/18/2003 | 47         | A             |
| 1/19/2003 | 46         | A             |
| 1/20/2003 | 46         | A             |
| 1/21/2003 | 47         | A             |
| 1/22/2003 | 48         | Α             |
| 1/23/2003 | 46         | A             |
| 1/24/2003 | 43         | A             |
| 1/25/2003 | 41         | Â.            |
| 1/26/2003 | 41         | A             |
| 1/27/2003 | 41         | A             |
| 1/28/2003 | 41         | A             |
| 1/29/2003 | 43         | Α             |
| 1/30/2003 | 50         | A             |
| 1/31/2003 |            | A             |
| 2/1/2003  | 51         | Α             |
| 2/2/2003  | 48         | A             |
| 2/3/2003  | 48         | <u>A</u>      |
| 2/5/2003  | 48         | Α             |
|           | 47         | Α             |
| 2/6/2003  |            | <u>A</u>      |
| 2/7/2003  | 150        | A             |
| 2/9/2003  | 192        | <u>A</u>      |
| 2/10/2003 | 221 273    | <u> </u>      |
| 2/11/2003 | 273        | <u> </u>      |
| 2/12/2003 | 283        | Α             |
| 2/13/2003 | 234        | <u> </u>      |
| 210/2003  | 230        | A             |

### USGS Station 07368200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2005)

208.00 square miles A # Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 2/14/2003 | 216        | A             |
| 2/15/2003 | 144        | Â             |
| 2/16/2003 | 201        | Â             |
| 2/17/2003 | 535        | A             |
| 2/16/2003 | 1800       | Â             |
| 2/19/2003 | 1580       | Ā             |
| 2/20/2003 | 1020       | Â             |
| 2/21/2003 | 1410       | Â             |
| 2/22/2003 | 3020       |               |
| 2/23/2003 | 5870       | Â             |
| 2/24/2003 | 3950       | <u>A</u>      |
| 2/25/2003 | 2290       | T             |
| 2/26/2003 | 1690       | <u> </u>      |
| 2/27/2003 | 1630       | A             |
| 2/28/2003 | 1830       |               |
| 3/1/2003  | 1620       | A             |
| 3/2/2003  | 1440       | A             |
| 3/3/2003  | 1110       | A             |
| 3/4/2003  | 796        | A             |
| 3/5/2003  | 598        | A             |
| 3/6/2003  | 460        | A             |
| 3/7/2003  | 357        | A             |
| 3/8/2003  | 275        | A             |
| 3/9/2003  | 225        | A             |
| 3/10/2003 | 176        | A             |
| 3/11/2003 | 137        | A             |
| 3/12/2003 | 113        | A             |
| 3/13/2003 | 116        | . <u>A</u>    |
| 3/14/2003 | 136        | <u>A</u>      |
| 3/15/2003 | 128        | A             |
| 3/16/2003 | 123        | <u>A</u>      |
| 3/17/2003 | 113        | Aa            |
| 3/18/2003 | 102        | Ae            |
| 3/19/2003 | 179        | A             |
| 3/20/2003 | 317        | A             |
| 3/21/2003 | 515        | A             |
| 3/22/2003 | 1140       | A             |
| 3/23/2003 | 893        | <u> </u>      |
| 3/24/2003 | 545        | A             |
| 3/25/2003 | 270        | <u> </u>      |
| 3/26/2003 | 148        | A             |

USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - {7/1/1965 - 6/30/2006}

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 3/27/2003 | 224        | Α             |
| 3/28/2003 | 243        | A             |
| 3/29/2003 | 217        | A             |
| 3/30/2003 | 193        | A             |
| 3/31/2003 | 119        | A             |
| 4/1/2003  | 86         | A             |
| 4/2/2003  | 72         | A             |
| 4/3/2003  | 64         | Α             |
| 4/4/2003  | 61         | A             |
| 4/5/2003  | 61         | A             |
| 4/6/2003  | 373        | Α             |
| 4/7/2003  | 2260       | A             |
| 4/8/2003  | 1800       | A             |
| 4/9/2003  | 1240       | A A           |
| 4/10/2003 | 1140       | A             |
| 4/11/2003 | 792        | A             |
| 4/12/2003 | 481        | A             |
| 4/13/2003 | 196        | A             |
| 4/14/2003 | 96         | A             |
| 4/15/2003 | 72         | A             |
| 4/16/2003 | 60         | A             |
| 4/17/2003 | 54         | A             |
| 4/18/2003 | 50         | A             |
| 4/19/2003 | 47         | A             |
| 4/20/2003 | 46         | A             |
| 4/21/2003 | 47         | A             |
| 4/22/2003 | 45         |               |
| 4/23/2003 | 41         | Â             |
| 4/24/2003 | 38         |               |
| 4/25/2003 | 41         | A             |
| 4/26/2003 | 50         | A             |
| 4/27/2003 | 64         | Â             |
| 4/28/2003 | 56         |               |
| 4/29/2003 | 45         | Â             |
| 4/30/2003 | 38         | <u> </u>      |
| 5/1/2003  | 33         | <u> </u>      |
| 5/2/2003  | 31         | A             |
| 5/3/2003  | 76         | Â             |
| 6/4/2003  | 266        | Â             |
| 5/5/2003  | 339        | Â             |
| 5/8/2003  | 194        | A             |

USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 5/7/2003  | 152        | A             |
| 5/8/2003  | 523        | Â             |
| 5/9/2003  | 770        | A             |
| 5/10/2003 | 875        | A             |
| 5/11/2003 | 555        | A             |
| 5/12/2003 | 145        | A             |
| 5/13/2003 | 54         | A             |
| 5/14/2003 | 82         | A             |
| 5/16/2003 | 205        | A             |
| 6/18/2003 | 392        | A             |
| 5/17/2003 | 512        | A             |
| 5/18/2003 | 493        | A             |
| 5/19/2003 | 324        | A             |
| 5/20/2003 | 227        | A             |
| 5/21/2003 | 205        | Α             |
| 5/22/2003 | 95         | Ä             |
| 5/23/2003 | 57         | A             |
| 5/24/2003 | 45         | A             |
| 5/25/2003 | 39         | A             |
| 5/26/2003 | 35         | LA            |
| 6/27/2003 | 37         | A             |
| 5/26/2003 | 44         | T X           |
| 5/29/2003 | 39         | Ă.            |
| 5/30/2003 | 33         | A             |
| 5/31/2003 | 26         | A             |
| 6/1/2003  | 24         | A             |
| 6/2/2003  | 21         | A             |
| 6/3/2003  | 21         | A             |
| 6/4/2003  | 22         | A             |
| 6/5/2003  | 21         | A             |
| 6/6/2003  | 21         | T A           |
| 6/7/2003  | 23         | Ā             |
| 6/8/2003  | 26         | A             |
| 6/9/2003  | 28         |               |
| 6/10/2003 | 29         |               |
| 6/11/2003 | 30         | A A           |
| 6/12/2003 | 37         |               |
| 6/13/2003 | 56         |               |
| 6/14/2003 | 65         | A             |
| 6/15/2003 | 71         | Â             |
| 6/16/2003 | 62         | A             |

### USGS Station 07366200 - Little Comey Bayou near Little, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 equare miles A = Approved for publication - Processing and review completed, P = Provisional dela subject to revision. e = Value has been extinated,

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 6/17/2003 | 50         | A             |
| 6/18/2003 | 49         | A             |
| 6/19/2003 | 51         | A             |
| 6/20/2003 | 45         | Ä             |
| 8/21/2003 | 45         | A             |
| 6/22/2003 | 40         | A             |
| 6/23/2003 | 35         | A             |
| 6/24/2003 | 31         | A             |
| 6/25/2003 | 28         | Â             |
| 6/26/2003 | 27         |               |
| 6/27/2003 | 54         | <u> </u>      |
| 6/28/2003 | 115        | <u> </u>      |
| 6/29/2003 | 130        | A             |
| 6/30/2003 | 71         | A A           |
| 7/1/2003  | 39         | A             |
| 7/2/2003  | 31         | A A           |
| 7/3/2003  | 28         | <u> </u>      |
| 7/4/2003  | 24         | Â             |
| 7/6/2003  | 24         | Ä             |
| 7/6/2003  | 55         |               |
| 7/7/2003  | 88         | <u> </u>      |
| 7/8/2003  | 51         | Ä             |
| 7/9/2003  | 33         | <u>A</u>      |
| 7/10/2003 | 25         | A             |
| 7/11/2003 | 20         | Â             |
| 7/12/2003 | 16         | A             |
| 7/13/2003 | 14         | A             |
| 7/14/2003 | 30         | A             |
| 7/15/2003 | 33         | A             |
| 7/16/2003 | 19         | A             |
| 7/17/2003 | 14         | Ä             |
| 7/18/2003 | 11         | Ă             |
| 7/19/2003 | 10         | Α             |
| 7/20/2003 | 10         | A             |
| 7/21/2003 | 11         | A             |
| 7/22/2003 | 11         | A             |
| 7/23/2003 | 10         | A             |
| 7/24/2003 | 9.6        | A             |
| 7/25/2003 | 9.2        | A             |
| 7/26/2003 | 8.9        | A             |
| 7/27/2003 | 7.3        | A             |

### USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 7/28/2003 | 6.2        | A             |
| 7/29/2003 | 5.5        | <u> </u>      |
| 7/30/2003 | 5.5        | Â             |
| 7/31/2003 | 7.8        |               |
| 8/1/2003  | 12         |               |
| 8/2/2003  | 14         | <u> </u>      |
| 8/3/2003  | 11         | Â             |
| 8/4/2003  | 8.5        | Â             |
| 8/5/2003  | 6.9        | 1 <u> </u>    |
| 8/6/2003  | 6.4        |               |
| 8/7/2003  | 10         |               |
| 8/8/2003  | 10         | 1 <u> </u>    |
| 8/9/2003  | 7.2        |               |
| 8/10/2003 | 6.9        | <u> </u>      |
| 8/11/2003 | 5.7        | A             |
| 8/12/2003 | 5.1        | <u> </u>      |
| 8/13/2003 | 8          | A             |
| 8/14/2003 | 5.5        | Â             |
| 6/15/2003 | 4.6        | 1 <u> </u>    |
| 8/16/2003 | 4.5        |               |
| 8/17/2003 | 4.7        | Â             |
| 8/18/2003 | 4.9        | <u> </u>      |
| 8/19/2003 | 4.6        | Â             |
| 8/20/2003 | 4.8        | Â             |
| B/21/2003 | 6          | 1             |
| 8/22/2003 | 4.7        | Â             |
| 8/23/2003 | 3.6        | A             |
| 8/24/2003 | 4.2        | Ä             |
| 8/25/2003 | 4.2        | Â             |
| 6/26/2003 | 3.4        | A             |
| 6/27/2003 | 3.1        | <u> </u>      |
| 8/28/2003 | 5,3        | Å             |
| 8/29/2003 | 3.8        | A             |
| 8/30/2003 | 2.7        | <u>A</u>      |
| 8/31/2003 | 2,4        | Â             |
| 9/1/2003  | 2.2        | Â             |
| 9/2/2003  | 3.3        | Ä             |
| 9/3/2003  | 6.4        | A             |
| 9/4/2003  | 6.4        | A             |
| 9/5/2003  | 5.3        |               |
| 9/6/2003  | 3.9        | A             |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication - Processing and review completed. P = Provisional data subject to revision. e = Volue has been estimated.

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | All        | Code          |
| 9/7/2003   | 2.6        | A             |
| 9/8/2003   | 2.4        | A             |
| 9/9/2003   | 3          | A             |
| 9/10/2003  | 2.4        | A             |
| 9/11/2003  | 1.5        | A             |
| 9/12/2003  | 1.3        | A             |
| 9/13/2003  | 4,4        | A             |
| 9/14/2003  | 8.2        | A             |
| 8/15/2003  | 4.1        | A             |
| 8/16/2003  | 2.7        | A             |
| 9/17/2003  | 1.7        | A             |
| 9/18/2003  | 1.1        | A             |
| 9/19/2003  | 0.73       | A             |
| 9/20/2003  | 0,48       | A             |
| 9/21/2003  | 0.6        | A             |
| 9/22/2003  | 3.8        | A             |
| 9/23/2003  | 4.9        | A             |
| 9/24/2003  | 3.8        | A             |
| 9/26/2003  | 2.4        | Ă             |
| 9/26/2003  | 1.4        | A             |
| 9/27/2003  | 0.96       | A             |
| 9/28/2003  | 0.84       | Α             |
| 9/29/2003  | 0.82       | Α             |
| 9/30/2003  | 0.74       | A             |
| 10/1/2003  | 0.65       | A             |
| 10/2/2003  | 0,55       | A             |
| 10/3/2003  | 0.52       | A             |
| 10/4/2003  | 0.49       | A             |
| 10/5/2003  | 0.59       | Ä             |
| 10/6/2003  | 0.61       | Ä             |
| 10/7/2003  | 0.53       | A             |
| 10/8/2003  | 0.73       | A             |
| 10/9/2003  | 0.93       | A             |
| 10/10/2003 | 1.1        | A             |
| 10/11/2003 | 1.5        | A             |
| 10/12/2003 | 1.9        | A             |
| 10/13/2003 | 2.2        | Â             |
| 10/14/2003 | 2.5        | A             |
| 10/15/2003 | 2.6        | A             |
| 10/16/2003 | 2.4        | A             |
| 10/17/2003 | 2.2        | A             |

USGS Station 07366200 - Little Corney Bayou near Lilfle, LA Daily Mean Flow Data - (7/1/1965 - 6/30/2006)

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | All        | Code          |
| 10/18/2003 | 1,9        | Ae            |
| 10/19/2003 | 1.7        | A             |
| 10/20/2003 | 1.6        | A             |
| 10/21/2003 | 1.7        | A             |
| 10/22/2003 | 1.7        | Ä             |
| 10/23/2003 | 1.6        | A             |
| 10/24/2003 | 1.5        | A             |
| 10/25/2003 | 1.5        | A             |
| 10/26/2003 | 3.7        | A             |
| 10/27/2003 | 5.4        | A             |
| 10/28/2003 | 4.6        | A             |
| 10/29/2003 | 3,8        | <u> </u>      |
| 10/30/2003 | 3.3        | Ä             |
| 10/31/2003 | 3.2        | A             |
| 11/1/2003  | 3.4        | A             |
| 11/2/2003  | 3.1        | A             |
| 11/3/2003  | 3.3        | A             |
| 11/4/2003  | 4          | A             |
| 11/5/2003  | 3.6        | A             |
| 11/6/2003  | 3.2        | A             |
| 11/7/2003  | 3.2        | A             |
| 11/8/2003  | 3.4        | Α             |
| 11/9/2003  | 3.5        | A             |
| t1/10/2003 | 4          | A             |
| 11/11/2003 | 4.4        | A             |
| 11/12/2003 | 5.2        | Ā             |
| 11/13/2003 | 4,3        | Ā             |
| 11/14/2003 | 3.8        | A             |
| 11/16/2003 | 3.9        | A             |
| 11/16/2003 | 4.1        | A             |
| 11/17/2003 | 11         | A             |
| 11/18/2003 | 31         | A             |
| 11/19/2003 | 61         | A             |
| 11/20/2003 | 80         | A             |
| 11/21/2003 | 68         | A A           |
| 11/22/2003 | 48         | A             |
| 11/23/2003 | 40         | A             |
| 11/24/2003 | 40         | Â             |
| 11/26/2003 | 43         | A             |
| 11/26/2003 | 40         | A A           |
| 11/27/2003 | 42         | Ä             |

### USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Meen Flow Data - (7/1/1985 - 6/30/2008)

206.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional dela subject to revision, e = Value has been estimated.

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | Alf        | Code          |
| 11/28/2003 | 42         | A             |
| 11/29/2003 | 39         | A             |
| 11/30/2003 | 37         | A             |
| 12/1/2003  | 35         | A             |
| 12/2/2003  | 33         | A             |
| 12/3/2003  | 32         | A             |
| 12/4/2003  | 31         | A             |
| 12/5/2003  | 31         |               |
| 12/6/2003  | 31         | A             |
| 12/7/2003  | 31         | A             |
| 12/8/2003  | 31         | A A           |
| 12/9/2003  | 33         | 1 <u> </u>    |
| 12/10/2003 | 41         | 1 Â           |
| 12/11/2003 | 47         | T             |
| 12/12/2003 | 46         | Â             |
| 12/13/2003 | 47         | A             |
| 12/14/2003 | 55         | <u> </u>      |
| 12/15/2003 | 54         | 1 Â           |
| 12/16/2003 | 50         | Â             |
| 12/17/2003 | 46         | Â             |
| 12/18/2003 | 42         | <u> </u>      |
| 12/19/2003 | 39         | A A           |
| 12/20/2003 | 36         | <u>A</u>      |
| 12/21/2003 | 34         |               |
| 12/22/2003 | 33         | <u>A</u>      |
| 12/23/2003 | 33         | A             |
| 12/24/2003 | 36         | A             |
| 12/25/2003 | 42         | A A           |
| 12/26/2003 | 44         |               |
| 12/27/2003 | 42         | A             |
| 12/28/2003 | 39         | <u>A</u>      |
| 12/29/2003 | 36         | <u> </u>      |
| 12/30/2003 | 45         |               |
| 12/31/2003 | 54         | A A           |
| 1/1/2004   | 52         | A             |
| 1/2/2004   | 46         | Å             |
| 1/3/2004   | 42         | A             |
| 1/4/2004   | 40         | <u> </u>      |
| 1/5/2004   | 43         |               |
| 1/6/2004   | 44         | <u>A</u>      |
| 1/7/2004   | 39         | A A           |

### USGS Station 07366200 - Little Corney Bayou near Lilile, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

206.00 square miles A = Approved for publication -- Processing and review completed, P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification  |
|-----------|------------|----------------|
|           | All        | Code           |
| 1/8/2004  | 37         | A              |
| 1/9/2004  | 37         | A A            |
| 1/10/2004 | 39         | A A            |
| 1/11/2004 | 39         | Â              |
| 1/12/2004 | 37         |                |
| 1/13/2004 | 35         | <u> </u>       |
| 1/14/2004 | 34         | Â              |
| 1/15/2004 | 34         | Â              |
| 1/16/2004 | 33         | 1 <u>^</u>     |
| 1/17/2004 | 34         | A              |
| 1/18/2004 | 41         | A A            |
| 1/19/2004 | 42         | Â              |
| 1/20/2004 | 41         | 1 <del>à</del> |
| 1/21/2004 | 39         | Â              |
| 1/22/2004 | 37         | Â              |
| 1/23/2004 | 34         | A A            |
| 1/24/2004 | 38         | Â              |
| 1/25/2004 | 156        | 1 Â            |
| 1/26/2004 | 242        | Â              |
| 1/27/2004 | 252        | <u> </u>       |
| 1/28/2004 | 238        | Â              |
| 1/29/2004 | 215        | Â              |
| 1/30/2004 | 114        | <u> </u>       |
| 1/31/2004 | 60         | Â              |
| 2/1/2004  | 49         | Ā              |
| 2/2/2004  | 44         | Â              |
| 2/3/2004  | 44         | A              |
| 2/4/2004  | 43         | A              |
| 2/5/2004  | 331        | Ā              |
| 2/6/2004  | 671        | A              |
| 2/7/2004  | 737        | A              |
| 2/8/2004  | 593        | A              |
| 2/9/2004  | 576        | A              |
| 2/10/2004 | 537        | A              |
| 2/11/2004 | 432        | A              |
| 2/12/2004 | 557        | Â              |
| 2/13/2004 | 772        | Â              |
| 2/14/2004 | 1010       | <u> </u>       |
| 2/15/2004 | 1490       | A              |
| 2/16/2004 | 1290       | A              |
| 2/17/2004 | 886        | Ä              |

### USGS Station 07366200 - Little Corney Bayou near Little, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed, P = Provisional data subject to revision. e = Value has been estimated.

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | All        | Code          |
| 2/18/2004  | 776        | A             |
| 2/19/2004  | 727        | A             |
| 2/20/2004  | 578        | Ä             |
| 2/21/2004  | 386        | A             |
| 2/22/2004  | 181        | A             |
| 2/23/2004  | 95         | A             |
| 2/24/2004  | 89         | A             |
| 2/26/2004  | 246        | A             |
| 2/26/200-4 | 670        | A             |
| 2/27/2004  | 764        | A             |
| 2/26/2004  | 736        | A             |
| 2/29/2004  | 798        | A             |
| 3/1/2004   | 1330       | A             |
| 3/2/2004   | 1990       | Ä             |
| 3/3/2004   | 4970       | A             |
| 3/4/2004   | 2930       | A             |
| 3/5/2004   | 1720       | A             |
| 3/6/2004   | 1260       | A             |
| 3/7/2004   | 1040       | A             |
| 3/8/2004   | 1100       | Ä             |
| 3/9/2004   | 886        | A             |
| 3/10/2004  | 602        | A             |
| 3/11/2004  | 370        | Â             |
| 3/12/2004  | 165        | A             |
| 3/13/2004  | 89         | A             |
| 3/14/2004  | 95         | A             |
| 3/15/2004  | 155        | A             |
| 3/16/2004  | 176        | A             |
| 3/17/2004  | 186        | A             |
| 3/18/2004  | 201        |               |
| 3/19/2004  | 186        | <u> </u>      |
| 3/20/200-4 | 128        | Â             |
| 3/21/200-4 | 136        | Â             |
| 3/22/2004  | 215        | <u> </u>      |
| 3/23/2004  | 275        | Â             |
| 3/24/2004  | 333        | 1 <u> </u>    |
| 3/25/2004  | 297        | A             |
| 3/26/2004  | 143        | <u> </u>      |
| 3/27/2004  | 88         | <u> </u>      |
| 3/28/2004  | 75         | <u> </u>      |
| 3/29/2004  | 239        |               |

USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1965 - 6/30/2006)

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | Â          | Code          |
| 3/30/2004 | 380        | Α             |
| 3/31/2004 | 417        | A             |
| 4/1/2004  | 441        | A             |
| 4/2/2004  | 435        | A             |
| 4/3/2004  | 288        | A             |
| 4/4/2004  | 104        | A             |
| 4/5/2004  | 70         | A             |
| 4/6/2004  | 58         | A             |
| 4/7/2004  | 52         | A             |
| 4/8/2004  | 52         | A             |
| 4/9/2004  | 57         | A             |
| 4/10/2004 | 83         | Ă Ă           |
| 4/11/2004 | 146        | A             |
| 4/12/2004 | 264        | A             |
| 4/13/2004 | 279        | A             |
| 4/14/2004 | 260        | A             |
| 4/15/2004 | 247        | 1 A           |
| 4/16/2004 | 244        | A             |
| 4/17/2004 | 177        | A             |
| 4/18/2004 | 63         | A             |
| 4/19/2004 | 58         | Å             |
| 4/20/2004 | 48         | A             |
| 4/21/2004 | 44         | Å             |
| 4/22/2004 | 41         | À             |
| 4/23/2004 | 38         | A             |
| 4/24/2004 | 36         | Â             |
| 4/25/2004 | 42         | i â           |
| 4/26/2004 | 61         | 1             |
| 4/27/2004 | 84         | A A           |
| 4/28/2004 | 120        | Ä             |
| 4/29/2004 | 152        | Â             |
| 4/30/2004 | 112        | Â             |
| 5/1/2004  | 236        | Ä             |
| 5/2/2004  | 517        | Â             |
| 5/3/2004  | 701        | Â             |
| 5/4/2004  | 833        | Ä             |
| 5/5/2004  | 738        | A             |
| 5/6/2004  | 584        | Â             |
| 5/7/2004  | 289        |               |
| 5/8/2004  | 66         | <u>A</u>      |
| 5/8/2004  | 43         | <u>A</u>      |

### USGS Station 07366200 - Little Comey Bayou near Lille, LA Delly Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication --- Processing and review completed. P = Provisional data subject to revision. a = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 6/10/2004 | 37         | A             |
| 5/11/2004 | 37         | A             |
| 5/12/2004 | 136        | A             |
| 5/13/2004 | 345        | A             |
| 5/14/2004 | 409        | A             |
| 6/15/2004 | 534        | A             |
| 5/16/2004 | 1070       | A             |
| 5/17/2004 | 862        | A             |
| 5/18/2004 | 576        | A             |
| 5/19/2004 | 279        | A             |
| 5/20/2004 | 61         | A             |
| 5/21/2004 | 62         | Ä             |
| 5/22/2004 | 43         | A             |
| 5/23/2004 | 37         | A             |
| 5/24/2004 | 33         | A             |
| 5/25/2004 | 29         | A             |
| 5/26/2004 | 26         | A             |
| 5/27/2004 | 23         | A             |
| 5/28/2004 | 21         | Α             |
| 5/29/2004 | 27         | A             |
| 5/30/2004 | 37         | Ā             |
| 5/31/2004 | 397        | A             |
| 6/1/2004  | 726        | A             |
| 6/2/2004  | 665        | A             |
| 6/3/2004  | 1440       | A             |
| 6/4/2004  | 1400       | A             |
| 6/5/2004  | 996        | A             |
| 6/6/2004  | 729        | A             |
| 6/7/2004  | 609        | A             |
| 6/8/2004  | 433        | Α             |
| 6/9/2004  | 213        | Α             |
| 6/10/2004 |            | A             |
| 6/11/2004 | 160        | Α             |
| 6/12/2004 | 171        | A             |
| 6/13/2004 | 100        | A             |
| 6/14/2004 | 55         | A             |
| 6/15/2004 | 43         | A             |
| 6/16/2004 | 63         | Α             |
| 6/17/2004 | 97         | A             |
| 6/18/2004 | 88         | A             |
| 6/19/2004 | 58         | Α             |

### USGS Station 07366200 - Little Comey Bayou near Little, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2008)

208.00 square miles A = Approved for publication — Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification                         |
|-----------|------------|---------------------------------------|
|           | Alt        | Code                                  |
| 6/20/2004 | 120        | A                                     |
| 6/21/2004 | 183        | Å                                     |
| 6/22/2004 | 94         | A                                     |
| 6/23/2004 | 146        | A                                     |
| 6/24/2004 | 263        | Á                                     |
| 6/25/2004 | 614        | A                                     |
| 6/26/2004 | 967        | A                                     |
| 6/27/2004 | 1470       | A                                     |
| 6/26/2004 | 1500       | A                                     |
| 6/29/2004 | 1140       | A                                     |
| 6/30/2004 | 1390       | A                                     |
| 7/1/2004  | 2190       | A                                     |
| 7/2/2004  | 1510       | 1 <del>x</del>                        |
| 7/3/2004  | 930        | Å                                     |
| 7/4/2004  | 611        | A                                     |
| 7/6/2004  | 486        | A A                                   |
| 7/6/2004  | 347        | Â                                     |
| 7/7/2004  | 127        | Â                                     |
| 7/8/2004  | 55         | A                                     |
| 7/9/2004  | 42         | A                                     |
| 7/10/2004 | 35         | Â                                     |
| 7/11/2004 | 30         | A A                                   |
| 7/12/2004 | 26         | A                                     |
| 7/13/2004 | 24         | Ä                                     |
| 7/14/2004 | 21         | Â                                     |
| 7/15/2004 | 18         | Â                                     |
| 7/16/2004 | 16         | A                                     |
| 7/17/2004 | 18         | A                                     |
| 7/18/2004 | 22         | A                                     |
| 7/19/2004 | 20         | Â                                     |
| 7/20/2004 | 18         | A A A A A A A A A A A A A A A A A A A |
| 7/21/2004 | 17         | Ā                                     |
| 7/22/2004 | 15         | Â                                     |
| 7/23/2004 | 14         | A A                                   |
| 7/24/2004 | 12         | A                                     |
| 7/25/2004 | 12         | Â                                     |
| 7/26/2004 | 43         | Ä                                     |
| 7/27/2004 | 120        |                                       |
| 7/28/2004 | 135        | A                                     |
| 7/29/2004 | 60         | Ä                                     |
| 7/30/2004 | 38         | Ă A                                   |

USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 8/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed, P = Provisional data subject to revision. e = Vatue has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 7/31/2004 | 41         | A             |
| 8/1/2004  | 108        | - <u>A</u>    |
| 8/2/2004  | 98         | A             |
| 8/3/2004  | 44         | A             |
| 8/4/2004  | 27         | Ä             |
| 8/5/2004  | 20         | A             |
| 8/6/2004  | 15         | A             |
| 8/7/2004  | 11         | A             |
| 8/8/2004  | 8.2        | A             |
| 8/9/2004  | 6,5        | A             |
| 8/10/2004 | 5.1        | A             |
| 8/11/2004 | 6          | A             |
| 8/12/2004 | 7.6        | A             |
| 8/13/2004 | 11         | A             |
| 6/14/2004 | 15         | A             |
| 8/15/2004 | . 13       | A             |
| 8/16/2004 | 8,9        |               |
| 8/17/2004 | 7.7        | A             |
| 8/18/2004 | 8.3        | A             |
| 8/19/2004 | 9.3        | A             |
| 8/20/2004 | 10         | A             |
| 6/21/2004 | 14         | A             |
| 8/22/2004 | 25         | A             |
| 8/23/2004 | 38         | A             |
| 6/24/2004 | 72         | A             |
| 8/25/2004 | 96         | A             |
| 8/26/2004 | 51         | A             |
| 8/27/2004 | 30         | A             |
| 8/28/2004 | 29         | A             |
| 8/29/2004 | 21         | A             |
| 8/30/2004 | 14         |               |
| 8/31/2004 | 11         | A             |
| 9/1/2004  | 9          | A             |
| 9/2/2004  | 7          | A             |
| 9/3/2004  | 5.7        | A             |
| 9/4/200-4 | 4.9        | A             |
| 9/5/2004  | 4.3        | A             |
| 9/6/2004  | 4,1        | A             |
| 9/7/2004  | 4.2        | Â             |
| 9/8/200-4 | 4.3        | Â             |
| 8/9/2004  | 3.9        | A A           |

USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2008)

| Date       | Flow (cfs) | Qualification                         |
|------------|------------|---------------------------------------|
|            | All        | Code                                  |
| 9/10/2004  | 3.5        | A                                     |
| 8/11/2004  | 2.8        | A                                     |
| 9/12/2004  | 2.6        | A                                     |
| 9/13/2004  | 2.1        | Â                                     |
| 9/14/2004  | 1.6        | A                                     |
| 9/15/2004  | 1.5        | A                                     |
| 9/16/2004  | 1.3        | A                                     |
| 9/17/2004  | 1          | A                                     |
| 9/18/2004  | 0.91       | A                                     |
| 9/19/2004  | 0.77       | A                                     |
| 9/20/2004  | 0.56       | A                                     |
| 9/21/2004  | 0,47       | A                                     |
| 9/22/2004  | 0.37       | - <del></del>                         |
| 9/23/2004  | 0.3        | A                                     |
| 9/24/2004  | 0.34       | A                                     |
| 9/25/2004  | 0.33       | A .                                   |
| 9/26/2004  | 0.39       | A                                     |
| 9/27/2004  | 0,34       | A A                                   |
| 9/28/2004  | 0.4        | A                                     |
| 9/29/2004  | 0.58       | A                                     |
| 9/30/2004  | 0.7        | A                                     |
| 10/1/2004  | 0,73       | 1 <u> </u>                            |
| 10/2/2004  | 0.72       | A A                                   |
| 10/3/2004  | 0,64       | T À                                   |
| 10/4/2004  | 0,59       | A                                     |
| 10/5/2004  | 0,53       | Ä                                     |
| 10/6/2004  | 0.46       | A                                     |
| 10/7/2004  | 0.52       | <u> </u>                              |
| 10/8/2004  | 3.3        | 1 2                                   |
| 10/9/2004  | 91         | Â                                     |
| 10/10/2004 | 403        | A                                     |
| 10/11/2004 | 885        | A                                     |
| 10/12/2004 | 1960       | Â                                     |
| 10/13/2004 | 1610       | A                                     |
| 10/14/2004 | 1010       | Â                                     |
| 10/15/2004 | 603        | Â                                     |
| 10/16/2004 | 302        | A A A A A A A A A A A A A A A A A A A |
| 10/17/2004 | 74         | A                                     |
| 10/18/2004 | 41         |                                       |
| 10/19/2004 | 34         | A                                     |
| 10/20/2004 | 30         | <u>A</u>                              |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1965 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional dala subject to revision. = Value has been estimated.

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | All        | Code          |
| 10/21/2004 | 30         | A             |
| 10/22/2004 | 27         | A             |
| 10/23/2004 | 28         | A             |
| 10/24/2004 | 33         | A             |
| 10/25/2004 | 37         | A             |
| 10/26/2004 | 34         | A             |
| 10/27/2004 | 37         | A             |
| 10/28/2004 | 80         | A             |
| 10/29/2004 | 137        | A             |
| 10/30/2004 | 234        | A             |
| 10/31/2004 | 311        | A A           |
| 11/1/2004  | 159        | A             |
| 11/2/2004  | 381        | A             |
| 11/3/2004  | 653        | A             |
| 11/4/2004  | 1300       | A             |
| 11/5/2004  | 1700       | A A           |
| 11/6/2004  | 1140       | A             |
| 11/7/2004  | 693        | A             |
| 11/8/2004  | 429        | A             |
| 11/9/2004  | 188        | A             |
| 11/10/2004 | 66         | A             |
| 11/11/2004 | 58         | A             |
| 11/12/2004 | 63         | Α             |
| 11/13/2004 | 60         | A             |
| 11/14/2004 | 57         | A             |
| 11/16/2004 | 53         | Α             |
| 11/16/2004 | 47         | Α             |
| 11/17/2004 | 42         | A             |
| 11/18/2004 | 73         | A             |
| 11/19/2004 | 245        | A             |
| 11/20/2004 | 325        | Α             |
| 11/21/2004 | 482        | A             |
| 11/22/2004 | 752        | A             |
| 11/23/2004 | 796        | Α             |
| 11/24/2004 | 885        | A             |
| 11/25/2004 | 1320       | A             |
| 11/26/2004 | 1310       | <u>A</u>      |
| 11/27/2004 | 1030       | A             |
| 11/26/2004 | 812        | ΑΑ            |
| 11/29/2004 | 604        | A             |
| L1N30/2004 | 805        | Â             |

### USGS Station 07366200 - Little Corney Bayou near Little, LA Dally Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date       | Flow (cfa) | Qualification |
|------------|------------|---------------|
|            | All        | Coda          |
| 12/1/2004  | 1300       | A             |
| 12/2/2004  | 1370       | A             |
| 12/3/2004  | 1360       | A             |
| 12/4/2004  | 1070       | A             |
| 12/5/2004  | 728        | Ä             |
| 12/6/2004  | 618        | Ā             |
| 12/7/2004  | 689        | Å             |
| 12/8/2004  | 1170       | A             |
| 12/9/2004  | 2040       | A             |
| 12/10/2004 | 2280       | A             |
| 12/11/2004 | 1610       | A             |
| 12/12/2004 | 953        | Ä             |
| 12/13/2004 | 640        | A             |
| 12/14/2004 | 453        | A             |
| 12/15/2004 | 279        | Â             |
| 12/16/2004 | 140        | A             |
| 12/17/2004 | 98         | A A           |
| 12/18/2004 | 86         | Â             |
| 12/19/2004 | 80         | Ä             |
| 12/20/2004 | 74         | Â             |
| 12/21/2004 | 69         | A             |
| 12/22/2004 | 132        | Ä             |
| 12/23/2004 | 530        | Â             |
| 12/24/2004 | 1120       | A A           |
| 12/25/2004 | 2380       | A             |
| 12/26/2004 | 1480       | A             |
| 12/27/2004 | 786        | Ä             |
| 12/28/2004 | 505        | Å             |
| 12/29/2004 | 327        | A             |
| 12/30/2004 | 197        | A             |
| 12/31/2004 | 133        | Ä             |
| 1/1/2005   | 114        | A             |
| 1/2/2005   | 116        | A A           |
| 1/3/2005   | 118        | A             |
| 1/4/2005   | 110        | A             |
| 1/5/2005   | 101        | A             |
| 1/6/2005   | 110        | A             |
| 1/7/2005   | 287        | A             |
| 1/8/2005   | 710        | A             |
| 1/9/2005   | 1010       | A             |
| 1/10/2005  | 1420       | A             |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication - Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 1/11/2005 | 1090       | A             |
| 1/12/2005 | 673        | A             |
| 1/13/2005 | 656        | A             |
| 1/14/2005 | 994        | A             |
| 1/15/2005 | 1820       | A             |
| 1/16/2005 | 1570       | A             |
| 1/17/2005 | 900        | A             |
| 1/18/2005 | 541        | A             |
| 1/19/2005 | 333        | A             |
| 1/20/2005 | 187        | A             |
| 1/21/2005 | 134        | A             |
| 1/22/2005 | 115        | A             |
| 1/23/2005 | 99         | A             |
| 1/24/2005 | 84         | Ä             |
| 1/26/2005 | 75         | A             |
| 1/26/2005 | 71         | A             |
| 1/27/2005 | 68         | Â             |
| 1/28/2005 | 128        | Â             |
| 1/29/2005 | 443        | A A           |
| 1/30/2005 | 567        | Â             |
| 1/31/2005 | 813        | Â             |
| 2/1/2005  | 1100       | A             |
| 2/2/2005  | 1110       | Â             |
| 2/3/2005  | 1140       | 1 - <u>2</u>  |
| 2/4/2005  | 1100       | Â             |
| 2/5/2005  | 995        | Â             |
| 2/6/2005  | 793        |               |
| 2/7/2005  | 637        |               |
| 2/8/2005  | 767        | Â             |
| 2/9/2005  | 1060       | Â             |
| 2/10/2005 | 1600       | Â             |
| 2/11/2005 | 1310       |               |
| 2/12/2005 | 809        | A             |
| 2/13/2005 | 540        | - <u>A</u>    |
| 2/14/2005 | 347        | <u>A</u>      |
| 2/15/2005 | 239        | A             |
| 2/16/2005 | 197        | A             |
| 2/17/2005 | 159        | A             |
| 2/18/2005 | 128        | A             |
| 2/19/2005 |            | <u>A</u>      |
| 2/20/2005 | 109        | Α             |
| 220/2003  | 104        | A             |

USGS Station 07366200 - Little Corney Bayou near Little, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 2/21/2005 | 117        | A             |
| 2/22/2005 | 121        | A             |
| 2/23/2005 | 144        | A             |
| 2/24/2005 | 310        | A             |
| 2/25/2005 | 361        | A             |
| 2/26/2005 | 402        | A             |
| 2/27/2005 | 406        | A A           |
| 2/28/2005 | 331        | A             |
| 3/1/2005  | 189        | A             |
| 3/2/2005  | 125        | A             |
| 3/3/2005  | 104        | A             |
| 3/4/2005  | 117        | Å             |
| 3/5/2005  | 117        | A             |
| 3/6/2005  | 106        | A             |
| 3/7/2005  | 98         | A             |
| 3/8/2005  | 128        | Å             |
| 3/9/2005  | 164        | A             |
| 3/10/2005 | 193        | A             |
| 9/11/2005 | 174        | A             |
| 3/12/2005 | 135        | Ä             |
| 3/13/2005 | 100        | A             |
| 3/14/2005 | 76         | A             |
| 3/15/2005 | 61         | A             |
| 3/16/2005 | 53         | A             |
| 3/17/2005 | 49         | Ä             |
| 3/18/2005 | 46         | A             |
| 3/19/2005 | 44         | A             |
| 3/20/2005 | 46         | A             |
| 3/21/2005 | 55         | A             |
| 3/22/2005 | 291        | A             |
| 3/23/2005 | 431        | A             |
| 3/24/2005 | 415        | A             |
| 3/26/2005 | 348        | A             |
| 3/28/2005 | 194        | A             |
| 3/27/2005 | 108        | A             |
| 3/28/2005 | 183        | A             |
| 3/29/2005 | 207        | A             |
| 3/30/2005 | 222        | A A           |
| 3/31/2005 | 190        | Ā             |
| 4/1/2005  | 120        | Ä             |
| 4/2/2005  | 84         | Â             |

### USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1965 - 6/30/2006)

208.00 equare miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

-

|    | Date      | Flow (cfs) | Qualification            |
|----|-----------|------------|--------------------------|
|    |           | All        | Code                     |
|    | 4/3/2005  | 66         | A                        |
|    | 4/4/2005  | 56         | 1. A                     |
|    | 4/5/2005  | 49         | L A                      |
|    | 4/6/2005  | 67         | A A                      |
|    | 4/7/2005  | 87         | A                        |
|    | 4/8/2005  | 85         | Ä                        |
|    | 4/9/2005  | 95         | A                        |
|    | 1/10/2005 | 84         | A                        |
|    | 4/11/2005 | 173        | A                        |
|    | /12/2005  | 1100       | A                        |
|    | /13/2005  | 3640       | <del>`````````````</del> |
|    | 4/14/2005 | 2100       | <u> </u>                 |
|    | /15/2005  | 1050       | Ă                        |
|    | /16/2005  | 588        | <u>A</u>                 |
|    | /17/2005  | 308        |                          |
|    | /18/2005  | 103        | <u>A</u>                 |
|    | /19/2005  | 61         | A                        |
|    | /20/2005  | 49         | L A                      |
|    | /21/2005  | 43         | Â.                       |
| 4  | /22/2005  | 40         | Â                        |
| 4  | /23/2005  | 37         | <u> </u>                 |
| 4  | /24/2005  | 33         | <u>A</u>                 |
|    | /25/2005  | 30         | <u> </u>                 |
|    | /26/2005  | 36         | <u> </u>                 |
|    | /27/2005  | 55         |                          |
|    | /28/2005  | 76         | A                        |
|    | /29/2005  | 65         |                          |
|    | /30/2005  | 56         | A                        |
| Ę  | 5/1/2005  | 38         | Â                        |
|    | /2/2005   | 33         | A                        |
|    | 5/3/2005  | 29         | Ā                        |
|    | /4/2005   | 27         | A A                      |
|    | /5/2005   | 26         | A                        |
|    | /6/2005   | 26         | <u> </u>                 |
|    | 7/2005    | 26         | A A                      |
|    | /8/2005   | 27         | A                        |
|    | /9/2005   | 31         |                          |
|    | 10/2005   | 36         | Â                        |
| 5/ | 11/2005   | 34         | Ā                        |
|    | 12/2005   | 30         | Ă T                      |
| 5/ | 13/2005   | 27         | Â                        |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Dally Mean Flow Data - (7/1/1985 - 5/30/2006)

208.00 square miles A ≈ Approved for publication ↔ Processing and review completed. P ≈ Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 5/14/2005 | 24         |               |
| 5/15/2005 | 26         | A             |
| 5/16/2005 | 28         | A             |
| 5/17/2005 | 34         | A             |
| 5/18/2005 | 33         | A             |
| 5/19/2005 | 28         | A             |
| 5/20/2005 | 25         | Ae            |
| 6/21/2005 | 23         | A             |
| 6/22/2005 | 20         | A             |
| 5/23/2005 | 21         | <u> </u>      |
| 5/24/2005 | 23         | <u> </u>      |
| 5/26/2005 | 50         | A             |
| 5/26/2005 | 28         | A             |
| 5/27/2005 | 20         | A             |
| 5/28/2005 | 23         | <u> </u>      |
| 6/29/2005 | 75         | <u> </u>      |
| 5/30/2005 | 475        |               |
| 5/31/2005 | 517        | <u> </u>      |
| 6/1/2005  | 176        | A             |
| 6/2/2005  | 56         | <u> </u>      |
| 6/3/2005  | 42         | A A           |
| 6/4/2005  | 35         | Â             |
| 8/5/2005  | 27         | A             |
| 8/6/2005  | 22         | Ä             |
| 6/7/2005  | 22         | A             |
| 6/6/2005  | 22         |               |
| 6/9/2005  | 24         | Â             |
| 6/10/2005 | 21         | Â             |
| 6/11/2005 | 20         | <u> </u>      |
| 6/12/2005 | 20         | <u> </u>      |
| 6/13/2005 | 18         | Ä             |
| 6/14/2005 | 17         | Â             |
| 6/15/2005 | 17         | A             |
| 6/16/2005 | 15         | Â             |
| 6/17/2005 | 15         | A             |
| 6/16/2005 |            | A             |
| 6/19/2005 | 19         | A             |
| 6/20/2005 | 18         | A             |
| 6/21/2005 | 17         | A             |
| 6/22/2005 | 15         | A             |
| 6/23/2005 | 13         | A             |

### USGS Station 07366200 - Little Corney Bayou near Little, LA Daily Mean Flow Data - (7/1/1965 - 6/30/2006)

208.00 equare miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 6/24/2005 | 11         | Α             |
| 6/25/2005 | 9.6        | A             |
| 6/26/2005 | 8.7        | A             |
| 6/27/2005 | 7.8        | A             |
| 6/28/2005 | 7          | A             |
| 6/29/2005 | 6          | A             |
| 6/30/2005 | 4.9        | A             |
| 7/1/2005  | 4.6        | A             |
| 7/2/2005  | 4.2        | Â             |
| 7/3/2005  | 3.7        | 1 <u> </u>    |
| 7/4/2005  | 3.6        | A             |
| 7/6/2005  | 3.8        | A             |
| 7/6/2005  | 10         | Â             |
| 7/7/2005  | 19         | Â             |
| 7/8/2005  | 13         | Â             |
| 7/9/2005  | 7.2        | Â             |
| 7/10/2005 | 6.3        | Â.            |
| 7/11/2005 | 5          | Â             |
| 7/12/2005 | 4.9        | Â             |
| 7/13/2005 | 4.5        |               |
| 7/14/2005 | 3.3        | 1 <u> </u>    |
| 7/16/2005 | 2.6        | Â             |
| 7/16/2005 | 2.5        | A             |
| 7/17/2005 | 5.6        | A             |
| 7/18/2005 | 5.8        | Â             |
| 7/19/2005 | 3.4        | Â             |
| 7/20/2005 | 2,5        | A             |
| 7/21/2005 | 1.8        | A             |
| 7/22/2005 | 1.3        |               |
| 7/23/2005 | 1.1        | 1             |
| 7/24/2005 | 0.87       |               |
| 7/26/2005 | 0.7        | A             |
| 7/28/2005 | 0.56       |               |
| 7/27/2005 | 0.6        | <u>A</u>      |
| 7/28/2005 | 0.64       | <u> </u>      |
| 7/29/2005 | 0.52       | A             |
| 7/30/2005 | 0.52       | A             |
| 7/31/2005 | 0.35       | A             |
| 8/1/2005  | 0.35       | <u> </u>      |
| 8/2/2005  | 0.37       | Á.            |
| 8/3/2005  |            | A             |
|           | 0.25       | A             |

USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

| Date      | Flow (cfs) | Qualification    |
|-----------|------------|------------------|
|           | All        | Code             |
| 8/4/2005  | 0.21       | A                |
| 8/6/2005  | 0.19       | A                |
| 8/8/2005  | 0.17       | A A              |
| 8/7/2005  | 0.14       | A                |
| 6/8/2005  | 0.11       | A                |
| 8/9/2005  | 0.09       | A                |
| 8/10/2005 | 0,08       | A                |
| 8/11/2005 | 0.07       | Ä                |
| 8/12/2005 | 0.06       | A                |
| 6/13/2005 | 0.05       | · A              |
| 8/14/2005 | 0.04       | A                |
| 8/15/2005 | 0.04       | A                |
| 8/16/2005 | 0.03       | A                |
| 8/17/2005 | 0.03       | A                |
| 8/18/2005 | 0.02       | A                |
| 8/19/2005 | 0.02       | L. A             |
| 8/20/2005 | 0.01       | A                |
| 8/21/2005 | 0.01       | A                |
| 8/22/2005 | 0.05       | A                |
| 8/23/2005 | 0.04       | A                |
| 8/24/2005 | 0.04       | A                |
| 8/25/2005 | 0.04       | A A              |
| 8/26/2005 | 0.03       | A A              |
| 8/27/2005 | 0.04       | 1 <del>2</del>   |
| 8/28/2005 | 0.05       | 1 - <del>î</del> |
| 6/29/2005 | 0.67       | 1 <del>î</del>   |
| 8/30/2005 | 0.97       | t â              |
| 8/31/2005 | 0.72       | A                |
| 9/1/2005  | 0.61       | A A              |
| 9/2/2005  | 0.35       | Â                |
| 9/3/2005  | 0.24       | Â                |
| 9/4/2005  | 0.16       |                  |
| 9/6/2005  | 0.11       | A                |
| 9/6/2005  | 0.1        | Â                |
| 9/7/2005  | 0.11       |                  |
| 9/8/2005  | 0.1        | <u>A</u>         |
| 9/9/2005  | 0.09       | A                |
| 9/10/2005 | 0.07       | A                |
| 9/11/2005 | 0.06       | <u> </u>         |
| 9/12/2005 | 0.05       | A                |
| 9/13/2005 | 0.05       | <u> </u>         |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication — Processing and review completed, P = Provisional dela subject to revision. 9 = Value has been estimated.

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | All        | Code          |
| 9/14/2005  | 0,04       | A             |
| 9/15/2005  | 0.04       |               |
| 9/16/2005  | 0.03       | <u> </u>      |
| 9/17/2005  | 0.04       | L. Å          |
| 9/18/2005  | 0.03       | A             |
| 9/10/2005  | 0.03       | Ä             |
| 9/20/2005  | 0.02       | Â             |
| 9/21/2005  | 0.02       |               |
| 8/22/2005  | 0.02       | Â             |
| 9/23/2005  | 0.01       | A             |
| 9/24/2005  | 0.25       | 1 <u> </u>    |
| 9/25/2005  | 2.3        | Â             |
| 9/26/2005  | 12         | <u> </u>      |
| 9/27/2005  | 12         | A             |
| 9/28/2005  | 8.1        | 1             |
| 9/29/2005  | 4.6        | Â             |
| 9/30/2005  | 3,5        | Â             |
| 10/1/2005  | 3.2        |               |
| 10/2/2005  | 2.8        | P             |
| 10/3/2005  | 2.4        | P P           |
| 10/4/2005  | 2.3        |               |
| 10/5/2005  | 2.3        | P             |
| 10/6/2005  | 2.3        |               |
| 10/7/2005  | 2.3        |               |
| 10/8/2005  | 2.2        | P             |
| 10/9/2005  | 2.2        | P P           |
| 10/10/2005 | 2.2        | +             |
| 10/11/2005 | 2          | P             |
| 10/12/2005 | 1.9        | P P           |
| 10/13/2005 | 1.7        | P             |
| 10/14/2005 | 1.6        | 8             |
| 10/15/2005 | 1.4        | P P           |
| 10/16/2005 | 1          | P             |
| 10/17/2005 | 0.91       | P             |
| 10/18/2005 | 1          | P P           |
| 10/19/2005 | 1.1        | P             |
| 10/20/2005 | 1.2        | P             |
| 10/21/2005 | 1.2        | P P           |
| 10/22/2005 | 1.2        |               |
| 10/23/2005 | 1.2        | P             |
| 10/24/2005 | 1.2        | P P           |

### USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication ~ Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | All        | Code          |
| 10/26/2005 | 1.1        | P             |
| 10/26/2005 | 1.1        | P             |
| 10/27/2005 | 1.1        | P             |
| 10/28/2005 | 1.1        | P             |
| 10/29/2005 | 1.1        |               |
| 10/30/2005 | 1.1        | P             |
| 10/31/2005 | 1.1        | P             |
| 11/1/2005  | 1.5        |               |
| 11/2/2005  | 3.8        | P P           |
| 11/3/2005  | 3.9        | P             |
| 11/4/2005  | 3.6        | P             |
| 11/5/2005  | 3.6        | P             |
| 11/6/2005  | 3.0        | P             |
| 11/7/2005  | 4.3        | P             |
| 11/8/2005  | 4.4        | P             |
| 11/9/2005  | 4.2        | P             |
| 11/10/2005 | 4.2        | P             |
| 11/11/2005 | 4.3        | P             |
| 11/12/2005 | 4.4        |               |
| 11/13/2005 | 4.5        | P             |
| 11/14/2005 | 4.9        | P             |
| 11/15/2005 | 6.5        | P             |
| 11/16/2005 | 6.2        | P             |
| 11/17/2005 | 6.3        | P             |
| 11/18/2005 | 6.6        | P             |
| 11/19/2005 | 7.1        | P             |
| 11/20/2005 | 7.2        | P             |
| 11/21/2005 | 8.2        | P             |
| 11/22/2005 | 12         | P             |
| 11/23/2005 | 11         | P             |
| 11/24/2005 | 10         | P             |
| 11/25/2005 | 10         | P             |
| 11/26/2005 |            | P             |
| 11/27/2005 | 14         | P             |
| 11/28/2005 | 16         | P             |
| 11/29/2005 |            | Р             |
| 11/30/2005 | 17         | P             |
| 12/1/2005  | 16         | . Р           |
| 12/2/2005  | 16         | P             |
| 12/3/2005  | 16         | P             |
| 12/4/2005  | 17         | P             |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date       | Flow (cfs) | Qualification |
|------------|------------|---------------|
|            | All        | Code          |
| 12/5/2005  | 17         | P             |
| 12/6/2005  | 18         | P             |
| 12/7/2005  | 18         | P             |
| 12/8/2005  | 20         |               |
| 12/9/2005  | 23         | P             |
| 12/10/2005 | 25         | P             |
| 12/11/2005 | 24         | P             |
| 12/12/2005 | 24         | 1 P           |
| 12/13/2005 | 24         | P             |
| 12/14/2005 | 25         | P             |
| 12/15/2005 | 31         | P             |
| 12/16/2005 | 30         | P             |
| 12/17/2005 | 25         | P             |
| 12/18/2005 | 22         | P             |
| 12/19/2005 | 19         | P             |
| 12/20/2005 | 17         | P             |
| 12/21/2005 | 15         | P             |
| 12/22/2005 | 14         | P             |
| 12/23/2005 | 14         | P             |
| 12/24/2005 | 14         | P             |
| 12/25/2005 | 17         | P             |
| 12/26/2005 | 20         | P             |
| 12/27/2005 | 10         | P             |
| 12/28/2005 | 19         | P             |
| 12/29/2005 | 18         | P             |
| 12/30/2005 | 17         | P             |
| 12/31/2005 | 16         |               |
| 1/1/2006   | 17         |               |
| 1/2/2006   | 18         |               |
| 1/3/2006   | 18         | P             |
| 1/4/2006   | 17         |               |
| 1/5/2006   | 18         | P             |
| 1/6/2006   | 18         | P             |
| 1/7/2006   | 16         | P             |
| 1/8/2006   | 11         | P             |
| 1/8/2006   | 12         |               |
| 1/10/2006  | 15         | P             |
| 1/11/2006  | 21         | P             |
| 1/12/2006  | 20         |               |
| 1/13/2006  | 18         |               |
| 1/14/2006  | 17         | p             |

USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 1/15/2006 | 15         | P             |
| 1/16/2006 | 16         | P             |
| 1/17/2006 | 63         | I P           |
| 1/18/2006 | 95         | P             |
| 1/19/2006 | 64         | Р             |
| 1/20/2006 | 26         | P P           |
| 1/21/2006 | . 14       | P             |
| 1/22/2006 | 31         | 9             |
| 1/23/2006 | 176        | P             |
| 1/24/2006 | 284        | P             |
| 1/25/2006 | 257        | P             |
| 1/26/2006 | 173        | Р             |
| 1/27/2006 | 86         | P             |
| 1/28/2006 | 27         | 9             |
| 1/29/2006 | 23         | P             |
| 1/30/2006 | 26         | P             |
| 1/31/2006 |            | P             |
| 2/1/2006  | 15         | P             |
| 2/2/2006  | 67         | P             |
| 2/3/2006  | 207        | Р             |
| 2/4/2008  | 208        | P             |
| 2/5/2008  | 136        | P             |
| 2/6/2006  | 76         | P             |
| 2/7/2006  | 37         | P             |
| 2/8/2006  | 22         | P             |
| 2/9/2006  | 14         | P             |
| 2/10/2006 |            | P             |
| 2/11/2006 | 98         | P             |
| 2/12/2006 | 149        | Р             |
| 2/13/2006 | 134        | P             |
| 2/14/2006 | 90         | P             |
| 2/15/2006 | 48         | Р             |
| 2/16/2006 | 23         | P             |
| 2/17/2006 | 17         | P             |
| 2/18/2006 | 16         | Р             |
| 2/19/2006 | 18         | P             |
| 2/20/2006 | 16         | P             |
| 2/21/2006 | 15         | P             |
| 2/22/2006 | 15         | P             |
| 2/23/2006 | 15         | P             |
| 2/24/2006 | 14         | P             |

### USGS Station 07366200 - Little Comey Bayou near Lillie, LA Dally Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication — Processing and review completed, P = Provisional data subject to revision, s = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           | All        | Code          |
| 2/25/2006 |            | 2             |
| 2/26/2008 | 169        | P             |
| 2/27/2006 | 208        | P             |
| 2/28/2006 | 188        | P             |
| 3/1/2006  | 143        |               |
| 3/2/2006  | 67         | P             |
| 3/3/2006  | 25         |               |
| 3/4/2006  | 14         | P             |
| 3/5/2006  | 11         | P             |
| 3/6/2006  | 8.2        | P             |
| 3/7/2006  | 7.1        | P             |
| 3/8/2006  | 6.7        | P             |
| 3/9/2006  | 8.3        | P             |
| 3/10/2008 | 49         | P             |
| 3/11/2006 | 89         |               |
| 3/12/2008 | 64         | P             |
| 3/13/2006 | 23         | P             |
| 3/14/2006 | 20         | P             |
| 3/15/2006 | 18         |               |
| 3/16/2006 | 10         | P             |
| 3/17/2006 | 7.5        | P             |
| 3/18/2006 | 14         | P             |
| 3/19/2006 | 195        | P             |
| 3/20/2006 | 951        | P             |
| 3/21/2006 | 1840       | P             |
| 3/22/2008 | 1600       | P P           |
| 3/23/2006 | 1030       | P             |
| 3/24/2006 | 656        |               |
| 3/25/2006 | 384        |               |
| 3/26/2006 | 209        | 8             |
| 3/27/2006 | 64         | P             |
| 3/28/2006 | 36         | P             |
| 3/29/2006 | 25         | P             |
| 3/30/2006 |            | P             |
| 3/31/2006 | 15         | P             |
| 4/1/2006  | 12         | P             |
| 4/2/2006  | 10         | P             |
| 4/3/2006  | 9.2        |               |
| 4/4/2006  | 7.5        | P             |
| 4/5/2006  | 5.9        | P             |
| 4/6/2006  | 5.4        | P             |

### USGS Station 07366200 - Little Corney Bayou near Lilke, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date      | Flow (cfs) | Qualification |
|-----------|------------|---------------|
|           |            | Code          |
| 4/7/2006  | 5,3        | P             |
| 4/8/2006  | 17         | P P           |
| 4/9/2006  | 62         | P             |
| 4/10/2006 | 107        | P             |
| 4/11/2006 | 84         |               |
| 4/12/2006 | 21         | P             |
| 4/13/2006 | 8          | P             |
| 4/14/2006 | 4.9        | †<br>₽        |
| 4/15/2006 | 3,9        |               |
| 4/18/2006 | 3.2        |               |
| 4/17/2006 | 2.6        | P P           |
| 4/18/2006 | 2.3        |               |
| 4/19/2006 | 2.2        | - P           |
| 4/20/2006 | 2.4        | P             |
| 4/21/2006 | 8.9        | P P           |
| 4/22/2006 | 91         |               |
| 4/23/2006 | 153        | P P           |
| 4/24/2006 | 137        |               |
| 4/25/2006 | 57         | P             |
| 4/26/2006 | 38         | P             |
| 4/27/2006 | 68         | P             |
| 4/28/2006 | 60         | P             |
| 4/29/2006 | 38         | P             |
| 4/30/2006 | 114        | p             |
| 5/1/2008  | 179        | P             |
| 5/2/2006  | 161        |               |
| 5/3/2006  | 85         |               |
| 5/4/2006  | 26         | P             |
| 5/5/2006  | 70         | P             |
| 5/6/2006  | 192        | P             |
| 5/7/2006  | 168        | P             |
| 5/8/2006  | 118        |               |
| 5/9/2006  | 128        | P             |
| 5/10/2006 | 139        | P             |
| 5/11/2006 | 96         | P             |
| 5/12/2006 | 39         | P             |
| 5/13/2006 | 12         | р.            |
| 5/14/2006 | 5.3        |               |
| 5/15/2008 | 3.6        | P             |
| 5/16/2006 | 2.8        | P             |
| 5/17/2006 | 2.4        | P             |

USGS Station 07366200 - Little Comey Bayou near Lillie, LA Dally Mean Flow Data - (7/1/1985 - 6/30/2006)

208.00 square miles A = Approved for publication -- Processing and review completed. P = Provisional data subject to revision. e = Value has been estimated.

| Date       | Flow (cfs) | Qualification                         |
|------------|------------|---------------------------------------|
|            | Ali        | Code                                  |
| 5/18/2006  | 2.1        | P                                     |
| 5/19/2006  | 2.2        | Р                                     |
| 5/20/2006  | 2          | P                                     |
| 5/21/2006  | 2.3        | P                                     |
| 5/22/2006  | 2.1        | P                                     |
| 5/23/2006  | 2.7        | P                                     |
| 5/24/20/06 | 2.3        | P                                     |
| 5/25/2006  | 2          | P                                     |
| 5/26/2006  | 1.8        | P                                     |
| 5/27/2006  | 1.9        | P                                     |
| 5/28/2006  | 1.7        | P                                     |
| 5/29/2006  | 2.3        | P                                     |
| 6/30/2006  | 2.5        | P                                     |
| 5/31/2006  | 2.6        | P                                     |
| 6/1/2006   | 3.7        | P                                     |
| 6/2/2006   | 4.3        |                                       |
| 6/3/2006   | 3.7        | P                                     |
| 6/4/2006   | 3,4        | P                                     |
| 6/5/2006   | 3.1        | P                                     |
| 6/6/2006   | 2.8        | P P                                   |
| 6/7/2006   | 2.6        | P                                     |
| 6/8/2006   | 2.5        | P                                     |
| 6/9/2006   | 2.4        | · · · · · · · · · · · · · · · · · · · |
| 6/10/2006  | 2.4        |                                       |
| 6/11/2006  | 2.2        |                                       |
| 6/12/2006  | 1.9        |                                       |
| 6/13/2006  | 1.6        | P                                     |
| 6/14/2006  | 1.4        | P                                     |
| 6/15/20/06 | 1.3        | P                                     |
| 6/16/2006  | 1.2        | P                                     |
| 6/17/2006  | 1.5        | P                                     |
| 6/18/2006  | 2.1        | P                                     |
| 6/19/2006  | 4,1        | P                                     |
| 6/20/2006  | 5.7        | P                                     |
| 6/21/2006  | 4.7        | P P                                   |
| 6/22/2006  | 4          | P                                     |
| 6/23/20:06 | 3.3        | P                                     |
| 6/24/2006  | 6.8        | <u>Р</u>                              |
| 6/25/2006  | 6,3        | P                                     |
| 6/26/20 06 | 4.5        | P                                     |
| 6/27/2006  | 3.9        | P                                     |

USGS Station 07366200 - Little Corney Bayou near Lillie, LA Daily Mean Flow Data - (7/1/1985 - 6/30/2006)

| Date          | Flow (cfs) | Qualification                         |
|---------------|------------|---------------------------------------|
|               | All        | Code                                  |
| 6/28/2006     | 3          | P                                     |
| 6/29/2006     | 2.6        | · · · · · · · · · · · · · · · · · · · |
| 6/30/2006     | 24         | P                                     |
|               |            |                                       |
| Average       | 250        |                                       |
| Minimum       | 0.01       |                                       |
| Maximum       | 19300      |                                       |
| Median        | 51.0       |                                       |
| Count         | 7590       |                                       |
| Harmonic Mean | 2.10       |                                       |

# Appendix F-2

# LDEQ Monitoring Data Bayou de Loutre Dissolved Mineral POR January 1995-March 2006

\*Data provides by LDEQ to demonstrate compliance with existing dissolved mineral Criteria

# B. de L'outre Data

| D324 Revoit De L'Oit | Revoir De L'Outre north of Farmerville  | 1/10/1995     | 5 5      | 226 MG/L  |           |
|----------------------|-----------------------------------------|---------------|----------|-----------|-----------|
|                      |                                         | 3/14/1995     | 515      | 198 MG/I  | TDS       |
|                      |                                         | 5/0/1005      | 5 L<br>L | 270 MG/I  | х О Т     |
|                      |                                         | 01011000      | 212      |           |           |
|                      | ouisiana                                | CRAULUN CRAUN | CLC      |           | 1.0.5     |
|                      | ouisiana                                | 9/12/1995     | 515      | 652 MG/L  | T.D.S.    |
| 0324 Lo              | ouisiana                                | 11/14/95      | 515      | 430 MG/L  |           |
| 0324 Lc              | ouisiana                                | 1/9/1996      | 515      | 92 MG/L   | T.D.S.    |
| 1                    | -ouisiana                               | 3/12/1996     | 515      | 294 MG/L  | T.D.S.    |
| -                    | Louisiana                               | 5/14/1996     | 515      | 154 MG/L  | T.D.S.    |
|                      | ouisiana                                | 7/9/1996      | 515      | 286 MG/L  | T.D.S.    |
| 1                    | ouisiana                                | 9/10/1996     | 515      | 264 MG/L  | T.D.S.    |
|                      | Louisiana                               | 11/19/1996    | 515      | 248 MG/L  | T.D.S.    |
|                      | ouisiana                                | 1/7/1997      | 515      | 194 MG/L  | T.D.S.    |
|                      | -ouisiana                               | 3/11/1997     | 515      | 150 MG/L  | T.D.S.    |
|                      | ouisiana                                | 5/13/1997     | 515      | 182 MG/L  | T.D.S.    |
|                      | Louisiana                               | 7/15/1997     | 515      | 230 MG/L  | T.D.S.    |
|                      | -ouisiana                               | 9/9/1997      | 515      | 188 MG/L  | T.D.S.    |
|                      | ouisiana                                | 11/18/1997    | 515      | 348 MG/L  | T.D.S.    |
|                      | -ouisiana                               | 1/13/1998     | 515      | 174 MG/L  | T.D.S.    |
|                      | -ouisiana                               | 3/10/1998     | 515      | 90 MG/L   | T.D.S.    |
|                      | Bayou De t'Outre north of Farmerville   | 5/12/1998     | 515      | 158 MG/L  | T.D.S.    |
|                      | Bayou De L'Outre near Monroe, Louisiana | 10/26/1999    | 515      | 266. MG/L | T.D.S.    |
|                      | Bayou De L'Outre near Monroe, Louisiana | 11/23/1999    | 515      | 284 MG/L  | T.D.S.    |
|                      | Bayou De L'Outre near Monroe, Louisiana | 12/14/1999    | 515      | 252 MG/L  | T.D.S.    |
|                      | Bayou De L'Outre near Monroe            | 1/5/2004      | 515      | 167 MG/L  | T.D.S.    |
| 0072 B               | Bayou De L'Outre near Monroe, Louisiana | 2/2/2004      | 515      | 127 MG/L  | T.D.S.    |
|                      | Bayou De L'Outre near Monroe, Louisiana | 3/8/2004      | 515      | 93.3 MG/L | T.D.S.    |
|                      | Bayou De L'Outre near Monroe, Louisiana | 4/5/2004      | 515      | 104 MG/L  | T.D.S.    |
|                      | Bayou De L'Outre near Monroe, Louisiana | 5/3/2004      | 515      | 161 MG/L  | T.D.S.    |
|                      | Bayou De L'Outre near Monroe, Louisiana | 6/1/2004      | 515      | 107 MG/L  | T.D.S.    |
|                      | Bayou De L'Outre near Monroe, Louisiana | 6/28/2004     | 515      | 103: MG/L | T.D.S.    |
|                      | Bayou De L'Outre near Monroe, Louisiana | 7/26/2004     | 515.     | 102 MG/L  | T.D.S.    |
| 0072 B               | Bayou De L'Outre near Monroe, Louisiana | 8/23/2004     | 515      | 123 MG/L  | T.D.S.    |
| 0072 B               | Bayou De L'Outre near Monroe, Louisiana | 10/4/2004     | 515      | 125 MG/L  | T.D.S.    |
| 0072 B               | Bayou De L'Outre near Monroe, Louisiana | 10/18/2004    | 515      | 159 MG/L  | T.D.S.    |
| 0072 B               | Bayou De L'Outre near Monroe, Louisiana | 11/15/2004    | 515      | 103 MG/L  | T.D.S.    |
| 0072 B               | Bayou De L'Outre near Monroe, Louisiana | 1/9/2006      | 515      | 336 MG/L  | T.D.S.    |
| 0072 B               | Bayou De L'Outre near Monroe, Louisiana | 2/13/2006     | 515      | 155 MG/L  | T.D.S.    |
| 0072 B               | Bayou De L'Outre near Monroe, Louisiana | 3/13/2006     | 515      | 161 MG/L  | T.D.S.    |
|                      | Bayou De L'Outre north of Farmerville   | 1/9/1996      | 940      | 111 MG/L  | CL, TOTAL |
| 0324 Li              | Louisiana                               | 3/12/1996     | 940      | 122 MG/L  | CL, TOTAL |
| 0324 Li              | Louisiana                               | 5/14/1996     | 940      | 89.8 MG/L | CL, TOTAL |
| 0324 Li              | Louisiana                               | 7/9/1996      | 940      | 101 MG/L  | CL, TOTAL |
| 0324 L               | l ouisiana                              | 9/10/1996     | 040      | RA MC/I   |           |
|                      |                                         |               |          |           |           |

# B. de L'outre Data

| IAL<br>741 |                                                                                                                                                                    | IUIAL                                                                                                           | TAL                                                                                                            | TAL       | TAL        | TOTAL     | TOTAL.    | TOTAL                                 | TOTAL                                   | TOTAL                                   | TOTAL                                   | TAL                                     | FAL                                     | FAL                                     | FAL                                     | TAL                                     | TAL                                     | TAL                                     | FAL                                     | TAL                                     | ſAL                                     | FAL                                     | TAL                                     | ΓAL                                     | ΓAL                                     | ſĂĿ                                     | TAL                                     | ΓAŁ                                     | TAL                                     | TAL                                     | TAL                            | TAL                                     | DTAL                                  | TOTAL     | TOTAL     | TOTAL     | TOTAL     | TOTAL                                                                                                           | TOTAL     | TOTAL     | TOTAL     | TOTAL     | TOTAL     | DTAL       | TOTAI                                                                              |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------|------------|-----------|-----------|---------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------|-----------------------------------------|---------------------------------------|-----------|-----------|-----------|-----------|-----------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|------------|------------------------------------------------------------------------------------|
|            |                                                                                                                                                                    | - 2                                                                                                             | 1                                                                                                              |           | , TOTAL    |           |           |                                       |                                         |                                         |                                         | TOTAL                                   | TOTAL                                   | . TOTAL                                 | . TOTAL                                 | , TOTAL                                 | , TOTAL                                 | , TOTAL                                 | , TOTAL                                 | . TOTAL                                 | TOTAL                                   | TOTAL                                   | TOTAL                                   | . TOTAL                                 | . TOTAL                                 | . TOTAL                                 | . TOTAL                                 | , TOTAL                                 | , TOTAL                                 | . TOTAL                                 |                                | . TOTAL                                 | SO4, TOTAI                            | SO4, T(   | SO4, T(   | SO4, T(   | SO4, T(   | SO4. TC                                                                                                         | ž<br>Ž    | SO4, T(   | S04, T(   | SO4, T(   | SO4, T(   | SO4, TOTAL | F NOG                                                                              |
| 5 2        | 5 0                                                                                                                                                                | 5                                                                                                               | ರ                                                                                                              | ป         | ปี         | Ŀ<br>Ċ    | ਹੱ        | ថ                                     | ರ                                       | Ъ                                       | ਹੱ                                      | С<br>С                                  | ರ                                       | บี                                      | ц<br>С                                  | ರ                                       | ರ                                       | ਹੱ                                      | ъ                                       | <u>д</u>                                | ਹੋ                                      | ਹੱ                                      | ರ                                       | ರ                                       | ປັ                                      | ଧ <u>୍</u>                              | 5                                       | ਹੱ                                      | ų                                       | ų                                       | ซี                             | ฮ                                       | S                                     | S         | S         | S         | S         | S                                                                                                               | S         | S         | ပ္လ       | S         | S         | S          | 5                                                                                  |
| 54.5 MG/L  |                                                                                                                                                                    | 33.4 MG/L                                                                                                       | 57.8 MG/L                                                                                                      | 51 MG/L   | 73.4 MG/L  | 23.3 MG/L | 22.6 MG/L | 51.9 MG/L                             | 16.1 MG/L                               | 37.1 MG/L                               | 53.5 MG/L                               | 45.2 MG/L                               | 58.2 MG/L                               | 62.2 MG/L                               | 61.8 MG/L                               | 64.6 MG/L                               | 49.7 MG/L                               | 62.5 MG/L                               | 38.8 MG/L                               | 16.6 MG/L                               | 23.9 MG/L                               | 31.5 MG/L                               | 21.6 MG/L                               | 18.5 MG/L                               | 14.3 MG/L                               | 3.2 MG/L                                | 33.8 MG/L                               | 34.9 MG/L                               | 11.5 MG/L                               | 88.5 MG/L                               | 38.2 MG/L                      | 46.9 MG/L                               | 54.8 SO4                              | 41.7 SO4  | 15.9 SO4  | 26.3 SO4  | 24.5 SO4  | 26.4 SO4                                                                                                        | 18 SO4    | 8.6 SO4   | 9.6 SO4   | 36 SO4    | 30 SO4    | 35.2 SO4   | A SOA                                                                              |
| 34U<br>04D |                                                                                                                                                                    | 940.                                                                                                            | 940                                                                                                            | 940       | 940        | 940       | 940       | 940                                   | 940                                     | 940                                     | 940                                     | 940                                     | 940                                     | 940                                     | 940                                     | 940                                     | 940                                     | 940                                     | 940                                     | 940                                     | 940                                     | 940                                     | 940                                     | 940                                     | 940                                     | 940                                     | 940                                     | 940                                     | 940                                     | 940                                     | 940                            | 940                                     | 945.                                  | 945       | 945       | 945       | 945       | 945                                                                                                             | 945       | 945       | 945       | 945       | 945       | 945        | 045                                                                                |
| 3/11/1007  | 0011110                                                                                                                                                            | 2/13/1997                                                                                                       | 7/15/1997                                                                                                      | 9/9/1997  | 11/18/1997 | 1/13/1998 | 3/10/1998 | 5/12/1998                             | 4/27/1999                               | 5/25/1999                               | 6/22/1999                               | 7/27/1999                               | 8/24/1999                               | 9/28/1999                               | 10/26/1999                              | 11/23/1999                              | 12/14/1999                              | 1/5/2004                                | 2/2/2004                                | 3/8/2004                                | 4/5/2004                                | 5/3/2004                                | 6/1/2004                                | 6/28/2004                               | 7/26/2004                               | 8/23/2004                               | 10/4/2004                               | 10/18/2004                              | 11/15/2004                              | 1/9/2006                                | 2/13/2006                      | 3/13/2006                               | 1/9/1996                              | 3/12/1996 | 5/14/1996 | 7/9/1996  | 9/10/1996 | 11/19/1996                                                                                                      | 1/7/1997  | 3/11/1997 | 5/13/1997 | 7/15/1997 | 9/9/1997  | 11/18/1997 | 1434000                                                                            |
|            | na na ann an Aonaichte an Annaichte Annaichte an Annaichte ann an Stairt ann an Annaichte ann an Annaichte ann an Annaichte ann ann ann ann ann ann ann ann ann an | والمرابع وال | רות הבישר אשריק לאווים אין אינוריים ביו באין אריון פוער ביו אוויר אוויר ביו אין אינוריים אוויר אינור ביו אינור |           |            |           |           | Bayou De L'Outre north of Farmerville | Bayou De L'Outre near Monroe, Louisiana | L'Outre near Monroe, Louisiana | Sayou De L'Outre near Monroe, Louisiana | Bayou De L'Outre north of Farmerville |           |           |           |           | and an analysis and the second second second and the second second second second second second second second se |           |           |           |           |           |            | そうそう かん キャーキ あんちゅうしん かかせる シー・ション ステレス ちゅうしん シー・シント シーング しんかん たいかく マング しんしん しあし しんし |
| Louisiana  |                                                                                                                                                                    | Louisiana                                                                                                       | Louisiana                                                                                                      | Louisiana | Louisiana  | Louisiana | Louisiana | Bayou De                              | Bayou De                                | Bayou De                                | Bayou De                                | Bayou De                                | Bayou De                                | Bayou De                                | Bayou De                                | Bayou De                                | Bayou De                                | Bayou De                                | Bayou De                                | Bayou De                                | Bayou De                                | Bayou De                                | Bayou De                                | Bayou De                                | Bayou De                                | Bayou De                                | Bayou De                                | Bayou De                                | Bayou De                                | Bayou De                                | Bayou De                       | Bayou De                                | Bayou De                              | Louisiana | Louisiana | Louisiana | Louisiana | Louisiana                                                                                                       | Louisiana | Louisiana | Louisiana | Louisiana | Louisiana | Louisiana  | I ouisiana                                                                         |
| 0324       | 1200                                                                                                                                                               | 0324                                                                                                            | 0324                                                                                                           | 0324      | 0324       | 0324      | 0324      | 0324                                  | 0072                                    | 0072                                    | 0072                                    | 0072                                    | 0072                                    | 0072                                    | 0072                                    | 0072                                    | 0072                                    | 0072                                    | 0072                                    | 0072                                    | 0072                                    | 0072                                    | 0072                                    | 0072                                    | 0072                                    | 0072                                    | 0072                                    | 0072                                    | 0072                                    | 0072                                    | 0072                           | 0072                                    | 0324                                  | 0324      | 0324      | 0324      | 0324      | 0324                                                                                                            | 0324      | 0324      | 0324      | 0324      | 0324      | 0324       | 0324                                                                               |

| 0324 | Louisiana                               | 3/10/1998  | 945  | 7 SO4    | SO4, TUIAL |
|------|-----------------------------------------|------------|------|----------|------------|
| 0324 | Louisiana                               | 5/12/1998  | 945  | 25.4 SO4 | SO4, TOTAL |
| 0072 | Bavou De L'Outre near Monroe, Louisiana | 2/23/1999  | 945  | 4.5 SO4  | SO4, TOTAL |
| 0072 | Bavou De L'Outre near Monroe, Louisiana | 3/23/1999  | 945  | 9.4 SO4  | SO4, TOTAL |
| 0072 | Bayou De L'Outre near Monroe, Louisiana | 4/27/1999  | 945: | 3.5 SO4  | SO4, TOTAL |
| 0072 | Bayou De L'Outre near Monroe, Louisiana | 5/25/1999  | 945  | 9.5 SO4  | SO4, TOTAL |
| 0072 | Bayou De L'Outre near Monroe, Louisiana | 6/22/1999  | 945  | 15.4 SO4 | SO4, TOTAL |
| 0072 | Bayou De L'Outre near Monroe, Louisiana | 7/27/1999  | 945  | 7.8 SO4  | SO4, TOTAL |
| 0072 | Bayou De L'Outre near Monroe, Louisiana | 8/24/1999  | 945  | 6.3 SO4  | SO4, TOTAL |
| 0072 | Bayou De L'Outre near Monroe, Louisiana | 9/28/1999  | 945  | 93.1 SO4 | SO4, TOTAL |
| 0072 | Bayou De L'Outre near Monroe, Louisiana | 10/26/1999 | 945  | 87.2 SO4 | SO4, TOTAL |
| 0072 | Bayou De L'Outre near Monroe, Louisiana | 11/23/1999 | 945  | 82.6 SO4 | SO4, TOTAL |
| 0072 | Bayou De L'Outre near Monroe, Louisiana | 12/14/1999 | 945  | 52 SO4   | SO4, TOTAL |
| 0072 | Bayou De L'Outre near Monroe, Louisiana | 1/5/2004   | 945  | 26.2 SO4 | SO4, TOTAL |
| 0072 | Bayou De L'Outre near Monroe, Louisiana | 2/2/2004   | 945  | 19.9 SO4 | SO4, TOTAL |
| 0072 | Bayou De L'Outre near Monroe, Louisiana | 3/8/2004   | 945  | 6.9 SO4  | SO4, TOTAL |
| 0072 | Bayou De L'Outre near Monroe, Louisiana | 4/5/2004   | 945  | 6.1 SO4  | SO4, TOTAL |
| 0072 | Bayou De L'Outre near Monroe, Louisiana | 5/3/2004   | 945  | 8.3 SO4  | SO4, TOTAL |
| 0072 | Bayou De L'Outre near Monroe, Louisiana | 6/1/2004   | 945  | 6.9 SO4  | SO4, TOTAL |
| 0072 | Bayou De L'Outre near Monroe, Louisiana | 6/28/2004  | 945  | 5.8 SO4  | SO4, TOTAL |
| 0072 | Bayou De L'Outre near Monroe, Louisiana | 7/26/2004  | 945  | 9 SO4    | SO4, TOTAL |
| 0072 | Bayou De L'Outre near Monroe, Louisiana | 8/23/2004  | 945  | 1.3 SO4  | SO4, TOTAL |
| 0072 | Bayou De L'Outre near Monroe, Louisiana | 10/4/2004  | 945  | 8.5 SO4  | SO4, TOTAL |
| 0072 | Bayou De L'Outre near Monroe, Louisiana | 10/18/2004 | 945  | 38.4 SO4 | SO4, TOTAL |
| 0072 | Bayou De L'Outre near Monroe, Louisiana | 11/15/2004 | 945  | 8.5 SO4  | SO4, TOTAL |
| 0072 | Bayou De L'Outre near Monroe, Louisiana | 1/9/2006   | 945  | 85.8 SO4 | SO4, TOTAL |
| 0072 | Bayou De L'Outre near Monroe, Louisiana | 2/13/2006  | 945  | 22.7 SO4 | SO4, TOTAL |
| 0072 | Bavou De L'Outre near Monroe, Louisiana | 3/13/2006  | 945  | 21.9 SO4 | SO4, TOTAL |

# Appendix G Alternative Analysis

# Appendix G-1 Hydrograph Model

| GBM <sup>c</sup> & Associates<br>219 Brown Lane<br>Bryant, AR 72022 | Sheet N<br>Date       | ·          | <u>1</u><br>2, 2006 | of _1              |
|---------------------------------------------------------------------|-----------------------|------------|---------------------|--------------------|
|                                                                     | By<br>Chkď<br>Project | AAS<br>MSR | Date                | 7/12/06<br>-05-070 |
| SUBJECT: Stream Flow Calculations                                   |                       |            |                     |                    |

The following calculations demonstrate the amount of flow required in Loutre Creek at Lion Oil's Outfall 001 discharge location to reach the specified in-stream concentrations.

Gulf Costal Ecoregion Stream Quality Data (ADEQ CPP)

Sulfate= 13 mg/LChloride= 5 mg/LTDS= 67 mg/L

Proposed Effluent Concentrations Sulfate = 1,967 mg/L Chloride = 503 mg/l

Chloride = 503 mg/L TDS = 3,240 mg/L

Target In-Stream ConcentrationsSulfate= 68 mg/LTDS= 86 mg/L

Lion Oil Effluent Flow Rate 2.62 MGD (Highest monthly average flow rate recorded Jan. 2004 through Dec. 2005)

### **Required Stream Flow Calculations**

Sulfate

 $(Q_s \times 13 \text{ mg/L}) + (2.62 \text{ MGD} \times 1,967 \text{ mg/L}) = (Q_s + 2.62 \text{ MGD}) \times 68 \text{ mg/L}$ 

 $Q_s = 90.5 \text{ MGD} = 140 \text{ CFS}$ 

<u>TDS</u>

 $(Q_s \times 67 \text{ mg/L}) + (2.62 \text{ MGD} \times 3,240 \text{ mg/L}) = (Q_s + 2.62 \text{ MGD}) \times 86 \text{ mg/L}$ 

Q<sub>s</sub> = 434.9 MGD = 673 CFS

**Resulting In-Stream Chloride Concentration** 

 $(434.9 \text{ MGD} \times 5 \text{ mg/L}) + (2.62 \text{ MGD} \times 503 \text{ mg/L}) = (434.9 \text{ MGD} + 2.62 \text{ MGD}) \times C_{Cl}$ 

 $C_{Cl} = 8.0 \text{ mg/L}$ 

| ğ  |  |
|----|--|
| Ľ, |  |
| RU |  |

()

| e Creek      | RUN-OFF MODEL NORMAL DRY WET | CN (CURVE NUMBER) = 54.02 89.54<br>AMC (ANTESEDENT COND. FACT.) = 54.02 89.54<br>P (AMT. OF RAINFALL) = 54.02 89.54<br>AMEA (Sq. mi.) = 1380.48<br>AREA (ACRES) = 1380.48 | 3.51 8.51 1.17 | Q =         f1.59646         8.21318         13.80722           RUN-OFF (MCRE-FT) =         1334/02         944.84         1588.38           RUN-OFF (MGD) =         434.76         307.92         517.65 |
|--------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Loutre Creek | RUN-OFF M                    | CN (CURVE NUM<br>AMC (ANTESEDE<br>P (AMT. OF RAIN<br>AREA (sq. mi.) =<br>AREA (ACRES) =                                                                                   | S<br>N         | Q =<br>RUN-OFF (ACRE-<br>RUN-OFF (MGD) =                                                                                                                                                                  |

NOTE: All run-off flow rates and rainfall events based on 24-hour period (run-off assummed to be complete in 24-hours)

Each Box Self Calculates Reference: Ward and Trimble, 2004

| _            |        |         |      |      |      |      |      |      |      |      |      |      |      |      |      |      | _    |      |      |      |     |
|--------------|--------|---------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-----|
| Adiustments  | AMCIII | (wet)   | 2.22 | 2.04 | 1.85 | 1.8  | 1.67 | 1.59 | 1.5  | 1.45 | 1.4  | 1.35 | 1.3  | 1.26 | 1.21 | 1.18 | 1.14 | 1.11 | 1.07 | 1.04 | +   |
| nber Adiu    | AMCI   | (dry)   | 0.4  | 0.43 | 0.45 | 0.48 | 0.5  | 0.53 | 0.55 | 0.59 | 0.62 | 0.65 | 0.67 | 0.7  | 0.73 | 0.76 | 0.79 | 0.83 | 0.87 | 0.94 | -   |
| Curve Number | S      | (AMCII) | 10   | 15   | 20   | 25   | 8    | 35   | 40   | 45   | 50   | 55   | 60   | 65   | 70   | 75   | 80   | . 85 | 90   | 95   | 100 |

# Appendix G-2 Treatment Estimate

### Memorandum

DATE: July 7, 2006

- TO: Chuck Campbell, PE, REM GBM<sup>o</sup> & Associates
- FROM: Aaron Stallmann, PE GBM<sup>c</sup> & Associates
- RE: Lion Oil Company Sand Filter Cost Estimate

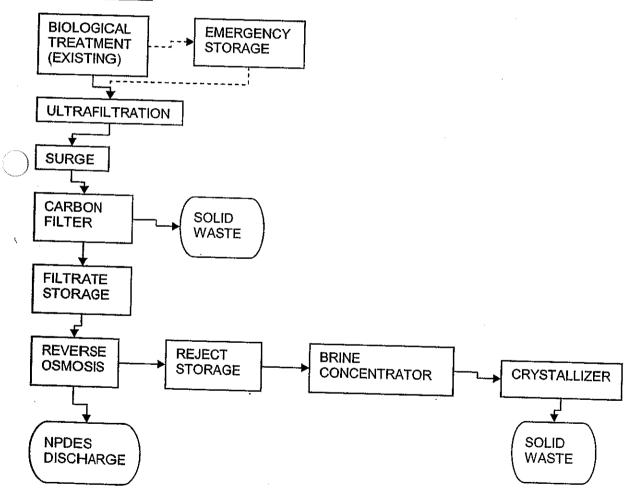
GBM<sup>c</sup> No. 2160-05-070

The following table summarizes the items with estimated capital and annual costs associated with the construction and operation a sand filter treatment unit at Lion Oil Company in El Dorado, Arkansas.

| litem                                                                   | Estimated Cost |
|-------------------------------------------------------------------------|----------------|
| Capital                                                                 |                |
| Dual Media Filter (Two Units – each 32' x 32', includes filter media,   |                |
| concrete construction, piping, fittings, backwash blower, and backwash  |                |
| pump).                                                                  | \$200,000      |
| Surge Storage (One 1.2 MMgal epoxy coated carbon steel tank with        |                |
| concrete foundation, includes piping and fittings).                     | \$325,000      |
| Diversion Storage (Three 1.2 MMgal epoxy coated carbon steel tank with  | ······         |
| concrete foundation, includes piping and fittings).                     | \$950,000      |
| Total                                                                   | \$1,475,000    |
| Operating and Maintenance (includes electricity to pump to the filters, |                |
| polymer, manpower, and annualized replacement for pumps and             |                |
| blowers).                                                               | \$95,000       |

## GBM<sup>c</sup> & Associates

219 Brown Lane Bryant, AR 72022


| Sheet  | No.    | 1 of        | 2        |  |
|--------|--------|-------------|----------|--|
| Date   | 07/1   | 7/06        | <u> </u> |  |
| Ву     | CDC    |             |          |  |
| Chkd   | MSR    | Date        | 07/17/06 |  |
| Projec | ct No. | 2160-05-070 |          |  |

# SUBJECT: ESTIMATION OF TDS TREATMENT CAPITAL & OPERATING COSTS

### BASIS OF DESIGN ESTIMATE:

Waste Flow = 2.67 MGD Effluent TDS = 3,420 mg/lDischarge Max = 165 mg/l (NPDES Limit = 207 mg/l) R.O. Reject = 500 GPM

### PROCESS FLOW:



## GBM<sup>c</sup> & Associates

219 Brown Lane Bryant, AR 72022

| Sheet  | No.    | 2 <b>of</b> | 2        |  |  |
|--------|--------|-------------|----------|--|--|
| Date   | 07/1   | 7/06        |          |  |  |
| Ву     | CDC    |             |          |  |  |
| Chkd   | MSR    | Date        | 07/17/06 |  |  |
| Projec | ct No. | 2160-05-070 |          |  |  |

# SUBJECT: ESTIMATION OF TDS TREATMENT CAPITAL & OPERATING COSTS

### CAPITAL COST:

 CAPITAL
 \$17,025,000

 UF+Carbon+RO
 \$17,025,000

 Storage tanks
 \$2,550,000

 Evaporative crystallization system
 \$23,800,000

 TOTAL CAPITAL<sup>1</sup>
 \$43,375,000

<sup>1</sup>Includes Engineering Design, Equipment, Site Work, Structural, Installation, and Permitting

### ANNUAL OPERATING COST:

### ANNUAL OPERATING

| Filtration                     | \$250.000   |
|--------------------------------|-------------|
| RO                             | • • •       |
|                                | \$1,795,000 |
| Crystallization                | \$1,834,000 |
| Annualized capital replacement | \$1,867,000 |
|                                |             |
| TOTAL OPERATING <sup>2</sup>   | \$5,746,000 |
|                                |             |

<sup>2</sup>Includes Electric Power, Maintenance, Membrane Replacement, Consumables/Chemicals, Labor, Waste Disposal (10,000 ton/yr), Annualized Capital Equipment Replacement (20-year life)

Capital and Operating Cost Estimate Sources: Bill Heinz and Jason Dejournett, GE Water; Perry's Chemical Engineering Handbook, 7<sup>th</sup> Edition p.22-52; Implicit Price Deflators 1995-2006, US Dept. Commerce; Lion Oil Company.

# Appendix H Photos of Study Reaches

### **Reach LC-1**



Figure F-1. Reach LC-1: Note shallow and narrow stream and canopy cover. May 2005.



Figure F-2. Reach LC-1. Largest pool upstream of Highway 15 right-of-way

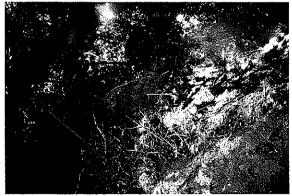



Figure F-3 Reach LC-1. Substrate and instream cover along right descending bank.May 2005.

### **Reach LC-2**



Figure F-4. Reach LC-2. View from downstream terminus of Reach. View upstream. Note primary channel (vegetated) and containment levees on east side.



Figure F-5. Reach LC-2. Note downstream control and clay banks. Flow not storm flow related. May 2005.



Figure F-6. Reach LC-3. Downstream terminals of reach View looking upstream. Note depth of incised channel.

**Reach LC-3** 

 $\left( \right)$ 



Figure F-7. Reach LC-3. Mid-reach. Note degree of channel incision and some instream habitat. Pool depth >7 ft.



Figure F-8. Reach LC-3. View of upper 1/3 of reach downstream right descending bank. Note shallow run with exposed clay shelf along left descending bank.



Figure F-9. Reach LC-3. Upper terminus of reach. Note rail yard in background. View from right descending bank looking upstream.