EXHIBIT F

SUMMARY RATIONALE, SPIKED TOXICITY TESTS, and BUCHANNAN et al.STUDY (2003)

Summary Rationale

- The Red River situation is unique for the following reasons:
- It is a large river with historically high minerals levels in AR that are caused primarily by naturally occurring sources in upstream states (salt seeps in OK \& TX); - Much of the segment of primary interest (the upper Red River segment in AR) has two totally different TDS criteria depending on which side of the state line you are on, $1100 \mathrm{mg} / \mathrm{L}$ TDS on the Texas side (south) and $850 \mathrm{mg} / \mathrm{L}$ on the Arkansas side (north);
- The current AR criterion in the upper Red River segment in AR is based on a standards change in 1994 that would have selected a higher number if it had used the analysis and assessment methodology in place today;
- The progression from high upstream criteria in OK and TX to low and lower criteria in AR segments, followed by much higher criteria in LA makes no sense and has no rational connection to the longstanding historical reality in the river;
- There is no other situation like this in Arkansas.
- Spiked WET testing of the river water shows no acute or chronic toxicity due to dissolved minerals levels.
- Study supporting 1994 change would have resulted in numbers requested for Upper Red River segment in AR if current analysis and 303(d) assessment methodology had been used.
- Study supporting the pending site-specific minerals criteria rulemaking initiated by SWEPCO demonstrated sufficient lines of evidence that the Aquatic Life Designated Use is being attained within the studied reaches of the Little and Red Rivers', and that expected mineral concentrations from the SWEPCO outfall will not negatively impact existing uses.
- It is difficult to justify the time and expense of conducting a full biological study from scratch given the unique circumstances involved.
- Adoption of the change will follow all the applicable Arkansas procedural requirements for valid revision of the criteria in question.

[^0]Table 1.

Reach	Proposed criteria		90th / 95th percentiles (monitoring station)	
	$\mathrm{SO} 4$	$\underset{(\mathrm{mg} / \mathrm{L})}{\mathrm{TDS}}$	$\begin{gathered} \mathrm{SO} \mathrm{SO}^{2} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \mathrm{TDS} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$
		940	224/243	891/958
Red R from OK-AR state line to	250		(RED0025)	(RED0025)
Domtar	250	940	230/270	932/1044
Red R from Domtar to mouth of Little	250		(07337000)	(07337000)
River		860 (see	$188 / 228$	778 / 860
Red R from mouth of Little River to	225	Note "C")	(RED0045)	(RED0045)

Notes:

A. Percentiles calculated using data going back as far as August 1990 (where available) and extending through October 2013.
B. Percentiles were calculated as $100 \% *($ rank -0.5$) / \mathrm{n}$
C. Note the TDS value of $860 \mathrm{mg} / \mathrm{L}$ for the reach of the Red River from the Little River to the Arkansas/L state line is not proposed by ADEQ but rather by SWEPCO in a rulemaking that is currently underway.

[^1]
DOMTAR A.W. LLC ESTIMATION OF TDS TOXICITY THRESHOLD IN THE RED RIVER

DOMTAR A.W. LLC ESTIMATION OF TDS TOXICITY THRESHOLD IN THE RED RIVER

Prepared for
Domtar A.W. LLC
285 Highway 71 South
Ashdown, AR 71822

Prepared by
FTN Associates, Ltd.
3 Innwood Circle, Suite 220
Little Rock, AR 72211
FTN No. R06395-0383-001

November 19, 2014

TABLE OF CONTENTS

 11.0 INTRODUCTON 2
2.0 METHODS 2
2.1 Ionic Makeup of the River Sample 4
2.2 Preparation of Test Exposures5
2.3 Data Analysis 5
2.4 Sampling and Testing Protocol 6
2.5 Sample Collection 6
2.6 Toxicity Testing and Associated Measurements 8
3.0 RESULTS 12
4.0 CONCLUSIONS 13
5.0 LITERATURE CITED

LIST OF APPENDICES

APPENDIX A: American Interplex Corporation Analytical Results APPENDIX B:

LIST OF TABLES

Table 1 Analytical methods for ion analyses 2
Table 2 Ionic makeup of sample collected November 7, 2012 3
Table 3 Summary of inorganic salt additions to result in a 4 x concentration of the unspiked river sample 4
Table 4 Ion analyses required for each set of serial test dilutions prepared 7
for each renewal
9
9
Table 5 Measured concentrations of selected ions in test exposures
Table 5 Measured concentrations of selected ions in test exposures
10
10
Table 6 Summary of toxicity test results and endpoints 11
Table 7 Summary of in situ test measurements

1.0 INTRODUCTON

The objective of this testing was to estimate the toxic threshold for total dissolved solids (TDS), sulfate (SO_{4}^{-2}), and chloride $\left(\mathrm{Cl}^{-}\right)$in the Red River. The approach was to evaluate chronic toxicity to Ceriodaphnia dubia per US Environmental Protection Agency (EPA) guidance (EPA 2002) in a series of increasing TDS concentrations in the river matrix to identify a threshold for chronic toxicity to C. dubia. This threshold sets an upper limit for site-specific mineral criteria because a discharge that is toxic due to mineral concentrations must be avoided.

2.0 METHODS

2.1 Ionic Makeup of the River Sample

The first step in developing this protocol was to identify the major ions contributing to TDS in the river sample. Results of the analysis of selected ions per methods given in Table 1 on a grab sample collected on November 7, 2012, from the Red River downstream of the mouth of the Little River are presented in Table 2. Calculated TDS (The sum of the measured ions with total alkalinity expressed as milligrams per liter of $\mathrm{HCO}_{3}{ }^{-}$) was $720 \mathrm{mg} / \mathrm{L}$, which is 101% of the measured TDS. Part of the "excess" of measured ions might be due to analytical error, but is more likely due to the presence of colloidal forms of ions (e.g., Ca and Mg hydroxides, carbonates and sulfates), which are not present in the TDS measurement because the TDS analysis involves sample filtration. Nonetheless, the results show that the selected ions account for the majority of the ions present in the sample. The summary presented in Table 2 indicates that Na^{+}and Ca^{+2} are the dominant cations both in terms of ionic strength (as indicated by the percent composition as mEq) and mass. Similarly Cl^{-}and SO_{4}^{-2} are the dominant anions.

Table 1. Analytical methods for ion analyses.

Ion	Analytical Method
Na^{+}	EPA 200.7
$\mathrm{Ca}^{\text {+ }}$	EPA 200.7
Mg^{++}	EPA 200.7
K^{+}	EPA 200.7
Cl^{-}	EPA 300.0
SO_{4}^{-2}	$\frac{\text { EPA } 300.0}{\text { SM4500-CO2 }{ }^{*}}$
$\mathrm{HCO}_{3}{ }^{-}$	SM2320B
Total Alkalinity	SM2540C
TDS	

Table 2. Ionic makeup of sample collected November 7, 2012.

Ion	Concentration (mg/L)	Percent of Total					
		Mass		mMoles		mEq	Anions
		Cations	Anions	Cations	Anions	53.4	
Na^{+}	160	59.3		69.0		1.5	
K^{+}	7.7	2.9		19.3		29.9	
Ca^{2+}	78	28.9		19.8		15.2	
Mg^{2+}	24	8.9	35.5		54.6\%		44.9
Cl^{-}	160		37.7		21.4\%		35.3
$\frac{\mathrm{SO}_{4}{ }^{-2}}{\mathrm{HCO}_{3}{ }^{-}}$	170		26.8		24.0\%		19.8
$\mathrm{HCO}_{3}{ }^{-}$	121						
Total Alkalinity	200						
Hardness	294						
Measured TDS	710						
$\begin{aligned} & \text { Calculated } \\ & \text { TDS* } \end{aligned}$	720						
pH	7.7						
Specific	1,214						

*Sum of measured ions.
Manipulating the anions using Ca^{+2} salts will, by necessity, concurrently raise hardness concentrations. Hardness is known to ameliorate the toxic effects of both Cl^{-}and $\mathrm{SO}_{4}{ }^{-2}$ (Lasier and Hardin 2010, Soucek 2007, Soucek and Kennedy 2005, Soucek et al. 2011). Since Mg^{+2} accounts for 34% of the hardness, the spiking procedure included Mg as well as Ca salts such that the hardness of the spike mixture was comprised of approximately $66 \% \mathrm{Ca}$ and $34 \% \mathrm{Mg}$. Accordingly, this evaluation focused on estimating the toxic threshold of TDS as $\mathrm{Na}^{+}, \mathrm{Ca}^{+2}$, $\mathrm{Mg}^{+2}, \mathrm{Cl}^{-}$and SO_{4}^{-2}.

The approach to conducting the threshold evaluation was to spike river sample approximately 4 x (nominal) the existing concentrations of TDS, and then prepare a chronic test exposure series by serially diluting the spiked sample using unspiked river sample as diluent. In this way the $\mathrm{Cl}^{-}, \mathrm{SO}_{4}^{-2}, \mathrm{Na}^{+}, \mathrm{Mg}^{+2}$ and Ca^{+2} concentrations were manipulated while keeping other aspects of the sample matrix (alkalinity, organic ligands, and clays) relatively unchanged.

2.2 Preparation of Test Exposures

A spreadsheet was developed to calculate ion concentrations resulting from various mixtures of inorganic salts. Using this program it was possible to identify a mixture of salts that very closely matched the ionic strength and makeup of the river sample based on the November 7, 2012 sample. This spreadsheet program was then used to develop the recipe for preparing a spiked river sample containing approximately $4 x$ the TDS (as $\mathrm{Cl}^{-}, \mathrm{SO}_{4}^{-2}, \mathrm{Na}^{+}, \mathrm{Mg}^{+2}$, and Ca^{+2}) of the unspiked river sample. This spiked sample was then used to prepare test exposures of $4 \mathrm{x}, 3 \mathrm{x}, 2.25 \mathrm{x}, 1.69 \mathrm{x} 1.26 \mathrm{x}$, and 1 x (unspiked river sample) by serially diluting the 4 x spiked sample with unspiked sample using a 0.75 dilution factor. This resulted in a test with 6 test exposures plus a laboratory control. This experimental design assumes that, in the normal variation of TDS in the river, $\left(\mathrm{SO}_{4}^{-2}, \mathrm{Cl}^{-}, \mathrm{Na}^{+}, \mathrm{Mg}^{+2}\right.$, and $\left.\mathrm{Ca}^{+2}\right)$ are all correlated and do not vary independently. The calculated amounts of reagent added to the river sample to produce the nominal 4x exposure are provided in Table 3.

Table 3. Summary of inorganic salt additions to result in a 4 x concentration of the unspiked river sample, based on the sample collected on November 7, 2012.

Reagent	Milligrams per Liter of River Sample
NaCl^{2}	650
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	639
$\mathrm{CaCl}_{2}\left(2 \mathrm{H}_{2} \mathrm{O}\right)$	38
MgCl_{2}	67
$\mathrm{MgSO}_{4}\left(7 \mathrm{H}_{2} \mathrm{O}\right)$	525
$\mathrm{CaSO}_{4}\left(2 \mathrm{H}_{2} \mathrm{O}\right)$	189
CaO	240
KCl	45

The ion concentrations of the actual sample collected for testing differed from the concentrations of the sample collected on November 7, 2012. However, the most important feature of the test exposures is that they simulate an increase in $\mathrm{SO}_{4}^{-2}, \mathrm{Cl}^{-}, \mathrm{Na}^{+}, \mathrm{Mg}^{+2}$, and Ca^{+2} with constant alkalinity such that a toxic threshold can be evaluated. Therefore the salt additions given in Table 3 should be appropriate for a wide range of river conditions.

2.3 Data Analysis

Survival and reproduction data were statistically analyzed using appropriate parametric or non-parametric tests to calculate the no-observed-effect-concentration (NOEC), lowest-observed-effect-concentration (LOEC) and concentration that inhibits the endpoint by 25% (IC25) values per EPA (2002). For the purposes of this study the IC25 is the preferred endpoint to represent a toxic TDS threshold. If the data does not allow a valid IC25 calculation, the NOEC value will be used.

Analytically determined concentrations of selected analytes ($\mathrm{SO}_{4}^{-2}, \mathrm{Cl}^{-}$, hardness, alkalinity, and TDS) and test conductivity measurements in each exposure solution for each day's renewal were examined to verify correct preparation of test exposures, document changes (if any) in the ionic strength and makeup of the 4 x mixture used to prepare daily exposure renewals and to provide concentrations for the calculation of test endpoints. The IC25, NOEC, and LOEC values were calculated for TDS, $\mathrm{SO}_{4}{ }^{\circ}$, and Cl^{-}using the average of the measured concentrations from each day's renewal. These endpoints provide an estimate of the toxic threshold for TDS, SO_{4}^{-}, and Cl^{-}in the Red River matrix.

The information and analysis presented above provides the overall approach and its justification for performing the spiked river sample test. The specific test protocol that the laboratory followed is presented in the following section.

2.4 Sampling and Testing Protocol

All sample spiking, analytical testing, and toxicity tests were conducted by Huther and Associates, Inc. (HA) (1156 N. Bonnie Brae, Benton, TX 76201), which is certified by the Arkansas Department of Environmental Quality (ADEQ) for the required analyses. As part of preliminary testing arrangements, HA reviewed this protocol and determined the volume of water needed for the testing. Testing and sampling dates were determined based on prior coordination between laboratory management and project managers.

2.5 Sample Collection

The river sample was collected at the Highway 41 bridge (volume determined based on coordination with HA) as a grab sample taken at a depth of 0.54 m from flowing water approximately at mid stream. Sampling did not take place while flows were influenced, e.g., during or immediately after a significant storm event.

Sampling was conducted by FTN personnel, who placed the sample on ice and shipped it to HA with appropriate chain-of-custody documentation via overnight carrier.

2.6 Toxicity Testing and Associated Measurements

Prior to testing, HA made routine preparations for conducting a three-brood survival and reproduction test using C. dubia.

Day 1: Sample Delivery and Spiked Sample Preparation

1. Sample was delivered to HA via overnight carrier.
2. Upon sample arrival and routine sample check-in procedures, HA spiked an appropriate volume of sample with reagent-grade salt according to Table 3.
3. A sufficient volume of spiked river sample was prepared on day one to meet the volume requirements for the entire test and analytical confirmatory testing of ion concentrations. Additional river sample was not provided during the test.
4. After preparation, the spiked sample was gently aerated for 24 hours at room temperature to allow the solution to reach full equilibrium.

Day 2: Test Setup

1. The toxicity test consisted of six test exposures plus a laboratory performance control. HA prepared four serial dilutions of the $4 x$ spiked solution using a dilution factor of 0.75 using the unspiked river sample as diluent. The sixth exposure in the concentration series was the unspiked river sample. Reconstituted lab water (e.g., moderately hard reconstituted lab water) was used as a performance control for the test. Therefore, the entire test had seven exposures including the performance control.
2. HA collected an aliquot of the $4 x$ and each of the serial dilutions, including the unspiked river sample, for the analysis of the parameters given in Table 4.

Table 4. Ion analyses required for each set of serial test dilutions prepared for each renewal.

Analyte	Analytical Method	Preservation	Holding Time
Hardness	EPA 200.7	Acidify to $\mathrm{pH}<2$ using HNO_{3}	6 months
Cl^{-}	EPA 300.0	None	28 days
$\mathrm{SO}_{4}{ }^{-2}$	EPA 300.0	$4^{\circ} \mathrm{C}$	28 days
Total Alkalinity	SM2320B	$4^{\circ} \mathrm{C}$	14 days
TDS	SM2540C	$4^{\circ} \mathrm{C}$	7 days

3. Appropriately preserved samples for the analysis of the parameters given in Table 4 were shipped to American Interplex Corporation Laboratories (AIC) (which is located at 8600 Kanis Road, Little Rock, AR 72204) for analysis within required holding times.
4. The following daily initial in situ test measurements were made on the test exposures:
a. Conductivity in each exposure,
b. $\quad \mathrm{DO}$ and pH in at least three selected exposures, and
c. Temperature per routine testing.
5. Daily final test measurements were made per normal routine test protocols.
6. Stored both the spiked and unspiked river sample under refrigeration per normal sample storage protocol.
7. Noted any changes in the spiked or unspiked samples during storage such as the formation of precipitates.

Day 3 through end of test: Test Maintenance

1. Using the unspiked river sample as diluents, prepared test exposures for daily renewal as described above. This included test measurements and collection of aliquots of each freshly prepared exposure (except the unspiked river sample and laboratory control) for analytical determination of the ions listed in Table 4.
2. The test ended when 60% of the performance control organisms had their third brood of neonates, per routine protocol.
3. Control performance (survival, average neonate production) conformed to normal NPDES biomonitoring. All applicable standards, practices, and guidelines for testing, sample handling, toxicity test performance, and organism culturing conformed to HA's in-house QA/QC protocols and practices.

3.0 RESULTS

Results of the analyses of selected ions in selected test exposures are presented in Table 5. Toxicity test results are presented in Table 6. Laboratory reports are provided in Appendices A and B. Average neonate production (and the percent coefficient of variation) and percent survival in the laboratory controls (Table 2) indicate satisfactory control performance per EPA (2002). Measurements of in situ test parameters (pH , dissolved oxygen; Table 7) indicated that test organism performance (survival and reproduction) was not affected by confounding factors. Measured mineral concentrations in all test exposures indicated correct preparation of test exposures. Neither survival nor reproduction showed a dose response. No test exposure resulted in a 25% reduction in reproduction relative to the unspiked control. Therefore, no IC25 calculation was possible. Based on these characteristics of test performance, the test results provide a valid estimate of the toxic threshold for dissolved minerals in the Red River.

Table 5. Measured concentrations of selected ions in test exposures.

\% Spiked Mixture (Exposure)	Analyte	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Mean
Control (1x)	Total Alkalinity	120	NM	NM	NM	NM	NM	NM	120
	TDS	410	NM	NM	NM	NM	NM	NM	410
	Chloride	88	NM	NM	NM	NM	NM	NM	88
	Sulfate	75	NM	NM	NM	NM	NM	NM	75
	Hardness	200	NM	NM	NM	NM	NM	NM	200
$\begin{gathered} 32 \\ (1.26 \mathrm{x}) \end{gathered}$	Total Alkalinity	380	150	120	160	190	210	110	189
	TDS	870	960	1,000	1,100	1,100	1,100	1,100	1,033
	Chloride	220	250	280	300	280	280	290	271
	Sulfate	290	290	320	340	310	320	320	313
	Hardness	650	470	410	430	470	470	350	464
$\begin{gathered} 42 \\ (1.69 \mathrm{x}) \end{gathered}$	Total Alkalinity	180	120	110	130	160	150	100	136
	TDS	980	1,200	1,200	1,100	1,200	1,200	1,300	1,169
	Chloride	260	320	370	400	320	340	350	337
	Sulfate	360	380	400	470	370	400	410	399
	Hardness	420	480	430	420	490	460	400	443
$\stackrel{56}{(2.25 x)}$	Total Alkalinity	170	110	100	130	150	150	100	130
	TDS	1,400	1,400	1,500	1,500	1,300	1,500	1,500	1,443
	Chloride	310	400	450	400	380	420	440	400
	Sulfate	440	470	480	470	450	500	500	473
	Hardness	440	550	550	510	530	550	470	514
$\begin{gathered} 75 \\ (3 \mathrm{x}) \end{gathered}$	Total Alkalinity	100	92	90	120	150	150	96	114
	TDS	1,700	2,400	1,800	1,900	1,900	1,900	1,900	1,929
	Chloride	410	670	530	500	510	530	520	524
	Sulfate	630	800	650	600	620	650	630	654
	Hardness	470	680	630	600	630	620	590	603
$\begin{aligned} & 100 \\ & (4 \mathrm{x}) \end{aligned}$	Total Alkalinity	75	110	89	120	150	120	130	113
	TDS	2,200	2,400	2,300	2,400	2,200	2,400	2,500	2,343
	Chloride	510	540	670	650	670	680	700	631
	Sulfate	810	630	810	780	800	820	850	786
	Hardness	540	780	770	760	780	730	750	730

All units are mg / L. Hardness and total alkalinity reported as mg / L as $\mathrm{CaCO}_{3} . \mathrm{NM}=$ not measured.

Table 6. Summary of toxicity test results and endpoints.

\% Spiked Mixture	\% Survival$(\mathrm{n}=10)$		Mean Number of Neonates	\% CV	Average Mineral Concentration (mg/L)		
(Exposure)	48 hrs	7 days			TDS	Chloride	Sulfate
Control (1x)	100	100	22.4	7.93	410	88	75
$\begin{gathered} 32 \\ (1.26 \mathrm{x}) \\ \hline \end{gathered}$	100	100	23.3	8.35	1,033	271	313
$\begin{gathered} 42 \\ (1.69) \\ \hline \end{gathered}$	100	100	23.4	9.91	1,169	337	399
$\begin{gathered} 56 \\ (2.25 \mathrm{x}) \end{gathered}$	100	100	23.1	7.20	1,443	400	473
$\begin{array}{r} 75 \\ (3 \mathrm{x}) \\ \hline \end{array}$	100	100	22.5	4.80	1,929	524	654
$\begin{array}{r} 100 \\ (4 \mathrm{x}) \\ \hline \end{array}$	100	100	22.3	7.92	2,343	631	786
Laboratory Control	100	100	20.4	8.07	NM	NM	NM
Estimated Endpoint Values (mg/L)				IC25	>2,343	>631	>786
				NOEC	2,343	631	786

\% CV = percent coefficient of variation.
$\mathrm{NM}=$ not measured.

Table 7. Summary of in situ test measurements.

\% Spiked Mixture (Exposure)	Mnitial					
	Minimum	Mean	Maximum	Minimum	Mean	Maximum
Control $(1 \mathrm{x})$	7.61	7.91	8.22	8.00	8.21	8.40
32 $(1.26 x)$	7.83	8.09	8.72	7.90	8.12	8.28
42 (1.69)	7.84	8.13	8.77	7.84	8.09	8.26
56 $(2.25 x)$	7.84	8.15	8.92	7.83	8.06	8.24
75 $(3 x)$	7.87	8.19	8.87	7.78	7.99	8.17
100 $(4 \mathrm{x})$	7.91	8.24	8.99	7.66	7.93	8.11
Laboratory Control	8.15	8.33	8.44	8.20	8.30	8.42
\% Spiked Mixture (Exposure)	Minimum	Mean	Maximum	Minimum	Mean	Maximum
Control $(1 \mathrm{x})$	7.69	8.06	8.33	7.66	8.21	8.85
32 $(1.26 \mathrm{x})$	7.58	7.96	8.35	7.58	8.13	8.76
42 (1.69)	7.58	7.94	8.39	7.50	8.06	8.67
56 $(2.25 \mathrm{x})$	7.65	7.93	8.45	7.61	8.11	8.64
75 (3x)	7.84	8.00	8.46	7.54	8.12	8.66
100 $(4 \mathrm{x})$	7.82	8.03	8.57	7.51	8.11	8.61
Laboratory Control	8.17	8.33	8.48	7.68	8.26	8.86

4.0 CONCLUSIONS

The 7-day C. dubia survival and reproduction test showed no statistically significant differences in survival or reproduction between the control and any of the concentrations. The estimated NOEC end points values ($2,343 \mathrm{mg} / \mathrm{L}$ for TDS; $786 \mathrm{mg} / \mathrm{L}$ for sulfate; and $631 \mathrm{mg} / \mathrm{L}$ for chloride) indicate that toxicity due to minerals in the Red River would not be expected under normal conditions.

5.0 LITERATURE CITED

EPA. 2002. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms, fourth edition [EPA-821-R-02-013]. Washington, DC: Office of Water.

Lasier, P.J., and I.R. Hardin. 2010. Observed and predicted reproduction of Ceriodaphnia dubia exposed to chloride, sulfate, and bicarbonate. Environ. Toxicol. Chem. 29: 347-358.

Soucek, D.J. 2007. Comparison of hardness and chloride regulated acute effects of sodium sulfate on two freshwater crustaceans. Environ. Toxicol. Chem. 26: 773-253.

Soucek, D.J., and A.J. Kennedy. 2005. Effects of hardness, chloride, and acclimation on the acute toxicity of sulfate to freshwater invertebrates. Environ. Toxicol. Chem. 24:1204-1210.

Soucek, D.J., T.K. Linton, C.D. Tarr, A. Dickinson, N. Wickramanayake, C.G. Delos, and L.A. Cruz. 2011. Influence of water hardness and sulfate on the acute toxicity of chloride to sensitive freshwater invertebrates. Environ. Toxicol. Chem. 30: 930-938.

APPENDIX A

American Interplex Corporation Analytical Results

FTN Associates, Ltd.
ATTN: Mr. Pat Downey
3 Innwood Circle, Suite 220
Little Rock, AR 72211
This report contains the analytical results and supporting information for samples submitted on March 23, 2013. Attached please find a copy of the Chain of Custody and/or other documents received. Note that any remaining sample will be discarded two weeks from the original report date unless other arrangements are made.

This report is intended for the sole use of the client listed above. Assessment of the data requires access to the entire document.

This report has been reviewed by the Laboratory Director or a qualified designee.

This document has been distributed to the following:

PDF cc: FTN Associates, Ltd.
ATTN: Mr. Pat Downey
pjd@ftn-assoc.com

FTN Associates, Ltd.
3 Innwood Circle, Suite 220
Little Rock, AR 72211

SAMPLE INFORMATION

Project Description:

Six (6) water sample(s) received on March 23, 2013
Huther \& Associates, Inc.
20791
RR Hwy 41-Day 1
Receipt Details:
A Chain of Custody was provided. The samples were delivered in one (1) ice chest. Ice chest \#1 was delivered with shipping documentation.

Each sample container was checked for proper labeling, including date and time sampled. Sample containers were reviewed for proper type, adequate volume, integrity, temperature, preservation, and holding times. Any exceptions are noted below:

Sample Identification:

Laboratory ID	Client Sample ID	Sampled Date/Time
$165978-1$	Cov 3/20/13 0900	Notes
$165978-2$	$323 / 20 / 130900$	$20-M a r-20130900$
$165978-3$	$423 / 20 / 130900$	$20-M a r-20130900$
$165978-4$	$563 / 20 / 130900$	$20-M a r-20130900$
$165978-5$	$753 / 20 / 130900$	$20-M a r-20130900$
$165978-6$	$1003 / 20 / 130900$	$20-M a r-20130900$

Qualifiers:

D Result is from a secondary dilution factor

References:

"Methods for Chemical Analysis of Water and Wastes", EPA/600/4-79-020 (Mar 1983) with updates and supplements EPA/600/5-91-010 (Jun 1991), EPA/600/R-92-129 (Aug 1992) and EPA/600/R-93-100 (Aug 1993).
"Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846)", Third Edition.
"Standard Methods for the Examination of Water and Wastewaters", 21st edition.
"American Society for Testing and Materials" (ASTM).
"Association of Analytical Chemists" (AOAC).

March 28, 2013
Control No. 165978
Page 3 of 5

FTN Associates, Ltd.
3 Innwood Circle, Suite 220
Little Rock, AR 72211

ANALYTICAL RESULTS

AIC No. 165978-1
Sample Identification: Cov 3/20/13 0900

AIC No. 165978-2
Sample Identification: 32 3/20/13 0900

AIC No. 165978-3
Sample Identification: 42 3/20/13 0900

March 28, 2013
Control No. 165978
Page 4 of 5

FTN Associates, Ltd.
3 Innwood Circle, Suite 220
Little Rock, AR 72211

ANALYTICAL RESULTS

AIC No. 165978-4
Sample Identification: 56 3/20/13 0900

Analyte		Result	RL	Units	Qualifier
Alkalinity as CaCO 3		170	1	mg/l	
SM 2320 B		Analyzed:	26-Mar-2013 0836 by 302	Batch: W43003	
Total Dissolved Solids		1400	10	mg / l	
SM 2540 C	Prep: 26-Mar-2013 1417 by 285	Analyzed:	27-Mar-2013 1448 by 285	Batch: W43007	
Chloride		310	2	mg / l	D
EPA 300.0	Prep: 25-Mar-2013 1135 by 07	Analyzed:	25-Mar-2013 1517 by 07	Batch: S34268	Dil: 10
Sulfate		440	2	mg / l	D
EPA 300.0	Prep: 25-Mar-2013 1135 by 07	Analyzed:	25-Mar-2013 1517 by 07	Batch: S34268	Dil: 10
Hardness as CaCO 3		440	1	mg / l	
SM 2340 B	Prep: 25-Mar-2013 1452 by 271	Analyzed:	26-Mar-2013 1442 by 305	Batch: S34271	

AIC No. 165978-5
Sample Identification: 75 3/20/13 0900

AIC No. 165978-6
Sample Identification: 100 3/20/13 0900

Analyte		Result	RL	Units	Qualifier
Alkalinity as CaCO 3		75	1	mg / l	
SM 2320 B		Analyzed:	26-Mar-2013 0836 by 302	Batch: W43003	
Total Dissolved Solids		2200	20	mg / l	
SM 2540 C	Prep: 26-Mar-2013 1417 by 285	Analyzed:	27-Mar-2013 1448 by 285	Batch: W43007	
Chloride		510	20	mg / l	D
EPA 300.0	Prep: 25-Mar-2013 1135 by 07	Analyzed:	25-Mar-2013 1608 by 07	Batch: S34268	Dil: 100
Sulfate		810	20	mg / l	D
EPA 300.0	Prep: 25-Mar-2013 1135 by 07	Analyzed:	25-Mar-2013 1608 by 07	Batch: S34268	Dil: 100
Hardness as CaCO 3		540	1	mg / l	
SM 2340 B	Prep: 25-Mar-2013 1452 by 271	Analyzed:	26-Mar-2013 1451 by 305	Batch: S34271	

March 28, 2013
Control No. 165978
Page 5 of 5

FTN Associates, Ltd.
3 Innwood Circle, Suite 220
Little Rock, AR 72211

DUPLICATE RESULTS

Analyte		AIC No.	Result	RPD	RPD Limit	Preparation Date	Analysis Date	Dil	Qual
Alkalinity as CaCO 3		165978-1	$120 \mathrm{mg} / \mathrm{l}$				26Mar13 0836 by 302		
	Batch: W43003	Duplicate	$120 \mathrm{mg} / \mathrm{l}$	0.858	20.0		26 Mar 130836 by 302		
Total Dissolved Solids		165978-1	$410 \mathrm{mg} / \mathrm{l}$			26Mar13 1417 by 285	27Mar13 1448 by 285		
	Batch: W43007	Duplicate	$420 \mathrm{mg} / \mathrm{l}$	2.62	10.0	26Mar13 1417 by 285	27Mar13 1448 by 285		
Total Dissolved Solids		165978-2	870 mg/l			26Mar 131417 by 285	27Mar13 1448 by 285		
	Batch: W43007	Duplicate	$870 \mathrm{mg} / \mathrm{l}$	0.920	10.0	26Mar 131417 by 285	27Mar13 1448 by 285		

LABORATORY CONTROL SAMPLE RESULTS

	Spike									
Analyte	Amount	\%	Limits	RPD	Limit	Batch	Preparation Date	Analysis Date	Dil	Qual
Chloride	$20 \mathrm{mg} / \mathrm{l}$	97.9	90.0-110			S34268	25 Mar 131135 by 07	25Mar13 1219 by 07		
Sulfate	$20 \mathrm{mg} / \mathrm{l}$	98.7	90.0-110			S34268	25Mar13 1135 by 07	25Mar13 1219 by 07		

MATRIX SPIKE SAMPLE RESULTS

Analyte	Sample	Spike Amount	\%	Limits	Batch	Preparation Date	Analysis Date	Dil	Qual
Chloride	165978-1	$20 \mathrm{mg} / \mathrm{l}$	92.0	80.0-120	S34268	25Mar13 1135 by 07	$25 \mathrm{Mar13} 1245$ by 07		
	165978-1	$20 \mathrm{mg} / \mathrm{l}$	93.8	80.0-120	S34268	25Mar 131135 by 07	25Mar13 1311 by 07		
	Relative Pe	cent Difference:	1.26	10.0	S34268				
Sulfate	165978-1	$20 \mathrm{mg} / \mathrm{l}$	94.7	80.0-120	S34268	25Mar13 1135 by 07	25Mar13 1245 by 07		
	165978-1	$20 \mathrm{mg} / \mathrm{l}$	97.2	80.0-120	S34268	25Mar13 1135 by 07	25Mar13 1311 by 07		
	Relative Pe	cent Difference:	1.89	10.0	S34268				

LABORATORY BLANK RESULTS

Analyte	Result	RL	PQL	QC Sample	Preparation Date	Analysis Date	Qual
Alkalinity as CaCO 3	$<1 \mathrm{mg} / \mathrm{l}$	1	1	W43003-1		26Mar13 0836 by 302	
Total Dissolved Solids	$<10 \mathrm{mg} / \mathrm{l}$	10	10	W43007-1	26Mar13 1417 by 285	27Mar13 1448 by 285	
Chloride	$<0.2 \mathrm{mg} / \mathrm{l}$	0.2	0.2	S34268-1	25Mar13 1135 by 07	25Mar13 1153 by 07	
Sulfate	< $0.2 \mathrm{mg} / \mathrm{l}$	0.2	0.2	S34268-1	25Mar13 1135 by 07	25Mar13 1153 by 07	

HUTHER \& ASSOCIATES, INC.
1156 North Bonnie Brae
Denton, Texas 76201
Phone: (940) $387-1025$ Fax: (940) 387-1036

March 28, 2013

FTN Associates, Ltd.
ATTN: Mr. Pat Downey
3 Innwood Circle, Suite 220
Little Rock, AR 72211

This report contains the analytical results and supporting information for samples submitted on March 23, 2013. Attached please find a copy of the Chain of Custody and/or other documents received. Note that any remaining sample will be discarded two weeks from the original report date unless other arrangements are made.

This report is intended for the sole use of the client listed above. Assessment of the data requires access to the entire document.

This report has been reviewed by the Laboratory Director or a qualified designee.

This document has been distributed to the following:
PDF cc: FTN Associates, Ltd.
ATTN: Mr. Pat Downey
pjd@ftn-assoc.com

FTN Associates, Ltd.
3 Innwood Circle, Suite 220
Little Rock, AR 72211

SAMPLE INFORMATION

Project Description:

Five (5) water sample(s) received on March 23, 2013
Huther \& Associates, Inc.
20791
RR Hwy 41-Day 2

Receipt Details:

A Chain of Custody was provided. The samples were delivered in one (1) ice chest.
Ice chest \#1 was delivered with shipping documentation.
Each sample container was checked for proper labeling, including date and time sampled. Sample containers were reviewed for proper type, adequate volume, integrity, temperature, preservation, and holding times. Any exceptions are noted below:

Sample Identification:

Laboratory ID	Client Sample ID	Sampled Date/Time	Notes
165979-1	32\% 3/21/13 0900	21-Mar-2013 0900	
165979-2	42\% 3/21/13 0900	21-Mar-2013 0900	
165979-3	56\% 3/21/13 0900	21-Mar-2013 0900	
165979-4	75\% 3/21/13 0900	21-Mar-2013 0900	
165979-5	100\% 3/21/13 0900	21-Mar-2013 0900	

Qualifiers:
D Result is from a secondary dilution factor

Case Narrative:

165979-4 and 165979-5 are believed to be switched.

References:

"Methods for Chemical Analysis of Water and Wastes", EPA/600/4-79-020 (Mar 1983) with updates and supplements EPA/600/5-91-010 (Jun 1991), EPA/600/R-92-129 (Aug 1992) and EPA/600/R-93-100 (Aug 1993).
"Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846)", Third Edition.
"Standard Methods for the Examination of Water and Wastewaters", 21st edition.
"American Society for Testing and Materials" (ASTM).
"Association of Analytical Chemists" (AOAC).

FTN Associates, Ltd.
3 Innwood Circle, Suite 220
Little Rock, AR 72211

ANALYTICAL RESULTS

AIC No. 165979-1
Sample Identification: 32\% 3/21/13 0900

AIC No. 165979-2
Sample Identification: 42\% 3/21/13 0900

Analyte		Result	RL	Units	Qualifier
Alkalinity as CaCO 3		120	1	mg / l	
SM 2320 B		Analyzed	: 26-Mar-2013 0836 by 302	Batch: W43003	
Total Dissolved Solids		1200	10	mg / l	
SM 2540 C	Prep: 26-Mar-2013 1417 by 285	Analyzed	: 27-Mar-2013 1448 by 285	Batch: W43007	
Chloride		320	2	mg/l	D
EPA 300.0	Prep: 25-Mar-2013 1135 by 07	Analyzed	: 25-Mar-2013 1818 by 07	Batch: S34268	Dill: 10
Sulfate		380	2	mg/l	D
EPA 300.0	Prep: 25-Mar-2013 1135 by 07	Analyzed	: 25-Mar-2013 1818 by 07	Batch: S34268	Dill 10
Hardness as CaCO 3		480	1	mg / l	
SM 2340 B	Prep: 25-Mar-2013 1452 by 271	Analyzed	: 26-Mar-2013 1500 by 305	Batch: S34271	

AIC No. 165979-3
Sample Identification: 56\% 3/21/130900

Analyte		Result	RL	Units	Qualifier
Alkalinity as CaCO 3		110	1	mg/l	
SM 2320 B		Analyzed:	26-Mar-2013 0836 by 302	Batch: W43003	
Total Dissolved Solids		1400	10	mg / l	
SM 2540 C	Prep: 26-Mar-2013 1417 by 285	Analyzed:	27-Mar-2013 1448 by 285	Batch: W43007	
Chloride		400	2	mg / l	D
EPA 300.0	Prep: 25-Mar-2013 1135 by 07	Analyzed:	$25-M a r-20131843$ by 07	Batch: S34268	Dill: 10
Sulfate		470	2	mg / l	D
EPA 300.0	Prep: 25-Mar-2013 1135 by 07	Analyzed:	$25-M a r-20131843$ by 07	Batch: S34268	Dill: 10
Hardness as CaCO 3		550	1	mg / l	
SM 2340 B	Prep: 25-Mar-2013 1452 by 271	Analyzed:	26-Mar-2013 1523 by 305	Batch: S34271	

March 28, 2013

FTN Associates, Ltd.
3 Innwood Circle, Suite 220
Little Rock, AR 72211
ANALYTICAL RESULTS

AIC No. 165979-4
Sample Identification: 75\% 3/21/13 0900

Analyte		Result	RL	Units	Qualifier
Alkalinity as CaCO 3		92	1	mg/l	
SM 2320 B		Analyzed: 26-Mar-2013 0836 by 302		Batch: W43003	
Total Dissolved Solids		2400	20	mg / l	
SM 2540 C	Prep: 26-Mar-2013 1417 by 285	Analyzed: 27-Mar-2013 1448 by 285		Batch: W43007	
Chloride		670Analyzed: 26-Mar-2013 1135 by 07		mg / l	D
EPA 300.0	Prep: 25-Mar-2013 1135 by 07			Batch: S34268	Dil: 100
Sulfate		800	20	mg/l	D
EPA 300.0	Prep: 25-Mar-2013 1135 by 07		26-Mar-2013 1135 by 07	Batch: S34268	Dil: 100
Hardness as CaCO 3		680	1	mg/l	
SM 2340 B	Prep: 25-Mar-2013 1452 by 271	Analyzed:	26-Mar-2013 1527 by 305	Batch: S34271	

AIC No. 165979-5
Sample Identification: 100\% 3/21/13 0900

Analyte		Result	RL	Units	Qualifier
Alkalinity as CaCO 3		110	1	mg / l	
SM 2320 B		Analyzed:	26-Mar-2013 0836 by 302	Batch: W43003	
Total Dissolved Solids		2400	20	mg/l	
SM 2540 C	Prep: 26-Mar-2013 1417 by 285	Analyzed:	27-Mar-2013 1448 by 285	Batch: W43007	
Chloride		540	20	mg / l	D
EPA 300.0	Prep: 25-Mar-2013 1135 by 07	Analyzed:	26-Mar-2013 1201 by 07	Batch: S34268	Dil: 100
Sulfate		630	20	mg/l	D
EPA 300.0	Prep: 25-Mar-2013 1135 by 07	Analyzed:	26-Mar-2013 1201 by 07	Batch: S34268	Dil: 100
Hardness as CaCO 3		780	1	mg/l	
SM 2340 B	Prep: 25-Mar-2013 1452 by 271	Analyzed:	26-Mar-2013 1532 by 305	Batch: S34271	

March 28, 2013
Control No. 165979
Page 5 of 5

FTN Associates, Ltd,
3 Innwood Circle, Suite 220
Little Rock, AR 72211

DUPLICATE RESULTS

LABORATORY CONTROL SAMPLE RESULTS

Analyte	Spike Amount	\%	Limits	RPD	Limit	Batch	Preparation Date	Analysis Date	Dil
Chloride	$20 \mathrm{mg} / \mathrm{l}$	97.9	90.0-110			S34268	25 Mar 131135 by 07	25Mar13 1219 by 07	
Sulfate	$20 \mathrm{mg} / \mathrm{l}$	98.7	90.0-110			S34268	25Mar13 1135 by 07	25Mar13 1219 by 07	

MATRIX SPIKE SAMPLE RESULTS

Analyte	Sample	Spike Amount	\%	Limits	Batch	Preparation Date	Analysis Date	Dil	Qual
Chloride	165978-1	$20 \mathrm{mg} / \mathrm{l}$	92.0	80.0-120	S34268	25Mar13 1135 by 07	25Mar13 1245 by 07		
	165978-1	$20 \mathrm{mg} / \mathrm{l}$	93.8	80.0-120	S34268	25 Mar 131135 by 07	25Mar13 1311 by 07		
	Relative Pe	cent Difference:	1.26	10.0	S34268				
Sulfate	165978-1	$20 \mathrm{mg} / \mathrm{l}$	94.7	80.0-120	S34268	25Mar13 1135 by 07	25Mar13 1245 by 07		
	165978-1	$20 \mathrm{mg} / \mathrm{l}$	97.2	80.0-120	S34268	25Mar13 1135 by 07	25Mar13 1311 by 07		
	Relative Pe	cent Difference:	1.89	10.0	S34268				

LABORATORY BLANK RESULTS

Analyte	Result	RL	PQL	QC Sample	Preparation Date	lysis Da	Qual
Alkalinity as CaCO 3	$<1 \mathrm{mg} / \mathrm{l}$	1	1	W43003-1		26Mar13 0836 by 302	
Total Dissolved Solids	$<10 \mathrm{mg} / \mathrm{l}$	10	10	W43007-1	26Mar13 1417 by 285	27Mar13 1448 by 285	
Chloride	$<0.2 \mathrm{mg} / \mathrm{l}$	0.2	0.2	S34268-1	25Mar13 1135 by 07	25Mar13 1153 by 07	
Sulfate	$<0.2 \mathrm{mg} / \mathrm{l}$	0.2	0.2	S34268-1	25Mar13 1135 by 07	25Mar13 1153 by 07	

FTN Associates, Ltd.
ATTN: Mr. Pat Downey
3 Innwood Circle, Suite 220
Little Rock, AR 72211
This report contains the analytical results and supporting information for samples submitted on March 23, 2013. Attached please find a copy of the Chain of Custody and/or other documents received. Note that any remaining sample will be discarded two weeks from the original report date unless other arrangements are made.

This report is intended for the sole use of the client listed above. Assessment of the data requires access to the entire document.

This report has been reviewed by the Laboratory Director or a qualified designee.

This document has been distributed to the following:
PDF cc: FTN Associates, Ltd.
ATTN: Mr. Pat Downey
pjd@ftn-assoc.com

April 1, 2013
Control No. 165980

FTN Associates, Ltd.
3 Innwood Circle, Suite 220
Little Rock, AR 72211

SAMPLE INFORMATION

Project Description:

Five (5) water sample(s) received on March 23, 2013
Huther
20791
RR Hwy 41
Day 3

Receipt Details:

A Chain of Custody was provided. The samples were delivered in one (1) ice chest. Ice chest \#1 was delivered with shipping documentation.

Each sample container was checked for proper labeling, including date and time sampled. Sample containers were reviewed for proper type, adequate volume, integrity, temperature, preservation, and holding times. Any exceptions are noted below:

Sample Identification:

Laboratory ID	Client Sample ID	Sampled Date/Time	Notes
165980-1	32\% 3/22/13 0900	22-Mar-2013 0900	
165980-2	42\% 3/22/13 0900	22-Mar-2013 0900	
165980-3	56\% 3/22/13 0900	22-Mar-2013 0900	
165980-4	75\% 3/22/13 0900	22-Mar-2013 0900	
165980-5	100\% 3/22/13 0900	22-Mar-2013 0900	

Qualifiers:

D Result is from a secondary dilution factor

References:

"Methods for Chemical Analysis of Water and Wastes", EPA/600/4-79-020 (Mar 1983) with updates and supplements EPA/600/5-91-010 (Jun 1991), EPA/600/R-92-129 (Aug 1992) and EPA/600/R-93-100 (Aug 1993).
"Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846)", Third Edition.
"Standard Methods for the Examination of Water and Wastewaters", 21st edition.
"American Society for Testing and Materials" (ASTM).
"Association of Analytical Chemists" (AOAC).

April 1, 2013
Control No. 165980

FTN Associates, Ltd.
3 Innwood Circle, Suite 220
Little Rock, AR 72211

ANALYTICAL RESULTS

AIC No. 165980-1
Sample Identification: 32\% 3/22/13 0900

AIC No. 165980-2
Sample Identification: 42\% 3/22/13 0900

Analyte		Result	RL	Units	Qualifier
Alkalinity as CaCO		110	1	mg/l	
SM 2320 B		Analyzed:	26-Mar-2013 0836 by 302	Batch: W43003	
Total Dissolved Solids		1200	10	mg / l	
SM 2540 C	Prep: 27-Mar-2013 1640 by 285	Analyzed:	28-Mar-2013 1155 by 285	Batch: W43026	
Chloride		370	2	mg / l	D
EPA 300.0	Prep: 25-Mar-2013 1135 by 07	Analyzed:	25-Mar-2013 2027 by 07	Batch: S34268	Dil: 10
Sulfate		400	2	mg/l	D
EPA 300.0	Prep: 25-Mar-2013 1135 by 07	Analyzed:	$25-\mathrm{Mar}-20132027$ by 07	Batch: S34268	Dill: 10
Hardness as CaCO 3		430	1	mg / l	
SM 2340 B	Prep: 25-Mar-2013 1452 by 271	Analyzed	26-Mar-2013 1541 by 305	Batch: S34271	

AIC No. 165980-3
Sample Identification: 56\% 3/22/13 0900

FTN Associates, Ltd.
3 Innwood Circle, Suite 220
Little Rock, AR 72211

ANALYTICAL RESULTS

AIC No. 165980-4
Sample Identification: 75\% 3/22/13 0900

AIC No. 165980-5
Sample Identification: 100\% 3/22/13 0900

Analyte		Result	RL	Units	Qualifier
Alkalinity as CaCO 3		89	1	mg / l	
SM 2320 B		Analyzed:	26-Mar-2013 0836 by 302	Batch: W43003	
Total Dissolved Solids		2300	20	mg / l	
SM 2540 C	Prep: 27-Mar-2013 1640 by 285	Analyzed:	28-Mar-2013 1155 by 285	Batch: W43026	
Chloride		670	20	mg / l	D
EPA 300.0	Prep: 25-Mar-2013 1135 by 07	Analyzed:	25-Mar-2013 2144 by 07	Batch: S34268	Dil: 100
Sulfate		810	20	mg/l	D
EPA 300.0	Prep: 25-Mar-2013 1135 by 07	Analyzed:	25-Mar-2013 2144 by 07	Batch: S34268	Dil: 100
Hardness as CaCO3		770	1	mg/l	
SM 2340 B	Prep: 25-Mar-2013 1452 by 271	Analyzed:	26-Mar-2013 1554 by 305	Batch: S34271	

April 1, 2013

FTN Associates, Ltd.
3 Innwood Circle, Suite 220
Little Rock, AR 72211

DUPLICATE RESULTS

Analyte		AIC No.	Result	RPD	RPD Limit	Preparation Date	Analysis Date	Di	Qual
Alkalinity as CaCO 3		165978-1	$120 \mathrm{mg} / \mathrm{l}$				$26 \mathrm{Mar13} 0836$ by 302		
	Batch: W43003	Duplicate	$120 \mathrm{mg} / \mathrm{l}$	0.858	20.0		26 Mar 130836 by 302		
Total Dissolved Solids		166037-1	$33 \mathrm{mg} / \mathrm{l}$			27Mar13 1640 by 285	28Mar13 1155 by 285		
	Batch: W43026	Duplicate	$30 \mathrm{mg} / \mathrm{l}$	9.52	10.0	27Mar13 1641 by 285	28Mar13 1155 by 285		
Total Dissolved Solids		166037-2	$35 \mathrm{mg} / \mathrm{l}$			27Mar13 1640 by 285	28Mar13 1155 by 285		
	Batch: W43026	Duplicate	$36 \mathrm{mg} / \mathrm{l}$	2.82	10.0	27Mar13 1641 by 285	28Mar13 1155 by 285		

LABORATORY CONTROL SAMPLE RESULTS

MATRIX SPIKE SAMPLE RESULTS

Analyte	Sample	Spike Amount	\%	Limits	Batch	Preparation Date	Analysis Date	Dil	Qual
Chloride	165978-1	$20 \mathrm{mg} / \mathrm{l}$	92.0	80.0-120	S34268	25Mar13 1135 by 07	$25 \mathrm{Mar13} 1245$ by 07		
	165978-1	$20 \mathrm{mg} / \mathrm{l}$	93.8	80.0-120	S34268	25Mar13 1135 by 07	25Mar13 1311 by 07		
	Relative Pe	cent Difference:	1.26	10.0	S34268				
Sulfate	165978-1	$20 \mathrm{mg} / \mathrm{l}$	94.7	80.0-120	S34268	25Mar13 1135 by 07	25Mar13 1245 by 07		
	165978-1	$20 \mathrm{mg} / \mathrm{l}$	97.2	80.0-120	S34268	25Mar13 1135 by 07	25Mar13 1311 by 07		
	Relative Pe	cent Difference:	1.89	10.0	S34268				

LABORATORY BLANK RESULTS

Analyte	Result	RL	PQL	QC Sample	Preparation Date	Analysis Date	Qual
Alkalinity as CaCO 3	$<1 \mathrm{mg} /$	1	1	W43003-1		$26 \mathrm{Mar13} 0836$ by 302	
Total Dissolved Solids	$<10 \mathrm{mg} / \mathrm{l}$	10	10	W43026-1	27Mar13 1641 by 285	28Mar13 1155 by 285	
Chloride	$<0.2 \mathrm{mg} / \mathrm{l}$	0.2	0.2	S34268-1	25Mar13 1135 by 07	25Mar13 1153 by 07	
Sulfate	$<0.2 \mathrm{mg} / \mathrm{l}$	0.2	0.2	S34268-1	25Mar13 1135 by 07	25Mar 131153 by 07	

HUTHER \& ASSOCIATES, INC.
1156 North Bonnie Brae
Denton, Texas 76201
Phone: (940) $387-1025$
Fax: (940) $387-1036$

FTN Associates, Ltd.
ATTN: Mr. Pat Downey
3 Innwood Circle, Suite 220
Little Rock, AR 72211
This report contains the analytical results and supporting information for samples submitted on March 27, 2013. Attached please find a copy of the Chain of Custody and/or other documents received. Note that any remaining sample will be discarded two weeks from the original report date unless other arrangements are made.

This report is intended for the sole use of the client listed above. Assessment of the data requires access to the entire document.

This report has been reviewed by the Laboratory Director or a qualified designee.

This document has been distributed to the following:

```
PDF cc: FTN Associates, Ltd.
    ATTN: Mr. Pat Downey
    pjd@ftn-assoc.com
```

FTN Associates, Ltd.
3 Innwood Circle, Suite 220
Little Rock, AR 72211

SAMPLE INFORMATION

Project Description:

Five (5) water sample(s) received on March 27, 2013
Huther \& Associates, Inc.
20791
RR Hwy 41-2Day 4

Receipt Details:

A Chain of Custody was provided. The samples were delivered in one (1) ice chest.
Ice chest \#1 was delivered with shipping documentation.
Each sample container was checked for proper labeling, including date and time sampled. Sample containers were reviewed for proper type, adequate volume, integrity, temperature, preservation, and holding times. Any exceptions are noted below:

Sample Identification:

Laboratory ID	Client Sample ID	Sampled Date/Time
$166020-1$	$32 \% 3 / 23 / 130900$	Notes
$166020-2$	$42 \% 3 / 23 / 130900$	23-Mar-2013 0900
$166020-3$	$56 \% 3 / 23 / 130900$	$23-M a r-20130900$
$166020-4$	$75 \% 3 / 23 / 130900$	23-Mar-20130900 0900
$166020-5$	$100 \% 3 / 23 / 130900$	23-Mar-20130900

Qualifiers:

D Result is from a secondary dilution factor

References:

"Methods for Chemical Analysis of Water and Wastes", EPA/600/4-79-020 (Mar 1983) with updates and supplements EPA/600/5-91-010 (Jun 1991), EPA/600/R-92-129 (Aug 1992) and EPA/600/R-93-100 (Aug 1993).
"Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846)", Third Edition.
"Standard Methods for the Examination of Water and Wastewaters", 21st edition.
"American Society for Testing and Materials" (ASTM).
"Association of Analytical Chemists" (AOAC).

April 1, 2013
Control No. 166020
Page 3 of 5

FTN Associates, Ltd. 3 Innwood Circle, Suite 220
Little Rock, AR 72211

ANALYTICAL RESULTS

AIC No. 166020-1
Sample Identification: 32\% 3/23/13 0900

Analyte		Result	RL	Units	Qualifier
Alkalinity as CaCO 3		160	1	mg/l	
SM 2320 B		Analyzed:	27-Mar-2013 1307 by 302	Batch: W43020	
Total Dissolved Solids		1100	10	mg / l	
SM 2540 C	Prep: 28-Mar-2013 1629 by 285	Analyzed:	29-Mar-2013 1529 by 285	Batch: W43043	
Chloride		300	2	mg / l	D
EPA 300.0	Prep: 27-Mar-2013 1347 by 07	Analyzed:	27-Mar-2013 1808 by 07	Batch: S34290	Dill 10
Sulfate		340	2	mg / l	D
EPA 300.0	Prep: 27-Mar-2013 1347 by 07	Analyzed:	27-Mar-2013 1808 by 07	Batch: S34290	Dil: 10
Hardness as CaCO 3		430	5	mg / l	D
SM 2340 B	Prep: 27-Mar-2013 1138 by 271	Analyzed:	27-Mar-2013 1410 by 305	Batch: S34289	Dill 5

AIC No. 166020-2
Sample Identification: 42\% 3/23/13 0900

Analyte		Result	RL	Units	Qualifier
Alkalinity as CaCO 3		130	1	mg / l	
SM 2320 B		Analyzed	27-Mar-2013 1307 by 302	Batch: W43020	
Total Dissolved Solids		1100	10	mg / l	
SM 2540 C	Prep: 28-Mar-2013 1629 by 285	Analyzed	29-Mar-2013 1529 by 285	Batch: W43043	
Chloride		320	2	mg/l	D
EPA 300.0	Prep: 27-Mar-2013 1347 by 07	Analyzed	27-Mar-2013 1834 by 07	Batch: S34290	Dil: 10
Sulfate		370	2	mg / l	D
EPA 300.0	Prep: 27-Mar-2013 1347 by 07	Analyzed	27-Mar-2013 1834 by 07	Batch: S34290	Dill 10
Hardness as CaCO 3		420	5	mg / l	D
SM 2340 B	Prep: 27-Mar-2013 1138 by 271	Analyzed	27-Mar-2013 1414 by 305	Batch: S34289	Dil: 5

AIC No. 166020-3
Sample Identification: 56% 3/23/13 0900

April 1, 2013
Control No. 166020
Page 4 of 5

FTN Associates, Ltd.
3 Innwood Circle, Suite 220
Little Rock, AR 72211

ANALYTICAL RESULTS

AIC No. 166020-4
Sample Identification: 75\% 3/23/13 0900

AIC No. 166020-5
Sample Identification: 100\% 3/23/13 0900

Analyte		Result	RL	Units	Qualifier
Alkalinity as CaCO 3		120	1	mg / l	
SM 2320 B		Analyzed	27-Mar-2013 1307 by 302	Batch: W43020	
Total Dissolved Solids		2400	20	mg/l	
SM 2540 C	Prep: 28-Mar-2013 1629 by 285	Analyzed:	29-Mar-2013 1529 by 285	Batch: W43043	
Chloride		650	20	mg/l	D
EPA 300.0	Prep: 27-Mar-2013 1347 by 07	Analyzed:	27-Mar-2013 1952 by 07	Batch: \$34290	Dil: 100
Sulfate		780	20	mg/l	D
EPA 300.0	Prep: 27-Mar-2013 1347 by 07	Analyzed:	27-Mar-2013 1952 by 07	Batch: S34290	Dil: 100
Hardness as CaCO 3 SM 2340 B		760	5	mg/l	D
	Prep: 27-Mar-2013 1138 by 271	Analyzed:	27-Mar-2013 1429 by 305	Batch: S34289	Dil: 5

April 1, 2013
Control No. 166020

FTN Associates, Ltd.
3 Innwood Circle, Suite 220
Little Rock, AR 72211

DUPLICATE RESULTS

Analyte		AIC No.	Result	RPD	RPD Limit	Preparation Date	Analysis Date	Dil	Qual
Alkalinity as CaCO 3		166020-1	$160 \mathrm{mg} / \mathrm{l}$				27Mar13 1307 by 302		
	Batch: W43020	Duplicate	$160 \mathrm{mg} / \mathrm{l}$	1.24	20.0		27Mar13 1307 by 302		
Total Dissolved Solids		166020-1	$1100 \mathrm{mg} / \mathrm{l}$			28Mar13 1629 by 285	29Mar13 1529 by 285		
	Batch: W43043	Duplicate	$1100 \mathrm{mg} / \mathrm{l}$	0.00	10.0	28Mar13 1629 by 285	29Mar13 1529 by 285		
Total Dissolved Solids		166020-2	$1100 \mathrm{mg} / \mathrm{l}$			28Mar13 1629 by 285	29Mar13 1529 by 285		
	Batch: W43043	Duplicate	1200 mg/l	8.41	10.0	28Mar13 1629 by 285	29Mar13 1529 by 285		

LABORATORY CONTROL SAMPLE RESULTS

Analyte	Spike Amount	\%	Limits	RPD	Limit	Batch	Preparation Date	Analysis Date	Dil	Qual
Chloride	$20 \mathrm{mg} / \mathrm{l}$	95.9	90.0-110			S34290	$27 \mathrm{Mar13} 1348$ by 07	27 Mar 131433 by 07		
Sulfate	$20 \mathrm{mg} / \mathrm{l}$	97.2	90.0-110			S34290	27Mar13 1348 by 07	27Mar13 1433 by 07		

MATRIX SPIKE SAMPLE RESULTS

Analyte	Sample	Spike Amount	\%	Limits	Batch	Preparation Date	Analysis Date	Dil	Qual
Chloride	166020-1	$20 \mathrm{mg} / \mathrm{l}$	92.8	80.0-120	S34290	27 Mar 131348 by 07	27Mar13 1651 by 07		
	166020-1	$20 \mathrm{mg} / \mathrm{l}$	98.6	80.0-120	S34290	27Mar13 1348 by 07	27Mar13 1717 by 07		
	Relative Percent Difference:		5.24	10.0	S34290				
Sulfate	166020-1	$20 \mathrm{mg} / \mathrm{l}$	94.7	80.0-120	S34290	27Mar13 1348 by 07	27Mar13 1651 by 07		
	166020-1	$20 \mathrm{mg} / \mathrm{l}$	96.1	80.0-120	S34290	27Mar13 1348 by 07	27Mar13 1717 by 07		
	Relative Percent Difference:		1.30	10.0	S34290				

LABORATORY BLANK RESULTS

Analyte	Result	RL	PQL	QC Sample	Preparation Date	Analysis Date	Qual
Alkalinity as CaCO3	$<1 \mathrm{mg} / \mathrm{l}$	1	1	W43020-1		27Mar13 1307 by 302	
Total Dissolved Solids	$<10 \mathrm{mg} / \mathrm{l}$	10	10	W43043-1	28Mar13 1629 by 285	29Mar13 1529 by 285	
Chloride	$<0.2 \mathrm{mg} / \mathrm{l}$	0.2	0.2	S34290-1	27Mar13 1348 by 07	27Mar13 1407 by 07	
Sulfate	$<0.2 \mathrm{mg} / \mathrm{l}$	0.2	0.2	S34290-1	27Mar13 1348 by 07	27Mar13 1407 by 07	

166020

HUTHER \& ASSOCLATES, INC.
1156 North Bonnie Brae
Denton, Texas 76201
Phone: (940) $387-1025$
Fax: (940) $387-1036$

April 1, 2013

FTN Associates, Ltd.
ATTN: Mr. Pat Downey
3 Innwood Circle, Suite 220
Little Rock, AR 72211
This report contains the analytical results and supporting information for samples submitted on March 27, 2013. Attached please find a copy of the Chain of Custody and/or other documents received. Note that any remaining sample will be discarded two weeks from the original report date unless other arrangements are made.

This report is intended for the sole use of the client listed above. Assessment of the data requires access to the entire document.

This report has been reviewed by the Laboratory Director or a qualified designee.

This document has been distributed to the following:
PDF cc: FTN Associates, Ltd. ATTN: Mr. Pat Downey pjd@ftn-assoc.com

FTN Associates, Ltd.
3 Innwood Circle, Suite 220
Little Rock, AR 72211

SAMPLE INFORMATION

Project Description:

Five (5) water sample(s) received on March 27, 2013
Huther \& Associates, Inc.
20791
RR Hwy 41-Day 5

Receipt Details:

A Chain of Custody was provided. The samples were delivered in one (1) ice chest.
Ice chest \#1 was delivered with shipping documentation.
Each sample container was checked for proper labeling, including date and time sampled. Sample containers were reviewed for proper type, adequate volume, integrity, temperature, preservation, and holding times. Any exceptions are noted below:

Sample Identification:

Laboratory ID	Client Sample ID	Sampled Date/Time
$166021-1$	$32 \% 3 / 24 / 130900$	Notes
$166021-2$	$42 \% 3 / 24 / 130900$	$24-M a r-20130900$
$166021-3$	$56 \% 3 / 24 / 130900$	$24-M a r-20130900$
$166021-4$	$75 \% 3 / 24 / 130900$	$24-M a r-20130900$
$166021-5$	$100 \% 3 / 24 / 130900$	$24-M a r-20130900$

Qualifiers:

D Result is from a secondary dilution factor

References:

"Methods for Chemical Analysis of Water and Wastes", EPA/600/4-79-020 (Mar 1983) with updates and supplements EPA/600/5-91-010 (Jun 1991), EPA/600/R-92-129 (Aug 1992) and EPA/600/R-93-100 (Aug 1993).
"Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846)", Third Edition.
"Standard Methods for the Examination of Water and Wastewaters", 21st edition.
"American Society for Testing and Materials" (ASTM).
"Association of Analytical Chemists" (AOAC).

April 1, 2013
Control No. 166021
Page 3 of 5

FTN Associates, Ltd. 3 Innwood Circle, Suite 220
Little Rock, AR 72211

ANALYTICAL RESULTS

AIC No. 166021-1
Sample Identification: 32\% 3/24/13 0900

AIC No. 166021-2
Sample Identification: 42\% 3/24/13 0900

Analyte		Result	RL	Units	Qualifier
Alkalinity as CaCO3		160	1	mg / l	
SM 2320 B		Analyzed	: 27-Mar-2013 1307 by 302	Batch: W43020	
Total Dissolved Solids		1200	10	mg / l	
SM 2540 C	Prep: 28-Mar-2013 1629 by 285	Analyzed	: 29-Mar-2013 1529 by 285	Batch: W43043	
Chloride		320	2	mg / l	D
EPA 300.0	Prep: 27-Mar-2013 1347 by 07	Analyzed	: 27-Mar-2013 2201 by 07	Batch: S34290	Dil: 10
Sulfate		370	2	mg / l	D
EPA 300.0	Prep: 27-Mar-2013 1347 by 07	Analyzed	: 27-Mar-2013 2201 by 07	Batch: S34290	Dil: 10
Hardness as CaCO 3		490	5	mg / l	D
SM 2340 B	Prep: 27-Mar-2013 1138 by 271	Analyzed	: 27-Mar-2013 1457 by 305	Batch: S34289	Dil: 5

AIC No. 166021-3
Sample Identification: 56% 3/24/13 0900

April 1, 2013
Control No. 166021

FTN Associates, Ltd.
3 Innwood Circle, Suite 220
Little Rock, AR 72211

ANALYTICAL RESULTS

AIC No. 166021-4
Sample Identification: 75\% 3/24/13 0900

AIC No. 166021-5
Sample Identification: 100\% 3/24/13 0900

Analyte		Result	RL	Units	Qualifier
Alkalinity as CaCO3		150	1	mg / l	
		Analyzed:	27-Mar-2013 1307 by 302	Batch: W43020	
Total Dissolved Solids SM 2540 C		2200	20	mg / l	
	Prep: 28-Mar-2013 1629 by 285	Analyzed	29-Mar-2013 1529 by 285	Batch: W43043	
Chloride EPA 300.0		670	20	mg/l	D
	Prep: 27-Mar-2013 1347 by 07	Analyzed	27-Mar-2013 2318 by 07	Batch: S34290	Dil: 100
Sulfate EPA 300.0		800	20	mg / l	D
	Prep: 27-Mar-2013 1347 by 07	Analyzed	27-Mar-2013 2318 by 07	Batch: S34290	Dil: 100
Hardness as CaCO 3 SM 2340 B		780	5	mg/l	D
	Prep: 27-Mar-2013 1138 by 271	Analyzed	27-Mar-2013 1511 by 305	Batch: S34289	Dill 5

April 1, 2013

FTN Associates, Ltd.
3 Innwood Circle, Suite 220
Little Rock, AR 72211

DUPLICATE RESULTS

Analyte		AIC No.	Result	RPD	RPD Limit	Preparation Date	Analysis Date	Dil	Qual
Alkalinity as CaCO 3		166020-1	$160 \mathrm{mg} / \mathrm{l}$				27Mar13 1307 by 302		
	Batch: W43020	Duplicate	$160 \mathrm{mg} / \mathrm{l}$	1.24	20.0		27 Mar 131307 by 302		
Total Dissolved Solids		166020-1	$1100 \mathrm{mg} / \mathrm{l}$			28Mar13 1629 by 285	29Mar13 1529 by 285		
	Batch: W43043	Duplicate	$1100 \mathrm{mg} / \mathrm{l}$	0.00	10.0	28Mar13 1629 by 285	29Mar13 1529 by 285		
Total Dissolved Solids		166020-2	$1100 \mathrm{mg} / \mathrm{l}$			28Mar13 1629 by 285	29Mar13 1529 by 285		
	Batch: W43043	Duplicate	$1200 \mathrm{mg} / \mathrm{l}$	8.41	10.0	28Mar13 1629 by 285	29Mar13 1529 by 285		

LABORATORY CONTROL SAMPLE RESULTS

MATRIX SPIKE SAMPLE RESULTS

Analyte	Sample	Spike Amount	\%	Limits	Batch	Preparation Date	Analysis Date	Dil	Qual
Chloride	166020-1	$20 \mathrm{mg} / \mathrm{l}$	92.8	80.0-120	S34290	27Mar13 1348 by 07	27 Mar 131651 by 07		
	166020-1	$20 \mathrm{mg} / \mathrm{l}$	98.6	80.0-120	S34290	27Mar13 1348 by 07	27Mar13 1717 by 07		
	Relative Percent Difference:		5.24	10.0	S34290				
Sulfate	166020-1	$20 \mathrm{mg} / \mathrm{l}$	94.7	80.0-120	S34290	27Mar13 1348 by 07	27Mar13 1651 by 07		
	166020-1	$20 \mathrm{mg} / \mathrm{l}$	96.1	80.0-120	S34290	27 Mar 131348 by 07	27Mar13 1717 by 07		
	Relative Percent Difference:		1.30	10.0	S34290				

LABORATORY BLANK RESULTS

166021

FTN Associates, Ltd.
ATTN: Mr. Pat Downey
3 Innwood Circle, Suite 220
Little Rock, AR 72211
This report contains the analytical results and supporting information for samples submitted on March 27, 2013. Attached please find a copy of the Chain of Custody and/or other documents received. Note that any remaining sample will be discarded two weeks from the original report date unless other arrangements are made.

This report is intended for the sole use of the client listed above. Assessment of the data requires access to the entire document.

This report has been reviewed by the Laboratory Director or a qualified designee.

This document has been distributed to the following:
PDF cc: FTN Associates, Ltd.
ATTN: Mr. Pat Downey
pjd@ftn-assoc.com

April 1, 2013
Control No. 166023

FTN Associates, Ltd.
3 Innwood Circle, Suite 220
Little Rock, AR 72211

SAMPLE INFORMATION

Project Description:

Five (5) water sample(s) received on March 27, 2013
Huther \& Associates, Inc.
20791
RR Hwy 41-Day 6

Receipt Details:

A Chain of Custody was provided. The samples were delivered in one (1) ice chest. Ice chest \#1 was delivered with shipping documentation.

Each sample container was checked for proper labeling, including date and time sampled. Sample containers were reviewed for proper type, adequate volume, integrity, temperature, preservation, and holding times. Any exceptions are noted below:

Sample Identification:

Laboratory ID	Client Sample ID	Sampled Date/Time
$166023-1$	$32 \% 3 / 25 / 130900$	Notes
$166023-2$	$42 \% 3 / 25 / 130900$	$25-M a r-20130900$
$166023-3$	$56 \% 3 / 25 / 130900$	$25-M a r-20130900$
$166023-4$	$75 \% 3 / 25 / 130900$	$25-M a r-20130900$
$166023-5$	$100 \% 3 / 25 / 130900$	$25-M a r-20130900$

Qualifiers:

D Result is from a secondary dilution factor

References:

"Methods for Chemical Analysis of Water and Wastes", EPA/600/4-79-020 (Mar 1983) with updates and supplements EPA/600/5-91-010 (Jun 1991), EPA/600/R-92-129 (Aug 1992) and EPA/600/R-93-100 (Aug 1993).
"Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846)", Third Edition.
"Standard Methods for the Examination of Water and Wastewaters", 21st edition.
"American Society for Testing and Materials" (ASTM).
"Association of Analytical Chemists" (AOAC).

April 1, 2013
Control No. 166023
Page 3 of 5

FTN Associates, Ltd.
3 Innwood Circle, Suite 220
Little Rock, AR 72211

ANALYTICAL RESULTS

AIC No. 166023-1
Sample Identification: 32\% 3/25/13 0900

AIC No. 166023-2
Sample Identification: 42\% 3/25/13 0900

Analyte		Result	RL	Units	Qualifier
Alkalinity as CaCO3		150	1	mg / l	
SM 2320 B		Analyzed	27-Mar-2013 1307 by 302	Batch: W43020	
Total Dissolved Solids		1200	10	mg / l	
SM 2540 C	Prep: 28-Mar-2013 1629 by 285	Analyzed: 29-Mar-2013 1529 by 285		Batch: W43043	
Chloride		340	2	mg/l	D
EPA 300.0	Prep: 27-Mar-2013 1347 by 07	Analyzed	28-Mar-2013 0010 by 07	Batch: S34290	Dill 10
Sulfate		400	2	mg / l	D
EPA 300.0	Prep: 27-Mar-2013 1347 by 07	Analyzed	: 28-Mar-2013 0010 by 07	Batch: S34290	Dil: 10
Hardness as CaCO 3		460	5	mg / l	D
SM 2340 B	Prep: 27-Mar-2013 1138 by 271	Analyzed	: 27-Mar-2013 1521 by 305	Batch: S34289	Dil: 5

AIC No. 166023-3
Sample Identification: 56\% 3/25/13 0900

April 1, 2013

FTN Associates, Ltd.
3 Innwood Circle, Suite 220
Little Rock, AR 72211

ANALYTICAL RESULTS

AIC No. 166023-4
Sample Identification: 75\% 3/25/13 0900

AIC No. 166023-5
Sample Identification: 100\% 3/25/13 0900

Analyte		Result	RL	Units	Qualifier
Alkalinity as CaCO		120	1	mg/l	
SM 2320 B		Analyzed:	27-Mar-2013 1307 by 302	Batch: W43020	
Total Dissolved Solids		2400	20	mg / l	
SM 2540 C	Prep: 28-Mar-2013 1629 by 285	Analyzed:	29-Mar-2013 1529 by 285	Batch: W43043	
Chloride		680	20	mg/l	D
EPA 300.0	Prep: 27-Mar-2013 1347 by 07	Analyzed:	28-Mar-2013 0127 by 07	Batch: S34290	
Sulfate		820	20	mg/l	D Dil: 100
EPA 300.0	Prep: 27-Mar-2013 1347 by 07	Analyzed:	28-Mar-2013 0127 by 07	Batch: S34290	
Hardness as CaCO 3 SM 2340 B		730	5	mg/l	D Dil: 5
	Prep: 27-Mar-2013 1138 by 271	Analyzed:	27-Mar-2013 1535 by 305	Batch: S34289	

April 1, 2013
Control No. 166023
Page 5 of 5

FTN Associates, Ltd.
3 Innwood Circle, Suite 220
Little Rock, AR 72211

DUPLICATE RESULTS

Analyte		AIC No.	Result	RPD	RPD Limit	Preparation Date	Analysis Date	Dil	Qual
Alkalinity as CaCO 3		166020-1	$160 \mathrm{mg} / \mathrm{l}$				$27 \mathrm{Mar13} 1307$ by 302		
	Batch: W43020	Duplicate	$160 \mathrm{mg} / \mathrm{l}$	1.24	20.0		27Mar13 1307 by 302		
Total Dissolved Solids		166020-1	$1100 \mathrm{mg} / \mathrm{l}$			28Mar13 1629 by 285	29Mar13 1529 by 285		
	Batch: W43043	Duplicate	$1100 \mathrm{mg} / \mathrm{l}$	0.00	10.0	28Mar13 1629 by 285	29Mar13 1529 by 285		
Total Dissolved Solids		166020-2	$1100 \mathrm{mg} / \mathrm{l}$			28Mar13 1629 by 285	29Mar13 1529 by 285		
	Batch: W43043	Duplicate	$1200 \mathrm{mg} / \mathrm{l}$	8.41	10.0	28Mar13 1629 by 285	29Mar13 1529 by 285		

LABORATORY CONTROL SAMPLE RESULTS

MATRIX SPIKE SAMPLE RESULTS

LABORATORY BLANK RESULTS

Analyte	Result	RL	PQL	QC Sample	Preparation Date	Analysis Date	Qual
Alkalinity as CaCO3	$<1 \mathrm{mg} / \mathrm{l}$	1	1	W43020-1		27 Mar 131307 by 302	
Total Dissolved Solids	$<10 \mathrm{mg} / \mathrm{l}$	10	10	W43043-1	28Mar13 1629 by 285	29Mar13 1529 by 285	
Chloride	$<0.2 \mathrm{mg} / \mathrm{l}$	0.2	0.2	S34290-1	27Mar13 1348 by 07	27Mar13 1407 by 07	
Sulfate	$<0.2 \mathrm{mg} / \mathrm{l}$	0.2	0.2	S34290-1	27Mar13 1348 by 07	27Mar13 1407 by 07	

FTN Associates, Ltd.
ATTN: Mr. Jim Malcolm
3 Innwood Circle, Suite 220
Little Rock, AR 72211
This report contains the analytical results and supporting information for samples submitted on March 27, 2013. Attached please find a copy of the Chain of Custody and/or other documents received. Note that any remaining sample will be discarded two weeks from the original report date unless other arrangements are made.

This report is intended for the sole use of the client listed above. Assessment of the data requires access to the entire document.

This report has been reviewed by the Laboratory Director or a qualified designee.

This document has been distributed to the following:

```
PDF cc: FTN Associates, Ltd.
    ATTN: Mr. Pat Downey
    pjd@ftn-assoc.com
```

FTN Associates, Ltd.
3 Innwood Circle, Suite 220
Little Rock, AR 72211

SAMPLE INFORMATION

Project Description:

Five (5) water sample(s) received on March 27, 2013
Huther \& Associates, Inc.
20791
RR Hwy 41-Day 7

Receipt Details:

A Chain of Custody was provided. The samples were delivered in one (1) ice chest. Ice chest \#1 was delivered with shipping documentation.

Each sample container was checked for proper labeling, including date and time sampled. Sample containers were reviewed for proper type, adequate volume, integrity, temperature, preservation, and holding times. Any exceptions are noted below:

Sample Identification:

Laboratory ID	Client Sample ID	Sampled Date/Time
$166025-1$	$32 \% 3 / 26 / 130900$	
$166025-2$	$42 \% 3 / 26 / 130900$	Notes
$166025-3$	$56 \% 3 / 26 / 130900$	$26-M a r-20130900$
$166025-4$	$75 \% 3 / 26 / 130900$	$26-M a r-20130900$
$166025-5$	$100 \% 3 / 26 / 130900$	$26-M a r-20130900$

Qualifiers:

D Result is from a secondary dilution factor

References:

"Methods for Chemical Analysis of Water and Wastes", EPA/600/4-79-020 (Mar 1983) with updates and supplements EPA/600/5-91-010 (Jun 1991), EPA/600/R-92-129 (Aug 1992) and EPA/600/R-93-100 (Aug 1993).
"Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846)", Third Edition.
"Standard Methods for the Examination of Water and Wastewaters", 21st edition.
"American Society for Testing and Materials" (ASTM).
"Association of Analytical Chemists" (AOAC).

April 2, 2013
Control No. 166025 Page 3 of 5

FTN Associates, Ltd
3 Innwood Circle, Suite 220
Little Rock, AR 72211

ANALYTICAL RESULTS

AIC No. 166025-1
Sample Identification: 32\% 3/26/13 0900

AIC No. 166025-2
Sample Identification: 42% 3/26/13 0900

Analyte		Result	RL	Units	Qualifier
Alkalinity as CaCO 3		100	1	mg/l	
SM 2320 B		Analyzed:	28-Mar-2013 0820 by 302	Batch: W43027	
Total Dissolved Solids		1300	10	mg/l	
SM 2540 C	Prep: 29-Mar-2013 1637 by 285	Analyzed: 01-Apr-2013 1330 by 285		Batch: W43057	
Chloride		350	2	mg / l	D
EPA 300.0	Prep: 27-Mar-2013 1347 by 07	Analyzed:	28-Mar-2013 0337 by 07	Batch: S34290	Dil: 10
Sulfate		410	2	mg / l	D
EPA 300.0	Prep: 27-Mar-2013 1347 by 07	Analyzed:	28-Mar-2013 0337 by 07	Batch: S34290	Dil: 10
Hardness as CaCO 3		400	5	mg/l	
SM 2340 B	Prep: 27-Mar-2013 1138 by 271	Analyzed:	27-Mar-2013 1603 by 305	Batch: S34289	Dil: 5

AIC No. 166025-3
Sample Identification: 56\% 3/26/13 0900

April 2, 2013
Control No. 166025

FTN Associates, Ltd.
3 Innwood Circle, Suite 220
Little Rock, AR 72211

ANALYTICAL RESULTS

AIC No. 166025-4
Sample Identification: 75\% 3/26/13 0900

AIC No. 166025-5
Sample Identification: 100\% 3/26/13 0900

April 2, 2013
Control No. 166025
Page 5 of 5

FTN Associates, Ltd
3 Innwood Circle, Suite 220
Little Rock, AR 72211

DUPLICATE RESULTS

Analyte		AIC No.	Result	RPD	RPD Limit	Preparation Date	Analysis Date	Dil	Qual
Alkalinity as CaCO 3		166025-1	$110 \mathrm{mg} / \mathrm{l}$				28 Mar 130820 by 302		
	Batch: W43027	Duplicate	$110 \mathrm{mg} / \mathrm{l}$	0.913	20.0		28 Mar 130820 by 302		
Total Dissolved Solids		166066-1	$<10 \mathrm{mg} / \mathrm{l}$			29Mar13 1637 by 285	01Apr13 1330 by 285		
	Batch: W43057	Duplicate	$<10 \mathrm{mg} / \mathrm{l}$	0.00	10.0	29Mar13 1637 by 285	01Apr13 1330 by 285		
Total Dissolved Solids		166074-1	$59 \mathrm{mg} / \mathrm{l}$			29Mar13 1637 by 285	01Apr13 1330 by 285		
	Batch: W43057	Duplicate	$56 \mathrm{mg} / \mathrm{l}$	5.22	10.0	29Mar13 1637 by 285	01Apr13 1330 by 285		

LABORATORY CONTROL SAMPLE RESULTS

Analyte	Spike Amount	\%	Limits	RPD	Limit	Batch	Preparation Date	Analysis Date	Dil	Qual
Chloride	$20 \mathrm{mg} / \mathrm{l}$	95.9	90.0-110			S34290	$27 \mathrm{Mar13} 1348$ by 07	27 Mar 131433 by 07		
Sulfate	$20 \mathrm{mg} / \mathrm{l}$	97.2	90.0-110			S34290	27Mar13 1348 by 07	27Mar13 1433 by 07		

MATRIX SPIKE SAMPLE RESULTS

Analyte	Sample	Spike Amount	\%	Limits	Batch	Preparation Date	Analysis Date	Dil	Qual
Chloride	166020-1	$20 \mathrm{mg} / \mathrm{l}$	92.8	80.0-120	S34290	27 Mar 131348 by 07	27Mar13 1651 by 07		
	166020-1	$20 \mathrm{mg} / \mathrm{l}$	98.6	80.0-120	S34290	27Mar13 1348 by 07	27Mar13 1717 by 07		
	Relative Percent Difference:		5.24	10.0	S34290				
Sulfate	166020-1	$20 \mathrm{mg} / \mathrm{l}$	94.7	80.0-120	S34290	27Mar13 1348 by 07	27Mar13 1651 by 07		
	166020-1	$20 \mathrm{mg} / \mathrm{l}$	96.1	80.0-120	S34290	27Mar13 1348 by 07	27Mar13 1717 by 07		
	Relative Percent Difference:		1.30	10.0	S34290				

LABORATORY BLANK RESULTS

Analyte	Result	RL	PQL	QC Sample	Preparation Date	Analysis Date
Alkalinity as CaCO 3	$<1 \mathrm{mg} / \mathrm{l}$	1	1	W43027-1		28Mar13 0820 by 302
Total Dissolved Solids	$<10 \mathrm{mg} / \mathrm{l}$	10	10	W43057-1	29Mar13 1637 by 285	01Apr13 1330 by 285
Chloride	$<0.2 \mathrm{mg} / \mathrm{l}$	0.2	0.2	S34290-1	27Mar13 1348 by 07	27Mar13 1407 by 07
Sulfate	$<0.2 \mathrm{mg} / \mathrm{l}$	0.2	0.2	S34290-1	27Mar13 1348 by 07	27Mar13 1407 by 07

APPENDIX B

Huther $\mathcal{\&}$ Associates, Inc. Chronic 7-day Ceriodaphnia dubia Report

RED RIVER TD STUDY

Red River © HWY 41

Chronic 7-day Ceriodaphnia dubia Report

March 20, 2013

Reviewed by:

Brace Huther, Technical Director
Hither \& Associates, Inc.
1156 North Bonnie Brae
Denton, Texas 76201
(940) 387-1025, Fax: (940) 387-1036

TABLE OF CONTENTS

TOXICITY TEST REPORT I
SUMMARY 2
CERIODAPHNIA DUBIA SURVIVAL AND REPRODUCTION SUMMARY 3
CERIODAPHNIA DUBIA STATISTICAL ANALYSES 7
APPENDIX A: RAW DATA 8
APPENDIX B: REFERENCE TOXICANTS 9
APPENDIX C: CHAIN OF CUSTODY SHEETS 10

H
 Huther and Associates, Inc.

environmental toxicologists, biologists, and consultants

TOXICITY TEST REPORT - CHRONIC

Client	Red River TDS Study	Laboratory I.D. 20837
Sample	Red River © HWY 41	Begin Date March 20, 2013

Results: No statistically significant difference between the control and the TDS Red River sample in all concentrations tested for Ceriodaphnia dubia survival and reproduction.

SAMPLE COLLECTION

SAMPLE PREPARATION

Approximately 100 liters of grab samples from the Red River at HWY 41 were delivered by Greyhound Package Express to Huther \& Associates on March 14, 2013. Grab samples were collected by FTN personnel. One toxicity test was requested: a seven-day Ceriodaphnia dubia survival and reproduction test (EPA Method 1002.0). Test organisms, procedures and quality assurance requirements were in accordance with the EPA manual, "Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms," Fourth Edition, (EPA-821-R-02-013).

Upon arrival at the laboratory, the river water sample was analyzed for total residual chlorine (Standard Methods, $22^{\text {nd }}$ Edition, $4500-\mathrm{Cl}$ D) and contained $<0.01 \mathrm{mg} / \mathrm{L}$. Additionally, water hardness, alkalinity, conductivity, pH , and dissolved oxygen data were measured and recorded.

The sample was split into two, 50 -liter aliquots. One aliquot of river water was spiked to approximately 4 X the existing concentration of TDS. The second aliquot was used as dilution water. Prior to use, the spiked aliquot was aerated for 24 -hours. The following amounts of inorganic salts were added to the river water:

Summary of Inorganic Salts added to River Water

Salt	mg / L	g / L	$\mathrm{g} / 50 \mathrm{~L}$
NaCl	650	0.650	32.50
NaSO_{4}	639	0.639	31.95
$\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	38	0.038	1.90
MgCl_{2}	67	0.067	3.35
$\mathrm{MgSO}_{4} \cdot 7 \mathrm{FH}_{2} \mathrm{O}$	525	0.525	26.25
$\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	189	0.189	9.45
CaO	240	0.240	12.00
KCl	45	0.045	2.25

TEST SETUP Ceriodaphnia dubia

SURVIVAL Ceriodaphnia dubia

REPRODUCTION

 Ceriodaphnia dubiaThe seven-day Ceriodaphnia dubia survival and reproduction test was initiated at 1655 hours, March 20, 2013. Five concentrations of the spiked sample were prepared $(32 \%, 42 \%, 56 \%, 75 \%$, and 100%) utilizing the unspiked river water sample as the diluent. The test was conducted in 25 mL distilled water rinsed plastic beakers containing 15 mL of solution (one organism per beaker, ten beakers per concentration). C. dubia neonates were less than 24 hours old and within eight hours of the same age at test initiation. Neonates were placed in beakers following a randomized block test design. Fresh solutions were prepared and renewed daily. Daily feeding consisted of 0.5 mL Selenastrum capricornutum and cerophyll per test chamber. The test proceeded for seven days during which survival, reproduction and water quality data were collected daily.

A true control of ten replicate chambers containing one neonate each in Red River water collected at HWY 41 was conducted concurrently with the test. There was 100% survival in the true control. In addition, a performance control of ten replicate chambers containing one neonate each in synthetic laboratory water was conducted concurrently with the test. The purpose of the performance control was to assess the health of the test organisms and to identify river water toxicity. The performance control data was not used in the statistical analysis of the test data. There was 100% survival in the performance control. The test ended at 1655 hours, March 27, 2013.

There was 100% survival to C. dubia in all of the concentrations tested. Therefore, statistical analyses were not required to deternine a no effect concentration.

LOEC: Not Applicable

NOEC: 100% Spiked Red River sample
C. dubia reproduction data were normally distributed at the 0.01 alpha level (13.277) using Chi-Square test for normality. Reproduction data were homogeneous using Bartlett's test at the 0.01 alpha level (15.09) without data transformations. Therefore, a parametric test was performed on the homogeneous data. Durnett's test on C. dubia reproduction data demonstrated that there were no statistically significant differences between the control and any of the concentrations.

LOEC: Not Applicable PMSD: 8.3\%
NOEC: 100% Spiked Red River sample

SUMMARY

There were no statistically significant differences between the control and the spiked Red River sample for C. dubia survival and reproduction.

Huther and Associates
7-Day/3 Brood Ceriodaphnia dubia Survival and Reproduction Chronic Toxicity Test
CLIENT Red River TDS Study

TPDES \# Non-permitted

LAB ID \# 20837

TEST TYPE	7 Day Chronic
TEST ORGANISM	Cerriodaphnta dubia
ORGANISM AGE	<24 Hours

ORGANISM SOURCE RECEIVING WATER DILUTION WATER

In House

Not Applicable
Red River © HWY 41

SAMPLETYPE Grab
DATE COLLECTED 03/13/13
DATE RECEIVED 03/14/13
BEGIN DATETIME 03/20113 1655 END DATE/TIME 03/27II3 1655 TEST TEMPERATURE ($\left.{ }^{\circ} \mathrm{C}\right) \quad 25 \pm 1$ PHOTO PERIOD

16-hr. Light 8-hr. Datk LIGHT INTENSITY $50-100 \mathrm{ft}$ codl. TECHNICIAN N. Lehr

SURVIVAL \& REPRODUCTION SUMMARY

whers:	$A=$ Alve			alive foday lolal young to dale	Ex 2:		
	5 Alve, 5 young		A			5	aive, 5 young loday
	D= Dead		4			12	tolat young to date

Huther and Associates
7-Day/3 Brood Ceriodaphnia dubia Survival and Reproduction Chronic Toxicity Test

Red River TDS Study
Lab ID\# 20837
Test Date: March 20, 2013

100\% Spike@ HWY 41

75\% Spikeem HWY 41

Date	$\left[\begin{array}{c} R a p \\ 1 \end{array}\right.$	$\begin{aligned} & \mathrm{REP} \\ & 2 \end{aligned}$	$\left[\begin{array}{c} \text { Rep } \\ \mathbf{3} \end{array}\right]$	Rep	$\left\lvert\, \begin{gathered} \text { Rap } \\ 5 \end{gathered}\right.$	$\begin{gathered} \text { Rop } \\ 6 \end{gathered}$	$\left[\begin{array}{c} \text { Rop } \\ 7 \end{array}\right.$	$\begin{gathered} \mathrm{Rep} \\ \mathrm{Ca} \end{gathered}$	$\begin{gathered} \mathrm{Rep} \\ \hline 9 \end{gathered}$	$\begin{gathered} R O p_{1} \\ 10 \end{gathered}$
03/21/13	A	A	A	A	A	A	A	A	A	A
	0	0	D	0	0	0	0	0	0	0
03/2213	A	A	A	A	A	A	A	A	A	A
	0	0	0	0	0	0	0	0	0	0
03/23/13	A	A	A	A	A	A	A	A	A	A
	0	0	0	0	0	0	0	0	0	0
03/24/13	A	A	2	2	A	A	A	A	A	A
	0	0	2	2	0	0	0	0	0	0
03/25/13	2	3	A	A	4	3	2	4	3	2
	2	3	2	2	4	3	2	4	3	$\overline{2}$
03/20/3	B	0	7	8	7	7	8	7	8	9
	10	9	6	8	11	10	8	11	$\overline{11}$	11
03/27/13	14	13	12	13	12	12	14	12	13	12
	24	22	21	21	23	22	22	23	24	23
	$x \#$ Young			22.5		c.V. 4.80%				
	x\% Survival 100%						c.v.	0.00\%		

7－Day／3 Brood Ceriodaphnia dubia Survival and Reproduction Chronic Toxicity Test

Test Date：March 20， 2013

WET CHEMISTRY MEASUREMENTS

D．ate	Ting	THetre	2919 Ma	HH4SUlthat							Amyst
				PGO	T00	j2m	420．	58	75	1019	
03／20／13	Start	25.0	1	8.15	7.61	8.72	8.77	8.92	8.87	8.91	STC
09／dia	2418r	24	1.	8．29	Gin	391	784	78	778	7.66	CTI
03／21／13	Renew	24.5	1	8． 28	7.84	8.24	8.37	8.54	8.83	8.99	CTT
03214	48tim	24.4	1	3276	8，17	E．10	8.07	80\％	7.95	7．ag	TN
03／22／13	Renew	24.6	1	8.28	8.22	8.14	8.10	8.03	7.98	7.91	STC
052313	74	24.2	1	H2	840	$4{ }^{4} 5$	प24：	812	8， 97	79	81 C
03／23／13	Renew	24.6	1	8.28	7.89	7.91	7.94	7.90	7.88	7.91	STC
$00^{2} 413$	9 $\mathrm{Hf}^{\text {\％}}$	24	1	809	8,43	\％ 16	84］	E2	6， 0	7.59	STC
03／24／13	Renew	24.1	1	8.44	7.84	7.83	7.84	7.84	7.87	7.94	STC
mhat3	120 H	242	1		848	B20	8.26	924	8.17	B． 41	STC
03／25／13	Renew	24.2	1	8.44	8.02	7.97	8.00	7.98	8.01	8.08	STC
03／26／13	14 Fir：	24， 0	1	\％ 2	ger	840	B．${ }^{\text {a }}$	84．	797	7.93	$5 T \mathrm{~L}$
03／26／13	Renew	24.5	1	8.44	7.94	7.85	7.86	7.87	7.89	7.93	STC
15273	1684．	348	1	8.4	8.17	0．tha	8.08	8.05	802	8.00	STC

Dete	Time	Terip	Singe： No．	Wg（mg／L）ofbution：							Analyst
				PCOT	CgR	348	420	55 楬	75\％	100\％	
03／20／13	Slart	25.0	1	8.48	8.02	7.74	7.88	7.74	7.92	7.96	STC
03215	24 ＋fi：	545	1	E．05	8 c	B． 04	40	B6es：	4097	S09	CTT
03／21／13	Renew	24.5	1	8.17	8.04	7.93	7.85	7.89	7.98	8.08	CTT
032213	4812：	449	1	$6{ }^{6}$	799	78.	169	181	759：	4 －	TN
03／22／13	Renew	24.6	1	8.17	8.05	8.03	7.97	7.94	7.90	7.82	STC
D2713	741	24.2	1	8， 60	$8{ }^{8} 4$	248	\％27：	3040	914	呂14	STC
03／23／13	Renew	24.6	1	8.17	8.32	8.23	8.04	7.92	7.84	7.82	STC
Wer ${ }^{2} 13$	S6 HE．	241	1.	785	T65	7.54	T85	9 16	耎家	627	STC
03／24／13	Renew	24.1	1	8.44	7.69	7.58	7.58	7.65	7.94	8.05	STC
USLS13	12010	24.2	1	8 Eb	2． 8	\％${ }^{6}$	687	g64	Bigim	乽61．	STE
03／25／13	Renew	24.2	1	8.44	8.33	8.35	8.39	8.45	8.46	8.57	STC
64219	141H5	84	1	842	ET31	82	Q2e	797	E14	8 8id	STC
03／26／13	Renew	24.5	1	8.44	7.95	7.84	7.85	7.93	7.98	7.93	STC
प32712	108H5	24.8	1	834	8.27	\％，18	6．35	8．13	888	8.00	St

Huther and Associates
7-Day/3 Brood Ceriodaphnia dubia Survival and Reproduction Chronic Toxicity Test

Red River TDS Study
Lab ID\# 20837
Test Date: March 20, 2013

DAILY CONDUCTIVITY MEASUREMENTS

		PCon	TCON	32	42 管	564	75\%	100\%
Duy 1	36013	638	680	1592	1886	2232	2643	3266
Day 2	32110	715	726	1398	1838	2274	2988	3732
D9y	3/2243	711	721	1401	1902	2281	3001	3742
Dey 4	$3 / 233$	714	724	1411	1921	2299	3009	3739
Day 5	3-4/3	721	725	1421	1927	2297	3008	3741
Dayd	32513	724	729	1424	1931	2301	3009	3752
Day	$3 / 2613$	731	733	1439	1937	2304	3014	3769

INITIAL CHEMISTRY MEASUREMENTS @ 100% RED RIVER @ HWY 41 WATER (PRIOR TO INORGANIC SALT ADDITION)

Date	Samp. No.	pH	DO	$\begin{gathered} \text { Hardness } \\ \mathrm{mg} / \mathrm{LCaCO3} \\ \hline \end{gathered}$	$\begin{gathered} \text { Alkalinity } \\ \text { mg/L } \mathrm{CaCO} 3 \end{gathered}$	Conduct. umhos/cm ${ }^{1}$	$\begin{aligned} & \text { Resid.Cl2 } \\ & \mathrm{mg} / \mathrm{L}^{1} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Dechlor(mL) } \\ \mathrm{Na} 2 \mathrm{~S} 203 \mathrm{mg} / \mathrm{L} \end{gathered}$	Analyst
3/20/13	1	8.91	7.96	160	132	680	<0.01	N/A.	TN

INTIAL CHEMISTRY MEASUREMENTS @ RED RIVER @ HWY 41 WATER

Date	Samp. No.	pH	DO	$\begin{gathered} \text { Hardness } \\ \mathrm{mg} / \mathrm{L} \text { CaC03 } \end{gathered}$	$\begin{gathered} \text { Alkalinity } \\ \mathrm{mg} / \mathrm{L}, \mathrm{CaCO}{ }^{1} \\ \hline \end{gathered}$	Conduct. umhos/cm ${ }^{1}$	$\begin{gathered} \text { Resid.Cl2 } \\ \mathrm{mg} / \mathrm{L} . \\ \hline \end{gathered}$	$\begin{gathered} \text { Dechlor(mL) } \\ \mathrm{Na} 2 \mathrm{~S} 203 \mathrm{mg} / \mathrm{L} \end{gathered}$	Analyst
$3 / 20$	RS1	8.91	7.96	160	132	680	<0.01	N/A	TN

Huther and Associates, Inc.
Begin Date: March 27, 2013
Lab I.D.\# 20837

CERIODAPHNIA DUBIA STATISTICAL ANALYSES

Reproduction

Summary Statistics on Transformed Data Table 1 of 2

Grp	Identification	$\underline{\mathbf{N}}$	$\underline{\text { Min }}$	$\underline{\text { Max }}$	$\frac{\text { Mean }}{22.400}$
1	Control	10	19.000	25.000	28
2	32% Red River	10	22.000	28.000	23.300
3	42\% Red River	10	20.000	27.000	23.400
4	56\% Red River	10	21.000	26.000	23.100
5	75% Red River	10	21.000	24.000	22.500
6	100\% Red River	10	20.000	25.000	22.300

Summary Statistics on Transformed Data Table 2 of 2

Grp	Identification	Variance	Sd	Sem	C.V.\%
1	Control	3.156	1.776	0.562	7.93
2	32\% Red River	3.789	1.947	0.616	8.35
3	42\% Red River	5.378	2.319	0.733	9.91
4	56\% Red River	2.767	1.663	0.526	7.20
5	75\% Red River	1.167	1.080	0.342	4.80
6	100\% Red River	3.122	1.767	0.559	7.92

Chi-Square Test For Normality: Actual And Expected Frequencies

Interval	≤-1.5	-1.5 to -0.5	-0.5 to 0.5	>0.5 to 1.5	≥ 1.5
Expected	4.020	14.520	22.920	14.520	4.020
Observed	1	19	24	12	4

Calculated Chi-Square goodness of fit test statistic $=4.1394$
Table Chi-Square value $($ aipha $=0.01)=13.277$
Data Pass normality test. Continue analysis.

ANOVA Table					
SOURCE	DF	SS	MS	F	
Between	5	11.933	2.387	0.739	
Within (Error)	54	174.400	3.230		
Total	59	186.333			

Critical F value $=2.45(0.05,5,40)$
Since F < Critical F Fail to Reject Ho: All equal

Dunnett's Test - Table 1 of 2 Ho :Control < Treatment

Grp	Identification	Mean			
		Mean	Original Units	T Stat	$\underline{\text { Sig }}$
1	Control	22.400	22.400		
2	32\% Red River	23.300	23.300	-1.120	
3	42\% Red River	23.400	23.400	-1.244	
4	56\% Red River	23.100	23.100	-0.871	
5	75\% Red River	22.500	22.500	-0.124	
6	100\% Red River	22.300	22.300	0.124	

Dunnett table value $=2.31$ (1 Tailed Value, $\mathrm{P}=0.05, \mathrm{DF}=40,5$) No statistically significant difference

Grp	Identification	$\frac{\text { Num or }}{\text { Reps }}$	$\frac{\text { Minimum Sig Diff }}{(\ln \text { Orig. Units) }}$	$\begin{gathered} \frac{\sigma_{6} \text { of }}{\text { Control }} \\ \hline \end{gathered}$	Difference
					from
					Control
1	Control	10			
2	32\% Red River	10	1.857	8.3	-0.900
3	42\% Red River	10	1.857	8.3	-1.000
4	56\% Red River	10	1.857	8.3	-0.700
5	75\% Red River	10	1.857	8.3	-0.100
6	100\% Red River	10	1.857	8.3	0.100

Bartlett's Test For Homogeneity of Variance
Calculated B1 statistic $=4.83$
Table Chi-square value $=15.09$ (alpha $=0.01, \mathrm{DF}=5$)
Table Chi-square value $=11.07($ alpha $=0.05, \mathrm{DF}=5)$
Data Pass B1 homogeneity test at 0.01 level. Continue analysis.

APPENDIX A
RAW DATA

Page 8 of 10

7-DAY CERIODAPHNLA DUBLA SURVIVAL \& REPRODUCTION DAILY RAW DATA TABLE
\qquad \perp OF \qquad

Client melon River Study
OUTFALL \qquad

20837 ai
Pron

$$
\begin{array}{ll}
\bar{x}=\text { Young wo Dead }=20.4 & c v \%=7,07 \\
\bar{x} \ddot{r} \text { Young w/Dead }= & c v \%= \\
\vec{x} \% \text { Survival }=100.0 & c v \%=0.00
\end{array}
$$

START DATEJTIME
END DATE/TIME
$3-20-13$ NL 1655 $3-22-13$ NC 165.5

Ton

42

PAGE $2 O F \geq 2$

| START DATE/TIME | $3-20-13 \mathrm{NL}$ | 1655 |
| :--- | :--- | :--- | :--- |
| END DATE/TIME | $3-27-13 \mathrm{NL}$ | 1655 |

75

Date	Repl	Rep2	Rep	Rep		ep			8 Rep	Replo	Andlys	Time	
$\frac{31}{21}$	A	A		A	A	4	A	A	A	A	NL	1655	
											N	rass	
$3 / 22$	A	A	A	A	A	A		A	A	A	$N /$	1020	
$3 / 23$		4	A	A	-	A	A		4	H			
$3 / 24$	A	A	2	2	A		A		4	4	MH	1010	
$3 / 25$	2	3	A	A	R 4	3	2	4	3	2	ULC	$1 / 10$	
$3 / 26$	8	6	7	6	7	7	6		8	9	N<1140		
$3 / 27$	14	P	12	12	12	2	4		2	2	$N L$	1655	

$$
\begin{array}{ll}
\overline{\mathrm{x}} \# \text { Young w/o Dead }=22.5 & \mathrm{cv} \%=4.80 \\
\overline{\mathrm{x}} \# \text { Young wDead }= & \mathrm{cv} \%= \\
\overline{\mathrm{x}} \% \text { Survival }=10000 \mathrm{cV} \%=0.00
\end{array}
$$

DAILY CONDUCTIVITY READING

CLIENT: Red River Effluent Study
PROJECT\#: 20837
TEST DATE: March 20, 2013

		PCON	TCON	32%	42%	56%	75%	100%
Day 1	$3 / 20113$	6.38	680	1592	1886	2232	2643	3266
Day 2	$3 / 21 / 13$	715	726	1398	1838	2274	2988	3732
Day 3	$3 / 22 / 13$	711	721	1401	1902	2281	3001	3742
Day 4	$3 / 23 / 13$	714	724	1411	1921	2299	3009	3739
Day 5	$3 / 24 / 13$	721	725	1421	1927	2297	3008	3741
Day 6	$3 / 25 / 13$	724	729	1424	1931	7301	3009	3752
Day 7	$3 / 26 / 13$	731	733	1439	1937	2304	3014	3769

APPENDIX B REFERENCE TOXICANTS

CHRONIC REFERENCE TOXICANT TEST RESULTS

SPECIES:

CHEMICAL:

Ceriodaphnia dubia

DURATION:
Sodium Chloride
7-Days
TEST NUMBER:
3
TEST DATE/TIME:
03/04/13-03/11/13
$1640 \mathrm{Hrs}-1640 \mathrm{Hrs}$
STATISTICALMETHOD:
Fishers, Dunnetts/Steels

CONCENTRATION (g/L)	NUMBER EXPOSED	NUMBER DEAD
0.5	10	0
1.0	10	0
1.5	10	0
2.0	10	7
2.5	10	10
3.0	10	10
4.0	10	10

LOEC FOR SURVIVAL	NOEC FOR SURVIVAL	LOEC FOR REPRODUCTION	NOEC FOR REPRODUCTION
$2.0 \mathrm{~g} / \mathrm{L}$	$1.5 \mathrm{~g} / \mathrm{L}$	$1.5 \mathrm{~g} / \mathrm{L}$	$1.0 \mathrm{~g} / \mathrm{L}$

Reference Tox Sodium Chloride g/L
C. dubia Survival - NOEC

$n=20$ Mean $=1.600 \mathrm{SD}=0.205 \mathrm{CV}=12.82 \%$ Min $=1.500 \mathrm{Max}=2.000$

Reference Tox Sodium Cloride g/L
C. dubia Reproduction - NOEC

$n=20$ Mean= $0.650 \mathrm{SD}=0.235 \mathrm{CV}=36.17 \%$ Min $=0.500 \quad \mathrm{Max}=1.000$

APPENDIX C CHAIN OF CUSTODY SHEETS
HUTHER \& ASSOCIATES 1156 NORTH BONNIE BRAE STREET DENTON, TX 76201 (940) 387-1025 • FAX (940) 387-1036 PROJECT \#-2079/2083クPJ ROGSTO-0010-0N2
OUTFALL SAMPLES
PROJECT\# LOTG/ PROJECT NAMEFTN
CHAIN OF CUSTODY RECORD
River Sample
PERMIT\# N / A
RECEIVING WATER SAMPLES

$$
\begin{gathered}
\text { TYPE OF TEST } 7 \text { day cerio } \\
\text { NAME OF } \\
\text { RECEIVING WATER } N / A \\
\text { DILUTION WATER USED } N / A \\
\text { FOR THIS TEST } N / A
\end{gathered}
$$

$$
=\text { =1 }
$$

$$
\begin{aligned}
& \text { RECEIVED BY AT THIS DATE/TIME } \\
& \text { RECEIVED BY AT THIS DATE/TIME } \\
& \text { Client Delivered } \quad \text { Other }
\end{aligned}
$$

HUTHER \& ASSOCIATES
CHAIN OF CUSTODY RECORD

OUTFALL SAMPLES
24-Hr Flow Weighted Composite__ Other_
METHODS OF COLLLECTIONAND COMPOSITE

$\begin{aligned} & \text { OUTPATL- } \\ & \text { NUMBER } \end{aligned}$	PERSON TAKING SAMPLE	START DATETHME	END datertime	\# OFPORTKONS COMPOSTTED	AUTO COLL. AUTO COMP.	MANUAL COLL. MANUALCOMP.	AUTO COLL. MANUAL, COMP.	\# OF CONTAINERS TO BE SHIPPED
REDRIVERE ithuy 41	Jun/RPG	$13 \mathrm{MAR} 13 / 650$	LSMARIS TOST	1				1
FED RIVERE Hじy 41	JMR / RPG	$13 \mathrm{MAR13}$ TO50	13 MAREIS lOSTO	I		1		1

RECEIVING WATER SAMPLES

SAMPLLE IDENTIFICATION (FOR REC"NG) $\mathrm{H}_{2} \mathrm{O}$ GRADESGLVE NAME OF STREAM AND LOCATION	PERSON TAKING SAMPLE	DATE	TIME	\# OF CONTAINERS TO BE SHIPPED

PERMIT\# N/A Re6510-ccio-ou2
PROJECT \# - Zol? PROJECT NAME
FTN River sample

$$
\begin{gathered}
\text { TYPE OF TEST } 7 d_{y} \text { cerio } \\
\text { NAME OF } \\
\text { RECEIVING WATER } N / A \\
\text { DILUTION WATER USED } N / \Delta \\
\text { FOR THIS TEST } N / A
\end{gathered}
$$

DENTON, TX 76201
(940) 387-1025 • FAX (940) 387-1036
208.77 P4

$$
3-14-13 \text { тIME: }
$$

$$
\begin{aligned}
& \text { RECEIVED BYAT THIS DATE/TIME - } \\
& \text { RECEIVED BYAT THIS DATE/TIME - }
\end{aligned}
$$

RECEIVED BY AT THIS DATE/TIME
2ND PAGE - FACIUTY COPY
Other_

$$
1015 \text { SAMPLE TEMP. a RECEIPT. }
$$?

HUTHER \& ASSOCIATES
1156 NORTH BONNIE BRAE STREET DENTON, TX 7621
 $204510-\cos 0-002$
PROJECT \#
OUTFALLSAMPLES
24-Hr Flow Weighted Composite

receiving water samples

kigus ky.
まic my kugs Ky $^{\prime}$
RELINQUISHED B:
RELINQUISHED BY:
RELINQUISHED BY:
METHOD OF SHIPMENT:
RECEIVED:

RELINQUISHED BI: DATE: DATE. Piek Up DATE. 1ST PAGE-LAB COPY
HUTHER \& ASSOCIATES
CHAIN OF CUSTODY RECORD

OUTFALL SAMPLES
24-Hr Flow Weighted Composite__ Other_
METHODS OF COLLECTION AND COMPOSTXE

OUTFALI, NUMBER	PERSON TAKING SAMPLE	START DATETTIME	END DATE/TIME	\# OF PORTIONS COMPOSTTED	aUto COLL. avto Comp.	manvalcoll. MANEALCOMP.	AUTO COLL. MANUALCOMP	\# OF CONTAINERS TO BE SHXPPED
$\begin{gathered} \text { RED RUven } \\ H i) Y 41 \end{gathered}$	JMR/RPG	13MARIS ICST	BMAR 13 Iaso	1		\checkmark		1
RED RIUERE HWy 41	TMR/RPG	13 MR13 ICSO	13 MAR 131050	1		\checkmark		1

24-Hr Flow Weighted Composite					Other	
					METHODS OF COLLECTI	
OUTFAELMNUMBER	PERSON TAKING SAMPLE	START DATE/TIME	END DATE/TKME	\# OF PORTIONS COMPOSTTED	AUTO COLD. AUTO COMP.	MANUAL MANUAL
$\begin{aligned} & \text { RED RIvene } \\ & H W Y 41 \end{aligned}$	JMR/RPG	13 ANAREIS ICSO	LMAN13 1CSO	1		
$\begin{gathered} \text { RED RUESE } \\ \text { HWY } 41 \end{gathered}$	JMR/RPG	13MAR 13 ICSO	13 MAR $13105 C$	1		\checkmark

SAMPHEDENTIFICATION (FOR REC'NG) $\mathrm{H}_{2} \mathrm{O}$ GRABS, GIFESIME OFSTREAM AND edation	PERSON TAKING SAMPLE	date	TIME	\# OF CONTAINERS TO BE SHOPPED

РROJECT\# 20991

(940) 387-1025 - FAX (940) 387-1036 2 (837 2079

PERMIT\# N/A

$$
\begin{aligned}
& \text { TYPE OF TEST } 7 d a_{y} \text { cer, } 20 \\
& \text { NAMEOF } N, A \\
& \text { RECEIVING WATER } N \\
& \text { DILUTION WATER USED } N / A \\
& \text { FOR THIS TEST }
\end{aligned}
$$

24-Hr Flow Weighted Composite__ Other__

RECEIVING WATER SAMPLES

DATE: 13 FiAk 13 date: Date: Pick Up

RELINQUISHED BY:
METHOD OF SHIPMENT: Greyhound
RELINQUISHED BY:
RELINQUISHED BY:
TIME: __ RECEIVED BYAT THIS DATE/TIME-
Other.

$$
\begin{gathered}
\text { E/TIME } \\
\text { Other }
\end{gathered}
$$

Fishes of the Red River in Arkansas

Thomas M. Buchanan* Department of Biology
University of Arkansas-Fort Smith For Smith, AR 72913
* Corresponding Author

Drew Wilson and L. G* Claybrook
Arkansas Game and Fish Commission
2 Natural Resources Drive
Little Rock, AR 7220.5

William G. Layher
Layher BoLogics RTEC, Inc.
7233 Camden Cutoff Road
Pine Bluff, AR 71603

Abstract

Fishes werecollected from Red River manstem habitats in Arkansas with semes, rotenone, hoop nets, gill nets, and trodines from 1995 through 2001 . Seventy two species were identified distributed among 17 families, and 15 species were new records for the Red River in Arkansas. Eighty-three species are now historically known from the Arkansas segment of the Red Rver. Approximately 67% of the fishes known from the entire Red River have been found in the Arkansas segment, which is only 11% of the entire river length. Baseline data on the fish fauna of the Red River is critical for the amalysis of potental effects to aquatic systems, and because of the potential for deleterious effects from alteration of aquatic habitats by a proposed project to extend the Red River Navigation System upstream from Shreveport, Louisiana to Index, Arkansas and by desalination projects upstream in Texas.

Introduction

The fish communties of large rivers are the least studied ichthyofaunas of all aquatic habitats in Arkansas. This study was the first comprehensive sampling to determine fish species distribution and abundance within the enure Arkansas segment of the Red River, An up to date survey of the Cishes of the Red River in Arkansas is especially importan because of the proposed construction of a navigation channel from Shreveport, Louisiana through the lower hall of the Red River in Arkansas.

Description of the Red River and the Study Area in Arkansas.-The Red River originates in castem New Mexico and hows easterly across the Texas panhandle, along the boundary between Texas and Oklahoma, through the southwestem comer of Arkansas, and across Louisiana to join the Atchafalaya River near Simmesport, Louisiana. The Red River formenty flowed directly into the Mississippl River, but the flood of 1927 and the subsequent construction of levees diverted the Red River southward into the Atchafalaya River (Douglas, 1974). Today, the Red River is accessible from the Mississippi River through its old channel because part of the Mississippi River flow is diverted through the old chamel (11.3 km) ino the Atchafalaya River, forming the first segment of the Red River Navigation System.

The Red Rever is $1,945 \mathrm{~km}$ long and drains an area of $\left[79,308 \mathrm{~km}^{2}\right.$. The Arkansas segment of the river is 217 km long with a drainage area of $11,484 \mathrm{~km}^{2}$. Compared to the other big rivers in Arkansas (e.g, the Arkansas and Mississippi Rivers), the Red River has been least altered by human activity. A number of anthropogenic alterations, however, have occurred in the Red River upstream and downstream from Arkansas. The upper Red River in Texas and Oklahoma contains salt concentrations approaching
that of seawater with decreasing salinities occurring downstream (Mathews, 1998). The Echelle et al. (1972) fish surveys indicated that the species composition of the upper Red Kiver reflected differences in the fish assemblages atong the salinity gradient. Those assemblages are currently threatened to be influenced by a project underway to decrease the amomnt of salt in the Red River by buiding dams, brine reservoirs, pipelines and pumps on west Texas tributaries that feed the Red River. The natural flow regime has been changed by the construction of Denison Dam, which impounded Lake Texoma on the Red River in Oklahoma, by seven large impoundments in the Litte River drainage in Arkansas and Oklahoma, and by several other small impoundments on Red River tributaries in Oklahoma. The lower portion of the Red River in Arkansas downstream from the U.S. Hwy 71 bridge has been modifed by mamade levees and numerous areas of reveted banks and wing dikes Upstream from US. Hwy 71 in Arkansas, however, few chamel modification structures exist. Downstream from Arkansas, a series of locks and dams maintains a 27 m deep navigation channel from the Mississippi River through Old River and the Red River to Shreveport, Lonisiana, a distance of approximately 377 km .

Chronological History of Red River Fish Sampling in Arkansas.- The earliest reported scientific collection of fishes from the Arkansas portion of the Red River was by Jordan and Gilbert (1880). During September 1884, David Starr Jordan assisted by Charles H. Gilbert Joseph Swain, and Seth E. Meek collected fishes "with a foe-meshed seine of large size" from a number of streams in Arkansas, Indian Territory (Oklahoma), and fexas for the U. S. National Museum and the U.S. Fish Commission. The Red River at Fulton, Arkansas was one of their collecting sites, They judged the water to be at its lowest poimt and referred to the Red River at this site as "singularly barren of fish hife"

Journal of the Arkansas Academy of Science, Vol. 57, 2003
although they collected 23 species. Hybognathus muchalis was listed as "by far more numerous in individuals than any other species in the river." Notropis atherinoides Marrobopos hyostoma, and M. storeviana were also reported to be rather common or abundant. All 23 species reported by Jordan and Gilben (1896) were collected from the Red River in the 1900 s .

The next reported collections of fishes from the Arkansas segment of the Red River were in 1938 and 1909 by John D. Black (1940), 54 years after Jordan's expedition. Black collected fishes at three mainstem sites and reported 34 currently recognized fish species from those localities, 18 of which had not been reported from the Red River manstem by Jordan and Gilbert (1880). This increased the number of species known from the Red River in Arkansas to tl. Black's collections included the first known records of
the Red River shiner, Notropis batid, from Arkansas (two adult specimens taken at Spring Bank Ferry, 8 km north of the Lousiana state line on 8 July 1930). Black also reported the only specimens of the plains minnow, Hobognathus placilas, ever taken from the Red River in Arkansas (three young and adult specimens collected at Spring Bank Ferry on 8 July 1939).

On 18 August 1040, Reeve M. Balley and M. E. Davis collected 15 species of fishes from the Red River at Fulton. The results of this collection were not published, but the specimens were deposited in the University of Michigan Museum of Zoology. This collection added three species to the list of fishes known from the Red River in Arkansas, bringing the total known species to 4 , The most noteworthy record from this sample was the second (and last known) report of Notropis bairdi from Arkansas (three

Fig. 1. Red River fish collecting sites in Arkansas, 1995-2001. Solid circles are lucalities sampled by seme and/or rotenone, solid triangles are localities sampled by hoop nets, gill nets, and/or trotines. Collecting locales included the following countes in AR: Hempstead, Lafayette, Litue River, and Miller.

Thomas M. Buchanan, Drew Wilson, L. G. Claybrook and William G. Layher

Table 1. Fish species collected from the Red River in Arkansas, 1095-2001. Status of cach species is designated as abundant (A), common (C), uncommon (U), or rare (R).

Species	Status	Collected upstream from Little R. mouth	downstre Little R
Scaphinhynchus platorynchus	C	X	
Polyodon spathula	R		
Atractosteus spatula	R	X	
Lepisostens ochlatus	U	X	
Lepisostens asseus	A	X	
Lepisosteus platostomus	U	X	
Hiodon alasoides	R	X	
Alosa chrysochloris	U	X	
Dorosoma cepedianam	C	X	
Dorosoma petenense	\wedge	X	
Ctenopharyngodon idella*	R		
Cyprinella hutrensis	A	X	
Cyprinella venusta	U	X	
Cyprinus carpio	U	X	
Hybognathus nuchalis	U	X	
Machybopris hyostoma	U	X	
Macriybopsis storeriana	A	X	
Notemigomus cysoleucas	U	X	
Notropis ammis ${ }^{\text {a }}$	1		
Notropis atherinoides	A	X	
Notropis buchanani	U	X	
Notropis polteri	A	X	
Notropis shumardi	C	X	
Opsopurodus emiliac	U	X	
Phenacobius mirabilis*	R	X	
Pimephales vigilax	A	X	
Cappiodes appio	A	X	
Cyclopus alongatus	A	X	
İtiobus bubalus	C	X	
Letiobus cyprinellus	U	X	
Ictiobus niger ${ }^{*}$	R	X	
Minytrema melanops	R		
Ameiluras natatis*	U	X	
Italurus furcatus	A	X	
Ictakrus pundatus	C	X	
Noturus gerinus	U	X	
Noturus nocturnus*	U	X	
Pylodictis olivaris	C	X	
Aphreduderas sayanus	U	X	
Fundultas blatrae*	R		
Fundulus dirysotus	R	X	
Pondulus notatus	U	X	
Findulus olivaceus	R	X	
Cambusia affinis	C	X	
Labidesthes sicculus*	U	X	
Menidia heryllina	A	X	

Table 1. Continued

Morone chrysops	A	x	X
Morone mississippiensis	C	X	X
Morone saxatilis	C	X	X
Elacsoma zonatum	U	X	X
Lepomis cyanellus	U	X	X
Lepomis zulosus	C	X	X
Lepomis humilis	C	X	X
Lefoomis macrochirus	C	X	X
Lepomis megalotis	C	X	X
Lepomis microlophus	U	X	X
Lepomis miniatus	R	X	X
Lepomis symmetricus*	U	X	X
Micropterus punctulalus*	U	X	X
Microplerus salmoides	C	X	X
Pomoxis annularis	C	X	X
Pomaxis nigromacalutus	U	X	X
Ammorrypla clara	U	X	
Etheotoma asprigene*	R	X	X
Etheostoma chlorosomum ${ }^{*}$	U	X	X
Etheostoma collettee*	R	X	
Etheastoma gracile	C	X	X
Percina macrolgida*	U	X	X
Percina maculata*	R	X	X
Percina sciera	U	X	
Percina shumardi	U	X	X
Aplodinotus grannems	A	X	X

* A species first collected from the Arkansas segment of the Red River in this study.
specimens, UMMZ 170013).
Reeves (1053) provided records for the Alabama shad, Alosa alabamaf, from the Little River of Oklahoma, a Red River tributary. Alosa alabomae, an anadromous species, had to ascend the Arkansas portion of the Red River to reach spawning habitat in the Litte River of Oklahoma, increasing the known Red River fauna of Arkansis to 45 species.

Buchanan (1973) provided distribution maps showing all known species records and localities for the Red River in Arkansas. This was a summary of all known previous collections, but mine additional species were added to the list of fishes known from the Red River. These nine new species came from Arkansas Game \& Fish Commission records of gill neting samples from the Red River in the 1960 s and from seine collections at five localities by Buchanan in 1072, bringing the total known fish species in the Red River to 54.

The next, and until now most intensive, fish sampling on the Red River in Arkansas was a survey of the fishes from Index, Arkansas (U.S. Hwy, 71 bridge) to Shreveport, Lousiana by Kelly H. Oliver from December 1978 through July 1970 (Dorris et al, 1979), Oliver sampled 13 mainstem sites in the lower half of the Arkansas portion of the Red River and four mainstem sites in Louisiana. Each site was
sampled from one to three times by gill nets, seines, and/or electrofishing; occusional creel censuses were made when local fishermen were encountered. Oliver's field notes and collection site species lists weme lost, and it is not possible to precisely determine which fish species were found in the Akansas portion of the Red River from the data presented in the repon (Dorris et al., 1099). Eight species reported by Oliver from the Red River mainstem were possibly misidentified. No voucher specimens of the eight questionable species were available for examination, and those species were not considered as part of the documented Red River fauna. Because 57 of the 58 species reported from the mainstem of the Red River were found in the Arkansas segment of the river, we accept 10 of the species listed by Oliver as new Red River records for Avkansas, bringing the total known mainstem species to 64. All 10 of Oliver's new species records were subsequently confirmed from the Red River by other collectors.

From 1973 to 1987, Robison and Buchanan (1088) made 27 fish collections by seine in the Red River mainstem between the Oklahoma and Louisiana state lines. These collections added four additional species to the known Red River fish fauna of Arkansas, bringing the known species total to 68.

Table 2. Fish species historically known from the Red River in Arkansas but not collected in the 10952001 sampling.

Species	Collector and/or author first reporting species
Ihthyonyzon castanews	Robison and Buchanan (1988)
Amia ralua	Bailey, 1940 (Buchanan, 1973)
Anguilla rostrala	Buchanan (1973)
Alosa alabamae	Reeves (1953)
Campostoma anomalum	Oliver (Dorris et al, 1970)
Hybognathus placitus	Black (1940)
Luxilus chrysocyphahas	Black (1940)
Notrapis hairdi	Black (1940)
Pimephates promelas	Oliver (Dorris et al., 1979)
Anciurus melas	Black (1940)
Mugil cophalus	Oliver (Dorris et al., 1979)

Methods

Main chamel Red River habitats in four counties of Arkansas from the Oklahoma state lme to the Iouisiana state line were sampled by semes and rotenone from 1095 through 2001 and by gill nets, hoop nets, and trodines in 1997 and 1998 (Fig. 1). Ninetyone seme and/or rotenone samples were taken in the following four manntem habitats: main river chamel in slow to swift current along point bars and islands, chutes, backwaters adjacent to main chamel, and sandbar pools. Seine collections were made with 6×1.5 m and $9 \times 1.5 \mathrm{~m}$ nylon seines of 3.2 mm mesh. Small scale samples were made with rotenone in areas of litle or no current. Sampling time by seme and rotenone averaged 1.0 hour per site and ranged from 0.5 to 20 hours. Specimens were preserved in 100 fomalin and later transferred to 454 isopropanol. All preserved fishes were identified in the laboratory, and specimens were deposited in the Zoology Collection of the University of Arkansas - Fort Smith.

Five localtites in the Arkansas segment of the Red River were sampled with gill nets and hoop nets between March and June 1997, and the three most downstream of those localities were sampled with gill nets and hoop nets between January and July 1998 (Fig. I), for a total of eighe sitesamples during the two sampling periods. Each site included a siver reach of approximately 8 km . Hoop nets 1.2 m in
dameter with 3.8 cm bar mesh were used in deep water, and hoop nets 0.9 m in diameter with 3.8 cm bar mesh were used in shallow water. The hoop nets were checked twice daily, just after sunnse and just before sunset. Experimental gill nets consisting of three 30 m panels one each of $5.1,76$, and 10.2 cm monoflament webbing were checked at approximately twohom intervals. At the two most downstream sampling localites, trotines bated with golden shiners were used in 1997. A total of 378 hoop net nights, 24 gill net mights, and 8 trolline nights represented approximately 5000 hours of sampling at the five stes.

Present status in the Red River was assigned to each fish species collected in this study (Table 1) based on a combination of habitas sampled, sampling methods used, and number of individuals collected. Species collected mainly by semes and for rotenone were assigned a status as follows: (I) Abundant - more than 700 specimens collected and the species taken in more than 60 samples, ${ }^{2}$) Common - 100700 specinens collected and taken in $25-59$ samples, (3) Uncommon - 11.90 specimens collected and taken in 524 samples, and (4) Rare - 1 100 specimens colleced and taken in $1-4$ samples.

Species taken almost exclusively by hoop nets, gill nets, and trotines were assigned a status as follows: (1) Abundant - more than 100 specimens collected and taken in seven or eight of the eight siteramples during 1997 and 1998 , (2)

Common - 30.99 specimens collected and taken in five or six site samples, (3) Uncommon - 515 specimens collected and taken in three or four site-samples, and (4) Rare - 1 - 4 specimens collected and taken in one or two site-samples.

Species meeting only one of the two criteria number of specimens and number of sites) for a given rank in the above two ranking systems were assigned to the next lower ranked category. A few species, which were taken in a variety of habitats and by a vanety of methods, were assigned a rank by using a combination of the two previously described ranking systems.

To compare fish species richness and distribution of the Arkansas segment of the Red River with the much longer Red Rixer segments upstream and downstream from Arkansas, several data sources were consulted. Fish distribution records in the Red River upstream from Arkansas were obtained from Hargrave (2000), Miller and Rubison (1973), Riggs and Bom (1959), Sublette et al. (1990), the University of Oklahoma Museum of Natural History, and the Oklahoma Department of Environmental Quality records from Red River fish sampling stations. Fish distribution records in the Red River downstream from Arkansas came from Douglas (1074) and the University of Louisiana at Monroe and Tulane University fish collection databases. Fish species similarity of the Red River segments upstream and downstrean from Arkansas was compared with the Arkansas segment by using the index of similarity (S) of Odum (1971), $\mathrm{S}=2 \mathrm{C} / \mathrm{A}+1$, where C is the number of fish species common to two segments being compared, A is the total number of species in one segment, and B is the total number of species in the other stream segment.

Results

Seventy two fish species and one hybrid combination $\{38$ specimens of Morone chrysops x M. saxalihs) were collected from the Red River mainstem in Arkansas (Table 1). Fifteen species were new records, bringing the total number of species historically known from the Red River in Arkansas to 83 . Prior to this study, 68 fish species were historically reporied from the Red River in Arkansas, and 11 of those species were not collected in our 1905 -2001 sumpling Thabls 2). Fish sampling in the Arkansas segment of the Red Rives in 1999 and 2000 by the U.S. Amy Corps of Engineers produced no additional new species records pers. comm. I. Kilgore, U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, MS).

The species collected in this study were distribued among 17 families. More than $8+\%$ of the specimens collected were in the minnow family, Cyprinidae. The four next most abundan families by number of specimens collected were Centrarchidae (5%), Clupeidae (3%), Catostomidae (1.7%), and Atherinopsidae (1.4%). The ten
most abundant species in decreasing order of number of specimens collected were as follows: Notropis atherinoides, N. potteri, Gypinella hutronsis, bimephates vigilux, N. shmardi, Lepomis humilis, Dorasama petenense, Machybopses storriana, Menidia beryllina, and Carpiodes carpia. Six species represented by only a single specimen each were as follows: Polyodon spathuia, Ctenopharyngodon idella, Phenacobius mivahilis, latobus niger, Fundulus blairae, and F. alivaceus.

In general, the 10 most abundant species were also the most widely distributed species in the study area based on the number of collections in which they were found. Only N. shumard among the 10 most abundant species was not anong the 10 most widely distributed species flalling to twelfih most widely distributed). The ten species appearing in the greatest number of collections in decreasing order were as follows: C. Cutrensis, P, migilax, N atherinoides, M. beryltina, D. petenenie, M. storeriana, D. cepedianum, N. pottor. C. carpio, and L hamilis.

Discussion

The Red River exhibits the well-documented pattern of increasing fish species richness from headwaters to downstream (Horwit, 1978; Matihews, 1908), and the Arkansas segment of the Red River has high fish species richness. Approximately 124 fish species are historically known from the entire Red River. Eleven percent of the Red River mainstem length and 6.4% of the total Red River dranage area are in Arkansas, and 83 species are histoncally known from the Arkansas segment. This is approximately 67% of the entre Red River fish fauma, and 58% percent of the mainstem fish fana was found in this study. Ninety fish species are known from the Red River upstream from Arkansas, and 106 species are known from the Red River downstream from Arkansas. Two species Etheostama colletiti and Percina macalata have been reported only from the Arkansas segment, Il species from the Arkansas segment have not been reported upstream from Arkansas, and seven species fomd in Arkansas have not been reported from the Red River in Lounsana. In this study, the Arkansas segment of the Red River had 65\% of the species known from the downstrean segmem and 68% of the species reported from the upstream reaches. Bated on the similarity index (S) of Odum (1071), the fish species composition of the Arkansas segmen of the Red River is slighty more smilar to the river segment upstrean from Arkansas $(\mathrm{S}=83$) than to the downstream segment $(\mathrm{S}=80$). Species historically known from the Arkansas segment comprise 80% and 72% af the species reported from the upstream and downstream segments, respecively.

One currently abundant species, Notropis potter, occurs in the Arkansas portion of its range only in the mam channel of the Red River. This species occured throughout the
study reach and was the second most abundant spectes found with nearly 10,000 specimens collected. A single specimen of Phenacobius minabilis was the first record of that spectes from the manstem Red River in Arkansas and was only the second specimen of that species collected in Arkansas in the last 50 years. The bigscate logperch, Derina macrolepida, was first reported in Arkansas from the upper portion of the Red Rever (Buchanan et al., 1096) and was found thronghout he Arkansas segment of the Red River in this study.

The blue sucker, Cycleptus tlongatus, was the most abundant large species caught by hoop nets and was the third most common large species (after Carpiodes carpio and Aplodinotes grunniens) collected by all methods. The range of C. elongatus has drastically declined in recent decades, and it is carrenty more abundant in the Red River than in any oher river in Arkansas. Two specimens of alligator gar, Alractosteus spatuia, another declining big river fish were collected. Layher (1998) provided additional data on large species collected from the Red River by hoop nets, gill nets. and trotlines.

Eleven species previously reported from the Red River in Arkansas were not found in this study (Table 2). Two of thase species, Campostoma anomalum and Luxilus diryocephalus, probably are accidentals from tributaries. It is likely that additional Red River noodplain and iributary species could occasionally be taken in future main channel sampling.

Three of the historically reponted species not found in our study have probably been extirpated from the Arkansas segment of the Red River, The Alabama shad, Alasa athbamae, was reported from the Little River, a Red River tributary in Oblahoma (Reeves, 1453; Miller and Robison. 1973). That anadromous species is no longer able to ascend the Litte River to reach its former spawning areas in Oklahoma due to the 1963 construction of Millwood Dam on Little River in Arkamsas. Alasa alabumae still successfully ascends the lower 55 km of the Red River Navigation System in Louisiana to enter and spawn in the Ouachita River in Arkansas (Buchanan et al., 1999). The plains minnow, Hybognathus placious, and the Red River shiner, Notropis bairdi, have not been reported from the Arkansas segment of the Red River in more than 60 years. Both of Whose primarily Great Dlains species are common today in the Red River upstream from Lake Texoma, and small populations of those species persisted into the mid 10901 in the Red River of Oklahoma downstream from Lake Texoma (pers. conm., J. Pigg, Oklahoma Department of Environmental Quality). It is possible that future fish sampling could produce sporadic records of H, plactus and N. bairdi in the Red River of Arkansas because both species were taken at an Oklahoma Department of Envirommental Quality fish sampling site on the Red River near DeKalb,

Texas, 18 km upstream from the Arkansas state line as recenty as 1905 . Unsuccesfful attempts were made to collea both species in the Arkansas portion of the Red River near the Oklahoma state line in each year of this study.

Human alteration of the Red River has likely coused the extimpation of A alabamae, H. plactus, and N. batedf from the Arkansas segmeat of that river. Constraction of the Red River Navigation System in Louisiana impedes or blocks access of A. alabamae to former upstream tributanies of the Red River in Arkansas and Oklahoma, and dams on Litle River also block access to former spawning sites. The impoundment of Lake Texoma by Denison Dam on the Red River in Oklahoma in 1944 fragmented the ranges of H. placilus and N. bairdi, creating a more precarions situation for populations of those species downstream from Denison Dam. Great Plains streams typically experience envirommental fluctuations that can lead to the extirpation of local populations of fish species (Lutrell et al., 1999). A spectes whose range has been fragmented by a dam has litte possibility of repopulation if popalations above or below the dam are lost. Winston at al. (1001) documented major changes in the fish community in the North Fork of the Red River in Oklahoma, including extipation of four minnow species following construction of Alus Dam on that river. The small populations of H. placitus and N. bairdi, known from the Red River in Oklaboma below Denison Dam as recently as the 1990 , have litte chance of repopulation from the larger populations of those species upstream from Lake lexoma if they are extirpated.

The mouth of the Litule River, just west of Interstite Hwy 30 , divides the Arkansas segment of the Red River into two nearly equal parts. The Red River upstream from the Litle River mouth, especially upstream from the U.S. Hwy 71 bridge, has been attered very little by mammade structures, whereas the Red River downstream from the Line River mouth has numerous levees, wingdikes, and revetted banks. We found no substantial differences in fish species richness between the upstream (67 species) and downstream (65 species) segments in Arkansas. Seven species were found onty in the upstream segment, and five species were found only in the downstream segment Mable 1). Some species found in both river segments in Arkansas were more abundant in one segment based on mumber of specimens taken and the number of samples in which they, occurred. Machybopsis hyastoma, Notropis buchanani, Labiderhes sicalus, Elheostoma asprigene, and E chlowsomum were more abundant in the upstream segment of the Red River in Arkansas, and Lepistusters oculatus, Cyprmella nemusta, and Morome mississippiensis were more abundant in the downstream segment.

The U.S. Army Copps of Engineers has proposed a project to extend the Red River Navigation System 217 km
upstream from Shreveport, Lomisiana to Index, Arkansas near U.S. Highway 71. This project, currenty estimated to cost one billion dollars, would require the construction of three to five locks and dams, over 100 dikes, extensive rock revetments, and other channel modifeation structures. It is not possible to precisely predice the effects of such a project on the fish commonity of the Red River; however, such a drastic modification of the environnent would likely have major impacts on fish species richness, diversity, and distribution. Some species would increuse in abundance, while others would decrease or even he extirpated from lange sections of the river. This study of the fishes of the Arkansas segment of the Red River should poovide a baseline for detormining future changes in fish species distribution and abundance.

Acknowledgments. - We are gratelul to the University of Arkansas - Fort Smith for partially funding this stady through the Scholar Preceptor Program and a faculty development grant. Additional fonding was provided by a National Science Foundation grant through South Central Partnership for Environmental Technology Education. We thank Chad Hargrave of the Sam Noble Museum of Natural History, University of Oklahoma; Henry L. Bart. Jr of the Tolane University Museum of Natural History, and Frank Pezold of the University of Lousiana at Momoe Museum of Natural History for providing records of Red River fishes from their respective musemm databases. The late Jimmie Pigg provided data from Red River fish sampling in Oklahoma by the Oklahoma Deparment of Envirommental Quality. Jack Kilgore provided data on Red River Rish collections made in Arkansas in 1999 and 2000 by the U.S. Army Corps of Engineers Waterways Experiment Staiom. Henry Robison contributed information on Alosa atabamar in Oklahoma, Chris Jones prepared Fig. 1 , and the following persons assisted with the fieldwork: Phillip W. Penny. Jr. Chad Hargrave, Laura Hudson. Josh Nichols, foseph Hyland, Cheryl Jackson. Patick Harrison, and Kim Lankford.

Literature Cited

Black, J. D. 1940. The distribution of the fishes of Arkansas. Unpublished Ph.D. Dissertation. Univ, Michigan, Amo Arbor 243 pp .
Buchanan, T. M. 1973. Key to the fishes of Arkansas. Arkansas Game \& Fish Conmission, Litte Rock, 68 pp.
Buchanan, T, M., C. Hargrave, D. Wilson, L. G. Claybrook, and P. W. Pemy, Jr. 1906. First Akansas records for bigscale logperch. Perchat macrolepida Stevenson (Psces: Percidae), with comments on habitat preference and disinctive charaters. Proc. Arkansas Acad. Sci 50:28-35.
Buchanan, T. M., J. Nichols, D. Turman, C. Dennis, S.

Wooldridge, and B. Hobbs. 1000. Occurrence and reproduction of the Alabama shad, Alosa alabamat Jordan and Evemanm, in the Owachita River system of Arkansas. Proc. Arkansas Acad. Sci. $53: 2126$.
Dorris, P. R., K. H. Oliver, J. D. Bragg, D. L. Marsh, D. W. McMasters, and W. W. Fitzgerrel. 1979. Biological inventory of the Red River waterway from Index. Akansas to Shreveport, Louisiana. Unpublished Report to US. Amy Corps of Engineers, New Ofleans District 106 pp .
Doughas, N. H. 1974. Freshwater fishes of Lousiana Clator's Publ. Div. Baton Rouge. 44: pp.
Echelle, A. A., A. F. Echelle, and L. G. HII. 1072. Interspecific interactions and limiting factors of abundance and distribution in the Red River puphish, Gyprinodon nabrofluatalis. Am, Midi. Nat. 88:109-130.
Hargrave, C. W. 2000. A decade of stability in lish assemblages of a harkh, praire niver system. Unpubl. M.S. Thesis. Univ. Oklahoma, Noman. 102 pp.

Horwitz, R. J. 1078. Temporal vanability patterns and the distributional paterns of stream lishes. Ecol. Monogr 48:307.321.
Jordan, D. S., and C. H. Gilbert. 1886 . List of hishes collected in Arkansas, Indian Territory, and Texas, in September, 1884, with notes and descriptions. Proc. U.S. Nat. Mus, 9 (549):125.

Layher, W. G. 1998. Status and distribution of pallid surgeon, blue sucker and other large tiver fishes in the Red River, Arkansas. Unpublished repot to Arkansas Game and Fish Commission, Little Rock Akansas 31 pe.
Latrell, G. R., A. A. Echelle, W. L. Fisher, and D. J. Eisenhour. 1909. Declining status of two species of the Machybuprisastivahis complex (Teleostei Cyprindate) in the Arkansas River Basin and related effects of reservoirs as barries to dispersat. Copeia 1990:081 989.
Mathews, W. J. 1098. Pattems in freshwater fish coology. Chapman \& Hall, New York. 756 pp .
Miller, R. J., and H. W. Robison. 1973. The lishes of Oktahoma. Oklahoma State Univ. Museum of Natural and Cultural History, Sentes No. 1.246 pp .
Odum, E. P. 1971. Fundamentals of ecology. W.B. Saunders Co., Philadelphia. 574 pp.
Reeves, J. D. 1953. The fishes of the Litle River system in Oklahoma. Unpubl. PhD. Dissertatom. Oklahoma State Univ., Stillwater, 95 pp .
Riggs, C. D., and E. W. Bom. 1959. An annotated list of the fishes of Lake Texoma, Oklahoma and Texas. Southwest Nat 4. 157.168.
Robison, H. W., and T. M. Buchanan. 1988. Fishess of Arkansas. Univ, Arkansas Press, Fayeteville, 530 pp .
Sublette, J. E., M. D. Hatch, and M. Sublette. 1090. The fishes of New Mexico. Univ. New Mexico Press.

Albuquerque. 393 pp .
Winston, M. R., C. M. Taylor, and J. Pigg. 1991. Upstream extipation of four mimnow species due to damming of a pranie stream. Trans. Am. Fish. Soc. 120.98-105.

[^0]: ${ }^{1}$ Red River from the mouth of the Little River to the Arkansas-Louisiana state line.

[^1]: ${ }^{2}$ Domtar request assumes that SWEPCO study and $3^{\text {rd }}$ Party Rulemaking will be approved by PC\&E Commission and EPA.

