Review of Arkansas's 2020 Section 303(d) Waterbody List

I. Introduction

The Environmental Protection Agency Region 6 (EPA) received the State of Arkansas's 2020 Clean Water Act (CWA) Section 303(d) list of impaired waters from the Arkansas Division of Environmental Quality (DEQ) on June 2, 2022. The EPA also received Arkansas DEQ's 2020 Water Quality Integrated Report with the same submittal. Based on the EPA's review of the State's CWA Section 303(d) water body list (list) and available data, the EPA is partially approving DEQ's 2020 list with further action pending and partially disapproving DEQ's 2020 list with respect to 7 waterbody/parameter pairs, which EPA is adding to the 2020 list. The purpose of this review document is to describe the rationale for the EPA's decisions.

The EPA has issued guidance for integrating the development and submission of Section 305(b) water quality reports and Section 303(d) lists of impaired waters. EPA did not issue specific guidance for developing the 2020 Section 303(d) list. Previous guidance documents recommend that states develop an Integrated Report of the quality of waters by placing all waters into one of five assessment categories. By following this guidance, Category 5 of the Integrated Report is the State's Section 303(d) list. The EPA's action in review of the State's Integrated Reports is limited to approval or disapproval of Category 5 waterbodies, which comprise the State's Section 303(d) lists.

The EPA reviewed the assessment methodology used by the State in developing the Section 303(d) list and the State's description of the data and information considered. The EPA's review of Arkansas DEQ's 2020 Section 303(d) list is based on the EPA's analysis of whether the State satisfied the regulatory requirements to assemble and evaluate existing and readily available water quality-related data and information and reasonably identified waters required to be listed.

For all CWA purposes, the 2020 Section 303(d) list the EPA is approving is comprised of 396 waterbody/parameter combinations and constitutes the applicable list of impaired waters in the State of Arkansas. The EPA is adding 7 more waterbody/parameter pairs that meet the listing requirements to the 2020 303(d) list.

II. Statutory and Regulatory Background

A. Identification of Water Quality Limited Segments (WQLSs) for Inclusion on Section 303(d) list

Section 303(d)(1) of the CWA directs a state to identify those waters within its jurisdiction for which effluent limitations required by Section 301(b)(1)(A) and (B) are not stringent enough to implement any applicable water quality standard,

and to establish a priority ranking for such waters, taking into account the severity of the pollution and the uses to be made of such waters. The Section 303(d) listing requirement applies to waters impaired by point and/or nonpoint sources, pursuant to the EPA's long-standing interpretation of Section 303(d).

The EPA regulations implementing Section 303(d) require states to identify water quality limited segments (WQLSs) that need TMDLs (See 40 C.F.R. § 130.7(b)). WQLSs are defined in regulation as segments "where it is known that water quality does not meet applicable water quality standards, and/or is not expected to meet applicable water quality standards, even after the application of the technology-based effluent limitations required by sections 301(b) and 306 of the Act" (40 C.F.R. § 130.2(j)). Thus, states do not need to list waters where the following controls are adequate to implement applicable standards: (1) technology-based effluent limitations required by the CWA; (2) more stringent effluent limitations required by state or local authority; and (3) other pollution control requirements required by state, local, or federal authority. 40 C.F.R. §130.7(b)(1).

B. Existing and Readily Available Water Quality Related Data and Information

In developing Section 303(d) lists, states are required to assemble and evaluate all existing and readily available water quality-related data and information, including, at a minimum, existing and readily available data and information about the following categories of waters: (1) waters identified as not meeting designated uses, or as threatened, in the State's most recent CWA Section 305(b) report; (2) waters for which dilution calculations or predictive modeling indicate nonattainment of applicable standards; (3) waters for which water quality problems have been reported by governmental agencies, members of the public, or academic institutions; and (4) waters identified as impaired or threatened in any Section 319 nonpoint assessment submitted to the EPA (40 C.F.R. § 130.7(b)(5)). In addition to these minimum categories, states are required to assemble and evaluate any other data and information that is existing and readily available.

The EPA's 1991 Guidance for Water Quality-Based Decisions describes categories of water quality-related data and information that may be existing and readily available (see Guidance for Water Quality-Based Decisions: The TMDL Process, EPA Office of Water, April 1991). While states are required to evaluate all existing and readily available water quality-related data and information, states may, if they provide a reasonable technical rationale, decide not to rely on particular data or information in determining whether to list particular waters.

In addition to requiring states to assemble and evaluate all existing and readily available water quality-related data and information, the EPA regulations at 40 C.F.R. §130.7(b)(6) require states to include, as part of the submission to the

EPA, documentation to support decisions to list or not list waters. Such documentation needs to include, at a minimum, the following information: (1) a description of the methodology used to develop the list; (2) a description of the data and information used to identify waters; (3) a rationale for any decision not to use any existing and readily available data and information 40 C.F.R. § 130.7(b)(5), and (4) any other reasonable information requested by the Region.

C. Priority Ranking

EPA regulations codify and interpret the requirement in Section 303(d)(1)(A) of the CWA that states establish a priority ranking for listed waters. The regulations at 40 C.F.R. § 130.7(b)(4) require states to prioritize waters on the Section 303(d) lists for TMDL development and identify those WQLSs targeted for TMDL development in the next two years. In prioritizing and targeting waters, states must, at a minimum, take into account the severity of the pollution and the uses to be made of such waters (CWA Section 303(d)(1)(A)). States may consider other factors relevant to prioritizing waters for TMDL development, including immediate programmatic needs such as wasteload allocations for permits, vulnerability of particular waters as aquatic habitats, recreational, economic, and aesthetic importance of particular waters, degree of public interest and support, and state or national policies and priorities (see 57 Fed. Reg. 33040, 33045 (July 24, 1992), and the EPA's 1991 Guidance).

D. Applicable Water Quality Standards

For purposes of identifying waters for the Section 303(d) list, the terms "water quality standard applicable to such waters" and "applicable water quality standards" refer to those water quality standards established under Section 303 of the Act.

E. Public Participation

The process for identifying WQLSs requires the involvement of the general public and is commonly referred to as the public participation process. The public participation process is intended to foster public input and awareness and open processes of government decision making. The state's public participation process is to be clearly described in the state continuing planning process (See 40 CFR § 130.7(a)).

III. Analysis of Arkansas's Submission

A. Background

EPA reviewed the State's description of data and information that it assembled and evaluated, the methodology used to identify waters, the State's 2020 Section 303(d) list, and the responsiveness summary. The State's 2020 assessment

methodology was available on the Arkansas DEQ's website in November 2020 and was included with the State's Integrated Report submission. EPA has concluded that the waters the State included in the Section 303(d) list were placed on the list in compliance with Section 303(d) of the CWA and 40 C.F.R. § 130.7. EPA's review is based on an analysis of whether the State satisfied the applicable regulatory requirements to assemble and evaluate existing and readily available water quality-related data and information and reasonably identified waters required to be listed. Arkansas DEQ assembled and evaluated data and information pertaining to the categories under 40 C.F.R. § 130.7(b)(5), and the 396 WQLSs proposed by Arkansas DEQ are appropriately listed per 40 C.F.R. § 130.7(b)(1).

The State's 2020 Integrated Report was made available to the EPA Region 6 electronically on June 2, 2022 through ATTAINS and included the submittal letter. The Integrated Report from Arkansas DEQ consisted of the following portions that are necessary for the Section 303(d) waterbody list:

- Waterbodies and corresponding pollutants that make up the State's Section 303(d) list
- Prioritization of waterbodies for TMDL development
- Identification of waters targeted for TMDL development over the next biennium

The EPA's approval of Arkansas DEQ's 2020 Section 303(d) list extends only to the items listed in Table 2.

For the 2018 cycle, the EPA took no action and requested additional information regarding the issues described below with the expectation that these issues would be reconsidered or resolved in the near term. The EPA evaluated available data for these water bodies for the 2020 cycle and found the following.

- Cox Creek Lake, Lake Greenlee, Lake Poinsette: In the 2018 cycle, the EPA requested additional information from ADEQ regarding attainment status of applicable WQS for the three lakes. No new data have been identified for these three lakes for the 2020 cycle. EPA notes that the State is currently sampling Cox Creek Lake and Lake Greenlee, and data will be available for assessment in the 2022 cycle. Lake Poinsette is currently scheduled for a drawdown for maintenance, but the State plans to sample the waterbody after maintenance is complete. EPA expects attainment status to be resolved in the near term, and so continues to take no action and request that information of the State.
- Lake Ouachita: In the 2018 cycle, the EPA requested clarification from ADEQ regarding the appropriate application of water quality standards and assessment methodology to determine attainment status for mercury. No new data have been identified for these assessment units; however, several

Arkansas state agencies are assembling a Mercury Taskforce. State agencies responsible for collecting fish, analyzing fish tissue, and issuing fish consumption advisories will participate in the Taskforce. Meetings will be held to discuss advisories and determine future activities. EPA continues to take no action and requests additional information regarding the appropriate application of water quality standards and assessment methodology to assess Lake Ouachita for mercury.

• South Fork Spring River: In the 2018 cycle, the EPA requested clarification from ADEQ regarding the appropriate application of water quality standards and assessment methodology to determine attainment status for dissolved oxygen. For the 2020 cycle, this assessment unit has been identified as impaired for critical season dissolved oxygen.

Assessment Unit identifiers and planning segments for the specific waterbodies identified above are identified in Table 3 along with a summary of findings from the 2018 and 2020 cycles.

EPA is taking no action at this time and requesting an update regarding progress made towards the development and application of water quality standards on the State's waterbodies subject to minerals Ecoregional Reference values. Arkansas DEQ is working with EPA to move forward with revising mineral criteria throughout the State. In addition, EPA is taking no action on waters subject to the site-specific minerals criteria that are not on the list based on those criteria. EPA is seeking additional information from DEQ to ensure that DEQ's assessment of these waters is reasonable, scientifically sound, and not inconsistent with the Federally-approved criteria.

B. Identification of Waters and Existing and Readily Available Water Quality-Related Data and Information

The EPA has reviewed Arkansas DEQ's description of the data and information that it assembled and evaluated for identifying waters on the Section 303(d) list. The EPA concludes that the State partially assembled and evaluated all existing and readily available data and information, including data and information relating to the categories of waters specified in 40 C.F.R. § 130.7(b)(5) and partially identified and listed WQLSs as required by 40 C.F.R. § 130.7(b)(1). In particular, the State relied on information from the 2020 Section 305(b) water quality assessments; assessments performed under the CWA Section 319 non-point source program; and data and information obtained through an extensive process to solicit information from state, federal and citizen sources. The State evaluated data and information about the following categories of waters: (1) waters identified as partially meeting or not meeting designated uses, or as threatened, in the State's most recent § 305(b) report; (2) waters for which dilution calculations or predictive modeling indicate non-attainment of applicable standards; (3) waters for which water quality problems have been reported by

governmental agencies, members of the public, or academic institutions; and (4) waters identified as impaired or threatened in any § 319 non-point assessments submitted to the EPA (See 40 CFR § 130.7(b)(5)).

Based upon this review, the EPA concludes that with regards to the waters identified in the State's 2020 Section 303(d) list, the State's list meets the requirements of 40 C.F.R. § 130.7(b)(5) regarding the assembly and evaluation of all existing and readily available water quality-related data and information, as well as the other requirements of 40 C.F.R. § 130.7(b).

C. Waters Removed from the Section 303(d) List

When a state includes a waterbody/parameter combination on the 303(d) list, it may conclude in a subsequent listing cycle that the waterbody/parameter combination no longer belongs on the 303(d) list. A waterbody/parameter combination need not be included on the 303(d) list when a TMDL is no longer required. The following non-exclusive list of justifications have been identified as reasons for the removal of a waterbody/parameter combination from a state's 303(d) list:

- The state has prepared, and the EPA has approved a TMDL for the listed water.
- The state has prepared, and the EPA has accepted a Category 4B Alternative Plan for the listed water (see 40 CFR 130.7(b)(1)(iii)).
- The original basis for listing the water was incorrect.
- New data or information indicates that the applicable water quality standard for the water is being met and the designated uses are fully supported.
- The state has adopted, and the EPA has approved a site-specific water quality standard for the water, and the new water quality standard is being met.

The State removed 64 waterbody/parameter combinations based on new data and information indicating that the applicable water quality standard for the water is now being met. Four waterbody/parameter combinations were removed due to the original basis for listing the water being incorrect. Arkansas DEQ submitted two 4B Plans that encompass an additional 20 waterbody/parameter combinations. The EPA reviewed these plans and determined the plans meet all applicable requirements. The waterbody/parameter combinations included in these EPA-accepted 4B Plans and were removed from Category 5.

In reviewing the State's 2020 Section 303(d) waterbody list, the EPA carefully considered Arkansas DEQ's decision to remove certain waterbody/parameter combinations that were included on the State's 2018 303(d) list, the justification for those removals, and the methodology used in making those decisions. The EPA concludes that the removal decisions identified in the Integrated Report are reasonable and based on all existing and readily available water quality-related data and information.

D. Priority Ranking and Development of TMDLS for Listed Waters and Pollutants

Pursuant to the listing methodologies set out in the State's submittals, Arkansas DEQ prioritized WQLSs for TMDL development into three Priority Areas:

- 1. High priority waters pose the highest risk of affecting public health or welfare or have a substantial impact to aquatic life.
- 2. Medium priority waters pose moderate risk to public health, welfare or to aquatic life.
- 3. Low priority waters pose the lowest risk to public health of welfare and have a secondary impact to aquatic life.

The EPA reviewed the State's priority ranking of listed waters for TMDL development and concluded that the State took into account the severity of pollution and the uses to be made of such waters, as required by 40 C.F.R. § 130.7(b)(4), as well as other relevant factors such as imminent human health problems or local support for water quality improvement. In addition, the EPA concluded that the State identified WQLSs targeted for TMDL development in the next two years, as required by 40 C.F.R. § 130.7(b)(4).

E. Basis for Decision to Disapprove and Add Waters to the Arkansas 2020 Section 303(d) List

The EPA is partially disapproving DEQ's 2020 list with respect to seven waterbody/parameter pairs, which EPA is adding to the list. These seven waterbody/parameter pairs are in the Illinois River Watershed and are not attaining the State's narrative nutrient criteria.

EPA has concluded that seven waterbody/parameter combinations located on Osage Creek, Spring Creek, and the Illinois River are not attaining the State's narrative nutrient criteria, which states "Materials stimulating algal growth shall not be present in concentrations sufficient to cause objectionable algal densities or other nuisance aquatic vegetation or otherwise impair any designated use of the waterbody." EPA's conclusion is based on an independent evaluation of available data and information submitted by the State and other reports.

EPA's evaluation focuses on multiple lines of evidence, consistent with the following language in the WQS: "Because nutrient water column concentrations do not always correlate directly with stream impairments, impairments will be assessed by a combination of factors such as water clarity, periphyton or phytoplankton production, dissolved oxygen values, dissolved oxygen saturation, diurnal dissolved oxygen fluctuations, pH values, aquatic-life community structure and possibly others." The multiple lines of evidence approach that EPA used includes both data about nutrient (total phosphorus) concentrations in the seven assessment units, as well as information about periphyton growth and aquatic life community structure.

1. Total Phosphorus Analysis

The EPA conducted an independent evaluation of the total phosphorus data collected from these waters since 2009. Because the State's narrative nutrient criteria do not specify concentrations that would impair designated uses, a threshold magnitude concentration of 0.037 mg/L was applied to be protective of the aquatic life designated use. This criterion magnitude is currently applicable in some Oklahoma waters that are in the same ecoregion as the AR segments. The appropriateness of this magnitude was confirmed in the Joint Study, based on empirical stressor-response relationships between total phosphorus and response variables related to nuisance levels of algal related to attainment of Oklahoma's Scenic River designated use. The EPA calculated the geometric mean for the entire date range of available data at each site and the six-month rolling averages (maxima and minima) of total phosphorus concentrations from 20 monitoring locations for comparison against the magnitude concentration of 0.037 mg/L. The six-month duration was deemed to be appropriate for this application because it incorporates year-round data, and is not overly sensitive to day-to-day variations in nutrient concentrations (due to rain events etc.). Zero of the six-month rolling averages were below the 0.037 mg/L magnitude, indicating elevated TP concentrations in each of the seven segments (See Table 1).

Table 1. Results of EPA's independent evaluation of the total phosphorus data from Illinois River, Osage Creek, and Spring Creek from 2009 – 2018.

	minos raver, esuge				Rolling	Rolling	Count less than
		Date Range of		Geometric			0.037
Name	AUID	available data	Count	Mean	Maximum	Minimum	mg/L
Illinois	AR_11110103_020	2009-2018	221	0.0745	0.2374	0.0483	22
River	AR_11110103_024	2009-2018	244	0.0721	0.2711	0.0484	29
	AR_11110103_730	2009-2018	93	0.0864	0.1260	0.0695	1
Osage	AR_11110103_830	2009-2013	72	0.0965	0.1572	0.0678	1
Creek	AR_11110103_030	2014-2018	35	0.1052	0.1580	0.0932	0
	AR_11110103_930	2011-2018	142	0.0900	0.2068	0.0718	7
Spring Creek	AR_11110103_931	2009-2018	152	0.1638	0.4700	0.1298	0

2. Periphyton Growth

EPA evaluated periphyton results from the McGoodwin, Williams and Yates (MWY) study,² which used a passive diffusion periphytometer (PDP) method to measure the response of periphyton to nutrient enrichment at sites along Osage Creek and Spring Creek, which coincide with some of the segments assessed in the above section. Results of that study suggest that nutrients were not limiting periphyton growth at any site (in other words, nutrient

¹ King, RS. 2016. Oklahoma-Arkansas Scenic Rivers Joint Phosphorus Study: Final Report. 62 p.

² McGoodwin, Williams, and Yates, Inc. 2009. Water Quality and Ecological Assessment of Osage and Spring Creeks in the Illinois River Basin, Arkansas: Fayetteville, Arkansas, McGoodwin, Williams, and Yates, Inc. 106 p.

concentrations were relatively high). The nutrient concentrations measured during the timeframe of the MWY study (2007-2009) were of similar magnitude to those measured in the EPA's analysis above. During the timeframe of the MWY study, the average TP concentrations at Osage Creek sites ranged from 0.042~mg/L to 0.141~mg/L and the average TP concentrations at Spring Creek sites ranged from 0.070~mg/L to 0.249~mg/L.

3. Linking the Aquatic life community structure to nutrients

A U.S. Geological Survey (USGS)³ study of wadeable Ozark Highlands ecoregion streams demonstrated that nutrient enrichment is correlated with low algal assemblage index scores. Specifically, the USGS study reports that biotic metric scores (i.e., Index of Biotic Integrity) were inversely related to nutrients (e.g., total phosphorus) and were generally lowest when total phosphorus concentrations were higher than 0.018 mg/L, which is below all of the six-month rolling averages captured in EPA's analysis for Illinois River, Spring Creek, and Osage Creek.

Given EPA's analysis of total phosphorus data indicating elevated total phosphorus concentrations across the Illinois River, Spring Creek, and Osage Creek segments, combined with two other studies suggesting that total phosphorus is not a limiting nutrient at sites on Spring Creek and Osage Creek, and that biotic index scores were generally lowest when TP concentrations were above 0.018 mg/L in this ecoregion, EPA has determined that the conditions in seven segments listed above are consistent with excess nutrients. Thus, EPA has determined that the narrative criterion for nutrients is not being met.

IV. Final Action on Arkansas DEQ's 2020 Section 303(d) List Submittal

After careful review of Arkansas DEQ's final Section 303(d) list submittal package, the EPA has determined that Arkansas DEQ's 2020 Section 303(d) list partially meets the requirements of Section 303(d) of the Clean Water Act (CWA) and the EPA's implementing regulations with regard to all of the waterbody/parameter combinations listed by the State. As a result, the EPA is partially approving DEQ's 2020 list with further action pending and partially disapproving DEQ's 2020 list with regard to 7 waterbody/parameter pairs, which EPA is adding to the 2020 list.

V. References

The following list includes documents that were used directly or indirectly as a basis for the EPA's review and action on the State's Section 303(d) list. This list is not meant to be an exhaustive list of all records, but to provide the primary documents the Region relied upon in making decisions to approve the State's list.

Electronic data submittal of Arkansas's 2020 (CWA) §303(d)/§305(b) Integrated List of Assessed Surface Waters, associated documents, and GIS data from Arkansas Division of

³ Justus, B.G. et al. 2010. A comparison of algal, macroinvertebrate, and fish assemblage indices for assessing low-level nutrient enrichment in wadeable Ozark streams. Ecological Indicators 10, 627-638. record

Environmental Quality to EPA's Assessment, Total Maximum Daily Load (TMDL) Tracking and Implementation System (ATTAINS) database. June 2, 2022.

40 C.F.R. Part 130 Water Quality Planning and Management

40 C.F.R. Part 131 Water Quality Standards

July 29, 2005, Memorandum from Diane Regas, Director, Office of Wetlands, Oceans, and Watersheds, US EPA to Water Division Directors transmitting EPA's "Guidance for 2006 Assessment, Listing and Reporting Requirements Pursuant to Sections 303(d), 305(b) and 314 of the Clean Water Act"

October 12, 2006, Memorandum from Diane Regas, Director, Office of Oceans, Wetlands, and Watersheds entitled *Information Concerning 2008 Clean Water Act Sections 303(d), 305(b), and 314 Integrated Reporting and Listing Decisions.*

May 5, 2009, Memorandum from Suzanne Schwartz, Acting Director, Office of Wetlands, Oceans, and Watersheds, entitled *Information Concerning 2010 Clean Water Act Sections 303(d), 305(b), and 314 Integrated Reporting and Listing Decisions.*

March 21, 2011, Memorandum from Denise Keehner, Director, Office of Wetlands, Oceans, and Watersheds, entitled *Information Concerning 2012 Clean Water Act Sections 303(d), 305(b), and 314 Integrated Reporting and Listing Decisions.*

April 1991, "Guidance for Water Quality-Based Decisions: The TMDL Process," EPA 440/4-91-001.

August 8, 1997, Memorandum from Robert Perciasepe, Assistant Administrator for Water, US EPA, regarding "New Policies for Establishing and Implementing TMDLs."

September, 1997, Guidance from Office of Water, Headquarters, US EPA regarding "Guidelines for Preparation of the Comprehensive State Water Quality Assessments (305(b) Reports) and Electronic Updates" Supplement, EPA-841-B-97-002B.

August 23, 1999, Federal Register Notice. *Proposed Revisions to the Water Quality Management and Planning Regulations*, 64 FR 46012.

April 27, 2000, Federal Register Notice, *EPA Review and Approval of State and Tribal Water Quality Standards*, 65 FR 24641

Table 2. State of Arkansas's 2020 § 303(d) List

Planning Segment	Assessment Unit	Waterbody Name	Parameter	Category	Designated Use Not Supported	Conclusion
1A	AR_11140203_020	Dorcheat Bayou	TURBIDITY	5	OU	Concur
1A	AR_11140203_022	Dorcheat Bayou	TURBIDITY - BASE FLOWS	5	OU	Concur
1A	AR_11140205_010	Bodcau Creek	DISSOLVED OXYGEN - PRIMARY	5	AL	Concur
1B	AR_11140106_001	Red River	TURBIDITY	5	OU	Concur
1B	AR_11140106_003	Red River	TURBIDITY	5	OU	Concur
1B	AR_11140106_005	Red River	TURBIDITY - BASE FLOWS	5	OU	Concur
1B	AR_11140106_025	Red River	TURBIDITY	5	OU	Concur
1B	AR_11140201_007	Red River	TURBIDITY - BASE FLOWS	5	OU	Concur
1B	AR_11140201_008	Bois D'Arc Cr.	DISSOLVED OXYGEN	5	AL	Concur
1B	AR_11140201_009	Bois D'Arc Cr.	DISSOLVED OXYGEN	5	AL	Concur
1B	AR_11140201_011	Red River	TURBIDITY - BASE FLOWS	5	OU	Concur
1B	AR_11140302_003	Days Creek	LEAD, DISSOLVED - CHRONIC	5	AL	Concur
1C	AR_11140109_001	Saline River	TEMPERATURE	5	AL	Concur
1C	AR_11140109_018	Cossatot R.	TEMPERATURE	5	AL, ORW	Concur
1C	AR_11140109_019	Cossatot R.	PH	5	OU, ORW	Concur
1C	AR_11140109_020	Bushy Creek	PH	5	OU, ORW	Concur
1C	AR_11140109_024	Rolling Fork	COPPER, DISSOLVED - ACUTE	5	AL	Concur
1C	AR_11140109_024	Rolling Fork	COPPER, DISSOLVED - CHRONIC	5	AL	Concur
1C	AR_11140109_025	Bear Creek	COPPER, DISSOLVED	5	AL	Concur
1C	AR_11140109_029	Robinson Creek	DISSOLVED OXYGEN - CRITICAL	5	AL+	Concur
1C	AR_11140109_029	Robinson Creek	PH	5	OU	Concur
1C	AR_11140109_4071	Gillham Lake	PH	5	OU	Concur
1C	AR_11140109_719	Short Creek	PH	5	OU	Concur
1C	AR_11140109_819	Short Creek	PH	5	AL	Concur
1C	AR_11140109_921	Caney Creek	PH	5	OU	Concur
1C	AR_11140109_929	Cross Creek	PH	5	OU	Concur
1C	AR_11140109_929	Cross Creek	DISSOLVED OXYGEN - CRITICAL	5	AL+	Concur
1D	AR_11140108_012	Sixmile Creek	PH	5	OU	Concur

Planning Segment	Assessment Unit	Waterbody Name	Parameter	Category	Designated Use Not Supported	Conclusion
1D	AR_11140108_014	Mountain Fork	TEMPERATURE	5	AL, ORW	Concur
1D	AR_11140108_019	Mill Creek	PH	5	OU	Concur
1D	AR_11140108_907	Barren Creek	PH	5	OU	Concur
1D	AR_11140108_907	Barren Creek	DISSOLVED OXYGEN - PRIMARY	5	AL	Concur
1D	AR_11140108_907	Barren Creek	TURBIDITY - BASE FLOWS	5	OU	Concur
2A	AR_08050002_003	Macon Bayou	CHLORIDE	5	AL	Concur
2A	AR_08050002_006	Macon Bayou	CHLORIDE	5	AL	Concur
2B	AR_08040205_001	Bayou Bartholomew	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
2B	AR_08040205_001	Bayou Bartholomew	LEAD, DISSOLVED - CHRONIC	5	AL	Concur
2B	AR_08040205_006	Bayou Bartholomew	LEAD, DISSOLVED	5	AL	Concur
2B	AR_08040205_006	Bayou Bartholomew	TEMPERATURE	5	AL	Concur
2B	AR_08040205_013	Bayou Bartholomew	LEAD, DISSOLVED - CHRONIC	5	AL	Concur
2B	AR_08040205_901	Bearhouse Creek	DISSOLVED OXYGEN	5	AL	Concur
2B	AR_08040205_902	Harding Creek	LEAD	5	AL	Concur
2B	AR_08040205_905	Cross Bayou	DISSOLVED OXYGEN	5	AL	Concur
2B	AR_08040205_907	Chemin-A-Haut Creek	DISSOLVED OXYGEN	5	AL	Concur
2B	AR_08040205_908	Overflow Creek	TURBIDITY	5	OU	Concur
2B	AR_08040205_908	Overflow Creek	CHLORIDE	5	AL	Concur
2B	AR_08040205_909	Main Street Ditch	LEAD	5	AL	Concur
2B	AR_08040205_909	Main Street Ditch	DISSOLVED OXYGEN - PRIMARY	5	AL	Concur
2B	AR_08040205_909	Main Street Ditch	DISSOLVED OXYGEN - CRITICAL	5	OU	Concur
2B	AR_08040205_910	Bayou Imbeau	LEAD	5	AL	Concur
2B	AR_08040205_910	Bayou Imbeau	DISSOLVED OXYGEN	5	AL	Concur
2B	AR_08040205_910	Bayou Imbeau	PATHOGENS	5	PC	Concur
2B	AR_08040205_911	Able's Creek	TURBIDITY	5	OU	Concur
2C	AR_08040203_011	N. Fork Saline	DISSOLVED OXYGEN	5	AL	Concur
2C	AR_08040203_014	Alum Fork	DISSOLVED OXYGEN - CRITICAL	5	AL+, ORW	Concur
2C	AR_08040203_014	Alum Fork	PH	5	OU, ORW	Concur

Planning Segment	Assessment Unit	Waterbody Name	Parameter	Category	Designated Use Not Supported	Conclusion
2C	AR_08040203_018	Alum Fork	PH	5	OU, ORW	Concur
2C	AR_08040203_019	M. Fork Saline	DISSOLVED OXYGEN - CRITICAL	5	AL+, ORW	Concur
2C	AR_08040203_020	S. Fork Saline	BENTHIC MACROINVERTEBRATES BIOASSESSMENTS	5	AL, ORW	Concur
2C	AR_08040203_021	Cedar Creek	DISSOLVED OXYGEN - CRITICAL	5	AL+	Concur
2C	AR_08040203_022	S. Fork Saline	FISH BIOASSESSMENTS	5	AL, ORW	Concur
2C	AR_08040203_022	S. Fork Saline	BENTHIC MACROINVERTEBRATES BIOASSESSMENTS	5	AL, ORW	Concur
2C	AR_08040203_4100	Winona Lake	PH	5	OU	Concur
2C	AR_08040203_4101	Winona Lake	PH	5	OU	Concur
2C	AR_08040203_4110	Cox Creek Lake	PH	5	OU	Concur
2C	AR_08040203_611	North Fork Saline River	PH	5	AL+, ORW	Concur
2C	AR_08040203_611	North Fork Saline River	DISSOLVED OXYGEN - CRITICAL	5	AL+, ORW	Concur
2C	AR_08040203_904	Big Creek	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
2C	AR_08040203_904	Big Creek	PH	5	OU	Concur
2C	AR_08040203_922	Lockett Creek	DISSOLVED OXYGEN - CRITICAL	5	AL+	Concur
2C	AR_08040203_922	Lockett Creek	PH	5	OU	Concur
2C	AR_08040204_002	Saline River	TEMPERATURE	5	AL	Concur
2C	AR_08040204_002	Saline River	TURBIDITY - BASE FLOWS	5	OU, ORW	Concur
2C	AR_08040204_002	Saline River	LEAD, DISSOLVED - CHRONIC	5	AL, ORW	Concur
2C	AR_08040204_005	Big Creek	PH	5	OU	Concur
2D	AR_08040201_001	Moro Creek	LEAD, DISSOLVED - CHRONIC	5	AL	Concur
2D	AR_08040201_006	Smackover Cr.	LEAD	5	AL	Concur
2D	AR_08040201_006	Smackover Cr.	DISSOLVED OXYGEN	5	AL	Concur
2D	AR_08040201_006	Smackover Cr.	PH	5	OU	Concur
2D	AR_08040201_006	Smackover Cr.	TURBIDITY	5	OU	Concur
2D	AR_08040201_007	Smackover Cr.	LEAD	5	AL	Concur
2D	AR_08040201_007	Smackover Cr.	DISSOLVED OXYGEN	5	AL	Concur

Planning Segment	Assessment Unit	Waterbody Name	Parameter	Category	Designated Use Not Supported	Conclusion
2D	AR_08040201_007	Smackover Cr.	PH	5	OU	Concur
2D	AR_08040201_007	Smackover Cr.	TURBIDITY - BASE FLOWS	5	OU	Concur
2D	AR_08040201_007	Smackover Cr.	TURBIDITY - STORM FLOWS	5	OU	Concur
2D	AR_08040201_406	Smackover Creek	LEAD, DISSOLVED - CHRONIC	5	AL	Concur
2D	AR_08040201_406	Smackover Creek	TURBIDITY - STORM FLOWS	5	OU	Concur
2D	AR_08040201_406	Smackover Creek	PH	5	OU	Concur
2D	AR_08040201_406	Smackover Creek	TURBIDITY - BASE FLOWS	5	OU	Concur
2D	AR_08040201_501	Bryant Creek	TURBIDITY - BASE FLOWS	5	OU	Concur
2D	AR_08040201_601	Guice Creek	TURBIDITY - BASE FLOWS	5	OU	Concur
2D	AR_08040201_606	Elcc Trib.	COPPER - ACUTE	5	AL	Concur
2D	AR_08040201_606	Elcc Trib.	COPPER - CHRONIC	5	AL	Concur
2D	AR_08040201_606	Elcc Trib.	NITROGEN, NITRATE	5	AL	Concur
2D	AR_08040201_606	Elcc Trib.	PH	5	OU	Concur
2D	AR_08040201_616	ELCC Creek	TURBIDITY - BASE FLOWS	5	OU	Concur
2D	AR_08040201_701	Lloyd Creek	TURBIDITY - BASE FLOWS	5	OU	Concur
2D	AR_08040201_726	Unnamed Trib to Haynes Creek (ECC Creek)	PH	5	OU	Concur
2D	AR_08040201_801	Whitewater Creek	TURBIDITY - BASE FLOWS	5	OU	Concur
2D	AR_08040201_801	Whitewater Creek	TURBIDITY - STORM FLOWS	5	OU	Concur
2D	AR_08040201_803	Champagnolle creek	TURBIDITY - BASE FLOWS	5	OU	Concur
2D	AR_08040201_803	Champagnolle creek	TURBIDITY - STORM FLOWS	5	OU	Concur
2D	AR_08040201_806	Salt Cr.	PH	5	OU	Concur
2D	AR_08040201_901	Moro Creek	LEAD	5	AL	Concur
2D	AR_08040201_901	Moro Creek	DISSOLVED OXYGEN	5	AL	Concur
2D	AR_08040201_905	E. Two Bayou	PATHOGENS	5	PC	Concur
2D	AR_08040201_905	E. Two Bayou	PH	5	OU	Concur
2D	AR_08040201_905	E. Two Bayou	LEAD, DISSOLVED - CHRONIC	5	AL	Concur
2D	AR_08040201_910	Jug Creek	LEAD, DISSOLVED - CHRONIC	5	AL	Concur
2D	AR_08040202_002	Ouachita River	LEAD	5	AL	Concur
2D	AR_08040202_003	Ouachita River	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
2D	AR_08040202_003	Ouachita River	LEAD, DISSOLVED - CHRONIC	5	AL	Concur

Planning Segment	Assessment Unit	Waterbody Name	Parameter	Category	Designated Use Not Supported	Conclusion
2D	AR_08040202_004	Ouachita River	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
2D	AR_08040202_006	Bayou De L'Outre	LEAD, DISSOLVED - CHRONIC	5	AL	Concur
2D	AR_08040202_006	Bayou De L'Outre	PH	5	OU	Concur
2D	AR_08040202_006	Bayou De L'Outre	TURBIDITY - BASE FLOWS	5	OU	Concur
2D	AR_08040202_007	Bayou De L'Outre	TURBIDITY	5	OU	Concur
2D	AR_08040202_007	Bayou De L'Outre	PH	5	OU	Concur
2D	AR_08040202_007	Bayou De L'Outre	ZINC	5	AL	Concur
2D	AR_08040202_007	Bayou De L'Outre	LEAD	5	AL	Concur
2D	AR_08040202_008	Bayou De L'Outre	TURBIDITY	5	OU	Concur
2D	AR_08040202_008	Bayou De L'Outre	ZINC	5	AL	Concur
2D	AR_08040202_008	Bayou De L'Outre	PH	5	OU	Concur
2D	AR_08040202_008	Bayou De L'Outre	LEAD	5	AL	Concur
2D	AR_08040202_008	Bayou De L'Outre	SELENIUM	5	AL	Concur
2D	AR_08040202_909	Loutre Creek	SELENIUM	5	AL+, ORW	Concur
2D	AR_08040202_909	Loutre Creek	TOTAL DISSOLVED SOLIDS (TDS)	5	DW, A&I	Concur
2D	AR_08040202_909	Loutre Creek	SULFATE	5	DW, A&I	Concur
2D	AR_08040202_909	Loutre Creek	CHLORIDE	5	DW, A&I	Concur
2E	AR_08040206_015	Big Cornie Cr.	TURBIDITY - BASE FLOWS	5	OU	Concur
2E	AR_08040206_015	Big Cornie Cr.	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
2E	AR_08040206_015	Big Cornie Cr.	LEAD, DISSOLVED - CHRONIC	5	AL	Concur
2E	AR_08040206_015	Big Cornie Cr.	PH	5	OU	Concur
2E	AR_08040206_016	Little Cornie Cr.	LEAD	5	AL	Concur
2E	AR_08040206_716	Little Cornie Bayou	LEAD	5	AL	Concur
2E	AR_08040206_816	Little Cornie Bayou	LEAD	5	AL	Concur
2E	AR_08040206_916	Walker Branch	LEAD	5	AL	Concur
2F	AR_08040101_032	Fiddlers Cr.	PH	5	OU	Concur
2F	AR_08040101_032	Fiddlers Cr.	FISH BIOASSESSMENTS	5	AL	Concur
2F	AR_08040101_032	Fiddlers Cr.	TURBIDITY - BASE FLOWS	5	OU	Concur
2F	AR_08040101_032	Fiddlers Cr.	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur

Planning Segment	Assessment Unit	Waterbody Name	Parameter	Category	Designated Use Not Supported	Conclusion
2F	AR_08040101_039	Ouachita River	PH	5	OU	Concur
2F	AR_08040101_039	Ouachita River	DISSOLVED OXYGEN - CRITICAL	5	AL+	Concur
2F	AR_08040101_043	S.Fork Ouachita	DISSOLVED OXYGEN - CRITICAL	5	AL+, ORW	Concur
2F	AR_08040101_048	Prairie Creek	DISSOLVED OXYGEN - CRITICAL	5	AL+	Concur
2F	AR_08040101_501	Gulpha Creek	PH	5	OU	Concur
2F	AR_08040101_838	Irons Fork Creek	TURBIDITY - BASE FLOWS	5	OU	Concur
2F	AR_08040101_838	Irons Fork Creek	DISSOLVED OXYGEN	5	AL+	Concur
2F	AR_08040101_838	Irons Fork Creek	PH	5	OU	Concur
2F	AR_08040101_902	Indian Springs Creek	SULFATE	5	DW, A&I	Concur
2F	AR_08040101_902	Indian Springs Creek	DISSOLVED OXYGEN	5	AL	Concur
2F	AR_08040101_902	Indian Springs Creek	TOTAL DISSOLVED SOLIDS (TDS)	5	DW	Concur
2F	AR_08040101_907	Stokes Creek	BENTHIC MACROINVERTEBRATES BIOASSESSMENTS	5	AL	Concur
2F	AR_08040101_929	Irons Fork Creek	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
2F	AR_08040101_929	Irons Fork Creek	PH	5	OU	Concur
2F	AR_08040101_929	Irons Fork Creek	FISH BIOASSESSMENTS	5	AL	Concur
2F	AR_08040102_023	S. Fork Caddo	DISSOLVED OXYGEN - CRITICAL	5	AL+	Concur
2F	AR_08040102_821	Collier Creek	DISSOLVED OXYGEN - CRITICAL	5	AL+, ORW	Concur
2F	AR_08040102_976	Cove Creek	DISSOLVED OXYGEN	5	OU	Concur
2F	AR_08040102_976	Cove Creek	PH	5	OU	Concur
2G	AR_08040103_002	Terre Noire Creek	PH	5	OU	Concur
2G	AR_08040103_003	Terre Noire Creek	PH	5	OU	Concur
2G	AR_08040103_023	L. Missouri R.	DISSOLVED OXYGEN - CRITICAL	5	AL+, ORW	Concur
2G	AR_08040103_031	Terre Rouge Creek	TURBIDITY	5	OU	Concur
2G	AR_08040103_4030	Greeson Lake	PH	5	OU	Concur
3A	AR_08020401_001	Arkansas River	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur

Planning Segment	Assessment Unit	Waterbody Name	Parameter	Category	Designated Use Not Supported	Conclusion
3A	AR_08020401_001	Arkansas River	DISSOLVED OXYGEN - PRIMARY	5	AL	Concur
3A	AR_08020401_003	Wabbaseka Bayou	DISSOLVED OXYGEN	5	AL	Concur
3B	AR_08020402_001	Bayou Meto	DISSOLVED OXYGEN	5	AL	Concur
3B	AR_08020402_003	Bayou Meto	DISSOLVED OXYGEN - PRIMARY	5	AL	Concur
3B	AR_08020402_003	Bayou Meto	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
3B	AR_08020402_006	BayouTwo Prairie	DISSOLVED OXYGEN	5	AL	Concur
3B	AR_08020402_007	Bayou Meto	DIOXIN	5	FC	Concur
3B	AR_08020402_007	Bayou Meto	TURBIDITY - BASE FLOWS	5	OU	Concur
3B	AR_08020402_007	Bayou Meto	TOTAL DISSOLVED SOLIDS (TDS)	5	AL	Concur
3B	AR_08020402_106	Bayou Two Prairie	DISSOLVED OXYGEN	5	AL, ORW	Concur
3B	AR_08020402_206	Bayou Two Prairie	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
3B	AR_08020402_306	Bayou Two Prairie	DISSOLVED OXYGEN	5	AL	Concur
3B	AR_08020402_4010	Pickthorne Lake	NUTRIENTS	5	AL	Concur
3B	AR_08020402_4020	Rogers Lake	DISSOLVED OXYGEN	5	AL	Concur
3B	AR_08020402_806	Bayou Two Prairie	DISSOLVED OXYGEN	5	AL, ORW	Concur
3B	AR_08020402_807	Bayou Meto	РН	5	OU	Concur
3B	AR_08020402_807	Bayou Meto	DISSOLVED OXYGEN - PRIMARY	5	AL	Concur
3B	AR_08020402_907	Bayou Meto	DISSOLVED OXYGEN - PRIMARY	5	AL	Concur
3B	AR_08020402_907	Bayou Meto	PH	5	OU	Concur
3C	AR_11110207_018	Maumelle River	PH	5	OU	Concur
3C	AR_11110207_018	Maumelle River	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
3C	AR_11110207_024	Fourche Creek	TURBIDITY - BASE FLOWS	5	OU	Concur
3C	AR_11110207_024	Fourche Creek	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
3C	AR_11110207_4010	Saracen Lake	POLYCHLORINATED BIPHENYLS (PCBS)	5	FC	Concur
3C	AR_11110207_724	McHenry Creek	PH	5	OU	Concur

Planning Segment	Assessment Unit	Waterbody Name	Parameter	Category	Designated Use Not Supported	Conclusion
3C	AR_11110207_724	McHenry Creek	COPPER, DISSOLVED - CHRONIC	5	AL	Concur
3C	AR_11110207_822	Fourche Creek	TURBIDITY - BASE FLOWS	5	OU	Concur
3C	AR_11110207_822	Fourche Creek	PH	5	OU	Concur
3C	AR_11110207_822	Fourche Creek	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
3C	AR_11110207_824	Brodie Creek	PH	5	OU	Concur
3C	AR_11110207_824	Brodie Creek	BENTHIC MACROINVERTEBRATES BIOASSESSMENTS	5	AL	Concur
3C	AR_11110207_912	White Oak Bayou	PH	5	OU	Concur
3C	AR_11110207_912	White Oak Bayou	DISSOLVED OXYGEN - PRIMARY	5	AL	Concur
3D	AR_11110205_002	Cadron Cr., E. Fork	TURBIDITY - BASE FLOWS	5	OU	Concur
3D	AR_11110205_016	Cove Creek	PH	5	OU	Concur
3E	AR_11110206_001	Fourche LaFave	DISSOLVED OXYGEN	5	AL	Concur
3E	AR_11110206_007	Fourche LaFave River	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
3E	AR_11110206_012	Gafford Creek	TURBIDITY - BASE FLOWS	5	OU	Concur
3E	AR_11110206_012	Gafford Creek	PH	5	OU	Concur
3E	AR_11110206_014	FourcheLaFave, south	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
3E	AR_11110206_015	Bear Creek	PH	5	OU	Concur
3E	AR_11110206_514	Negro Branch	TURBIDITY - BASE FLOWS	5	OU	Concur
3E	AR_11110206_514	Negro Branch	PH	5	OU	Concur
3E	AR_11110206_808	Turner Creek	TURBIDITY - STORM FLOWS	5	OU	Concur
3E	AR_11110206_808	Turner Creek	PH	5	OU	Concur
3E	AR_11110206_914	Dry Fork Creek	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
3E	AR_11110206_914	Dry Fork Creek	PH	5	OU	Concur
3F	AR_11110203_011	Point Remove	TURBIDITY - BASE FLOWS	5	OU	Concur
3F	AR_11110203_018	Beardy Branch	PH	5	OU	Concur
3F	AR_11110203_018	Beardy Branch	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
3F	AR_11110203_033	Rocky Cypress	TURBIDITY - BASE FLOWS	5	OU	Concur

Planning Segment	Assessment Unit	Waterbody Name	Parameter	Category	Designated Use Not Supported	Conclusion
3F	AR_11110203_4020	Driver Lake	PH	5	OU	Concur
3F	AR_11110203_904	Stone Dam Creek	TURBIDITY - BASE FLOWS	5	OU	Concur
3F	AR_11110203_904	Stone Dam Creek	DISSOLVED OXYGEN - PRIMARY	5	AL	Concur
3F	AR_11110203_918	Trimble Creek	PH	5	OU	Concur
3F	AR_11110203_931	Whig Creek	AMMONIA-NITROGEN - CHRONIC NO EARLY LIFE STAGE	5	AL	Concur
3F	AR_11110203_931	Whig Creek	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
3F	AR_11110203_931	Whig Creek	DISSOLVED OXYGEN - PRIMARY	5	AL	Concur
3F	AR_11110203_931	Whig Creek	AMMONIA-NITROGEN - CHRONIC EARLY LIFE STAGE	5	AL	Concur
3G	AR_11110204_011	Petit Jean R.	TURBIDITY - BASE FLOWS	5	OU	Concur
3G	AR_11110204_4061	Blue Mountain Lake	DISSOLVED OXYGEN	5	AL	Concur
3G	AR_11110204_4061	Blue Mountain Lake	TURBIDITY - BASE FLOWS	5	OU	Concur
3G	AR_11110204_4061	Blue Mountain Lake	TURBIDITY - STORM FLOWS	5	OU	Concur
3Н	AR_11110104_006	Lee Creek	PH	5	OU, ORW	Concur
3H	AR_11110104_4020	Lee Creek Reservoir	PH	5	OU	Concur
3Н	AR_11110201_006	Mulberry River	PH	5	OU, ORW	Concur
3Н	AR_11110201_007	Mulberry River	PH	5	AL	Concur
3Н	AR_11110201_008	Mulberry River	PH	5	OU, ORW	Concur
3H	AR_11110201_012	Little Mulberry	PH	5	OU	Concur
3Н	AR_11110201_912	Friley Creek	PH	5	OU	Concur
3Н	AR_11110202_013	Illinois Bayou	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
3Н	AR_11110202_4050	Horsehead Lake	PH	5	OU	Concur
3I	AR_11110105_001	Poteau River	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
3I	AR_11110105_033	James Fork	TURBIDITY - BASE FLOWS	5	OU	Concur
3I	AR_11110105_034	Sugarloaf Creek	TURBIDITY - STORM FLOWS	5	OU	Concur
3I	AR_11110105_035	Prairie Creek	TURBIDITY - STORM FLOWS	5	OU	Concur
3I	AR_11110105_036	Cherokee Creek	TURBIDITY - STORM FLOWS	5	OU	Concur

Planning Segment	Assessment Unit	Waterbody Name	Parameter	Category	Designated Use Not Supported	Conclusion
3I	AR_11110105_731	Poteau River	TURBIDITY - BASE FLOWS	5	OU	Concur
3I	AR_11110105_831	Unnamed Tributary - to Poteau	CHLORIDE	5	AL	Concur
3I	AR_11110105_831	Unnamed Tributary - to Poteau	TOTAL DISSOLVED SOLIDS (TDS)	5	AL	Concur
3I	AR_11110105_925	Briery Creek	PH	5	OU	Concur
3J	AR_11110103_020	Illinois River	SULFATE	5	AL, ORW	Concur
3J	AR_11110103_024	Illinois River	SULFATE	5	AL, ORW	Concur
3J	AR_11110103_024	Illinois River	TURBIDITY - BASE FLOWS	5	OU, ORW	Concur
3J	AR_11110103_026	Moores Creek	SULFATE	5	DW, A&I	Concur
3J	AR_11110103_026	Moores Creek	PATHOGENS	5A	PC	Concur
3J	AR_11110103_027	Muddy Fork	SULFATE	5	DW, A&I	Concur
3J	AR_11110103_027	Muddy Fork	PATHOGENS	5A	PC	Concur
3J	AR_11110103_028	Illinois River	ESCHERICHIA COLI (E. COLI)	5	PC	Concur
3J	AR_11110103_028	Illinois River	PATHOGENS	5A	PC	Concur
3J	AR_11110103_4080	Fayetteville Lake	PH	5	OU	Concur
3J	AR_11110103_630	Little Osage Creek	PATHOGENS	5A	PC	Concur
3J	AR_11110103_630	Little Osage Creek	ESCHERICHIA COLI (E. COLI)	5	PC	Concur
3Ј	AR_11110103_733	Unnamed Tributary to Brush	DISSOLVED OXYGEN - PRIMARY	5	AL	Concur
3Ј	AR_11110103_813	Baron Fork	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
3Ј	AR_11110103_932	Sager Creek	AMMONIA-NITROGEN - CHRONIC EARLY LIFE STAGE	5	AL	Concur
3J	AR_11110103_933	Little Osage Creek	ESCHERICHIA COLI (E. COLI)	5	PC, ORW	Concur
3J	AR_11110103_933	Little Osage Creek	PATHOGENS	5A	PC	Concur
4A	AR_08020303_005	White River	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
4A	AR_08020303_005	White River	DISSOLVED OXYGEN - PRIMARY	5	AL	Concur
4A	AR_08020303_014	Boat Gunwale Slash	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
4A	AR_08020303_014	Boat Gunwale Slash	DISSOLVED OXYGEN - PRIMARY	5	AL	Concur
4A	AR_08020303_914	Boat Gunwale Slash	DISSOLVED OXYGEN	5	AL	Concur

Planning Segment	Assessment Unit	Waterbody Name	Parameter	Category	Designated Use Not Supported	Conclusion
4A	AR_08020304_010	Big Creek	TOTAL DISSOLVED SOLIDS (TDS)	5	DW, A&I	Concur
4A	AR_08020304_010	Big Creek	CHLORIDE	5	DW	Concur
4A	AR_08020304_014	Prairie Cypress	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
4A	AR_08020304_014	Prairie Cypress	COPPER - ACUTE	5	AL	Concur
4A	AR_08020304_014	Prairie Cypress	COPPER - CHRONIC	5	AL	Concur
4A	AR_08020304_014	Prairie Cypress	DISSOLVED OXYGEN - PRIMARY	5	AL	Concur
4B	AR_08020302_002	Bayou DeView	DISSOLVED OXYGEN	5	AL	Concur
4B	AR_08020302_004	Bayou DeView	SULFATE	5	AL	Concur
4B	AR_08020302_004	Bayou DeView	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
4B	AR_08020302_005	Bayou DeView	DISSOLVED OXYGEN	5	AL	Concur
4B	AR_08020302_005	Bayou DeView	SULFATE	5	AL	Concur
4B	AR_08020302_006	Bayou DeView	SULFATE	5	AL	Concur
4B	AR_08020302_006	Bayou DeView	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
4B	AR_08020302_007	Bayou DeView	SULFATE	5	AL	Concur
4B	AR_08020302_007	Bayou DeView	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
4B	AR_08020302_011	Flag Slough	DISSOLVED OXYGEN - PRIMARY	5	AL	Concur
4B	AR_08020302_012	Cow Ditch	TURBIDITY - BASE FLOWS	5	OU	Concur
4B	AR_08020302_014	Buffalo Creek	DISSOLVED OXYGEN	5	AL	Concur
4B	AR_08020302_016	Cache River	DISSOLVED OXYGEN - PRIMARY	5	AL	Concur
4B	AR_08020302_016	Cache River	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
4B	AR_08020302_018	Cache River	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
4B	AR_08020302_030	Swan Ditch	TEMPERATURE	5	AL	Concur
4B	AR_08020302_038	Little Cache	TURBIDITY - BASE FLOWS	5	OU	Concur
4B	AR_08020302_041	Cache River	TURBIDITY - BASE FLOWS	5	OU	Concur
4B	AR_08020302_055	Locust Bayou	DISSOLVED OXYGEN - PRIMARY	5	AL	Concur

Planning Segment	Assessment Unit	Waterbody Name	Parameter	Category	Designated Use Not Supported	ot Conclusion
4B	AR_08020302_4020	Lake Frierson	COPPER	5	AL	Concur
4B	AR_08020302_901	Unnamed Trib to Cache River	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
4B	AR_08020302_901	Unnamed Trib to Cache River	DISSOLVED OXYGEN - PRIMARY	5	AL	Concur
4B	AR_08020302_903	Caney Creek	DISSOLVED OXYGEN	5	AL	Concur
4B	AR_08020302_909	Lost Creek Ditch	CHLORIDE	5	AL	Concur
4B	AR_08020302_921	West Cache River Slough	TURBIDITY - BASE FLOWS	5	OU	Concur
4B	AR_08020302_937	East Slough	TURBIDITY - BASE FLOWS	5	OU	Concur
4B	AR_08020302_937	East Slough	TURBIDITY - STORM FLOWS	5	OU	Concur
4C	AR_11010013_006	Village Cr	DISSOLVED OXYGEN	5	AL	Concur
4C	AR_11010013_007	Village Cr	DISSOLVED OXYGEN	5	AL	Concur
4C	AR_11010013_008	Village Cr	DISSOLVED OXYGEN	5	AL	Concur
4C	AR_11010013_017	White River	TEMPERATURE	5	AL	Concur
4C	AR_11010013_020	Departee Creek	ZINC	5	AL	Concur
4C	AR_11010013_020	Departee Creek	DISSOLVED OXYGEN	5	AL	Concur
4C	AR_11010013_021	Glaise Creek	ZINC	5	AL	Concur
4C	AR_11010013_021	Glaise Creek	DISSOLVED OXYGEN	5	AL	Concur
4D	AR_08020301_006	Bayou Des Arc	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
4D	AR_08020301_006	Bayou Des Arc	TEMPERATURE	5	AL	Concur
4D	AR_08020301_007	Bayou Des Arc	LEAD, DISSOLVED - CHRONIC	5	AL	Concur
4D	AR_08020301_009	Bull Creek	DISSOLVED OXYGEN - PRIMARY	5	AL	Concur
4D	AR_08020301_009	Bull Creek	ZINC - ACUTE	5	AL	Concur
4D	AR_08020301_009	Bull Creek	ZINC - CHRONIC	5	AL	Concur
4D	AR_08020301_010	Cypress Bayou	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
4D	AR_08020301_010	Cypress Bayou	DISSOLVED OXYGEN - PRIMARY	5	AL	Concur
4D	AR_08020301_015	Wattensaw Bayou	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
4E	AR_11010014_007	Little Red R.	PH	5	OU	Concur
4E	AR_11010014_036	South Fork	PH	5	OU	Concur

Planning Segment	Assessment Unit	Waterbody Name	Parameter	Category	Designated Use Not Supported	Conclusion
4E	AR_11010014_037	Archey Creek	PH	5	OU, ORW	Concur
4E	AR_11010014_038	South Fork	PH 5		OU, ORW	Concur
4E	AR_11010014_040	South Fork	DISSOLVED OXYGEN - CRITICAL	5	AL, ORW	Concur
4E	AR_11010014_940	South Fork Little Red River	PH	5	OU	Concur
4F	AR_11010004_017	Greenbrier Cr.	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
4F	AR_11010004_017	Greenbrier Cr.	DISSOLVED OXYGEN - PRIMARY	5	AL	Concur
4F	AR_11010004_915	Big Creek	PH	5	OU	Concur
4G	AR_11010008_001	Current River	TURBIDITY - BASE FLOWS	5	OU, ORW	Concur
4G	AR_11010009_005	Black River	TURBIDITY - STORM FLOWS	5	OU, ORW	Concur
4G	AR_11010009_005	Black River	TURBIDITY - BASE FLOWS	5	OU, ORW	Concur
4G	AR_11010009_008	Fourche River	TURBIDITY	5	OU	Concur
4G	AR_11010012_002	Strawberry R.	TEMPERATURE	5	AL, ORW	Concur
4G	AR_11010012_003	Coopers Creek	TURBIDITY - BASE FLOWS	5	OU	Concur
4G	AR_11010012_006	Strawberry R.	TEMPERATURE	5	AL, ORW	Concur
4G	AR_11010012_007	N. Big Creek	TEMPERATURE	5	AL	Concur
4G	AR_11010012_013	South Big Creek	TEMPERATURE	5	AL	Concur
4G	AR_11010012_014	Reeds Creek	TURBIDITY - BASE FLOWS	5	OU	Concur
4G	AR_11010012_806	Clayton Creek	DISSOLVED OXYGEN - PRIMARY	5	AL	Concur
4H	AR_11010010_003	Spring River	TURBIDITY - BASE FLOWS	5	OU, ORW	Concur
4H	AR_11010010_006	Spring River	TEMPERATURE	5	AL, ORW	Concur
4H	AR_11010010_009	English Creek	DISSOLVED OXYGEN	5	AL, ORW	Concur
4H	AR_11010010_012	S. Fork Spring	DISSOLVED OXYGEN - CRITICAL	5	AL, ORW	Concur
4H	AR_11010010_906	Gut Creek	DISSOLVED OXYGEN	5	AL	Concur
4H	AR_11010011_001	Eleven Point	TURBIDITY - BASE FLOWS	5	OU, ORW	Concur
4J	AR_11010005_004	Buffalo River	TEMPERATURE	5	AL, ORW	Concur
4K	AR_11010001_023	White River	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
4K	AR_11010001_024	West Fork	SULFATE	5	AL	Concur

Planning Segment	Assessment Unit	Waterbody Name	Parameter	Category	Designated Use Not Supported	Conclusion
4K	AR_11010001_024	West Fork	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
4K	AR_11010001_024	West Fork	TOTAL DISSOLVED SOLIDS (TDS)	TOTAL DISSOLVED SOLIDS 5		Concur
4K	AR_11010001_024	West Fork	TEMPERATURE	5	AL	Concur
4K	AR_11010001_026	Middle Fork, White R.	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
4K	AR_11010001_027	White River	TURBIDITY - BASE FLOWS	5	OU	Concur
4K	AR_11010001_037	Kings River	TOTAL DISSOLVED SOLIDS (TDS)	5	AL+	Concur
4K	AR_11010001_060	War Eagle Cr.	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
4K	AR_11010001_4040	Beaver Lake	PATHOGENS	5A	PC	Concur
4K	AR_11010001_4040	Beaver Lake	TURBIDITY - STORM FLOWS	5A	OU	Concur
4K	AR_11010001_4041	Beaver Lake	PATHOGENS	5A	PC, SC	Concur
4K	AR_11010001_4041	Beaver Lake	TURBIDITY - BASE FLOWS	5A	OU	Concur
4K	AR_11010001_4041	Beaver Lake	TURBIDITY - STORM FLOWS	5A	OU	Concur
4K	AR_11010001_442	Kings River	PH	5	OU, ORW	Concur
4K	AR_11010001_542	Kings River	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
4K	AR_11010001_624	West Fork White River	DISSOLVED OXYGEN	5	AL	Concur
4K	AR_11010001_624	West Fork White River	SULFATE	5	AL	Concur
4K	AR_11010001_823	White River	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
4K	AR_11010001_824	Town Branch	TURBIDITY - BASE FLOWS	5	OU	Concur
4K	AR_11010001_834	War Eagle Creek	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
4K	AR_11010001_916	Leatherwood Creek	DISSOLVED OXYGEN	5	AL	Concur
4K	AR_11010001_926	Middle Fork	DISSOLVED OXYGEN	5	AL	Concur
4K	AR_11010001_959	Town Branch bl. WWTP	TOTAL DISSOLVED SOLIDS (TDS)	5	DW, A&I	Concur
5A	AR_08020203_008	St. Francis R.	DISSOLVED OXYGEN - CRITICAL	5	AL, ORW	Concur
5A	AR_08020203_008	St. Francis R.	DISSOLVED OXYGEN - PRIMARY 5		AL, ORW	Concur
5A	AR_08020203_009	St. Francis R.	DISSOLVED OXYGEN	5	AL, ORW	Concur

Planning Segment	Assessment Unit	Waterbody Name	Parameter		Designated Use Not Supported	Conclusion
5A	AR_08020203_009	St. Francis R.	CHLORIDE	5 A		Concur
5A	AR_08020203_906	Ten Mile Bayou	DISSOLVED OXYGEN	5	AL	Concur
5B	AR_08020205_001	L'Anguille R.	DISSOLVED OXYGEN - PRIMARY	5	AL	Concur
5B	AR_08020205_001	L'Anguille R.	DISSOLVED OXYGEN - CRITICAL	5	AL	Concur
5B	AR_08020205_002	L'Anguille R.	TOTAL DISSOLVED SOLIDS (TDS)	5	AL	Concur
5B	AR_08020205_002	L'Anguille R.	CHLORIDE	5	AL	Concur
5B	AR_08020205_002	L'Anguille R.	DISSOLVED OXYGEN	5	AL	Concur
5B	AR_08020205_003	L'Anguille R.	CHLORIDE	5	AL	Concur
5B	AR_08020205_003	L'Anguille R.	TOTAL DISSOLVED SOLIDS (TDS)	OLVED SOLIDS 5		Concur
5B	AR_08020205_003	L'Anguille R.	DISSOLVED OXYGEN	5	AL	Concur
5B	AR_08020205_004	L'Anguille R.	DISSOLVED OXYGEN - PRIMARY 5		AL	Concur
5B	AR_08020205_004	L'Anguille R.	DISSOLVED OXYGEN - CRITICAL	1 3		Concur
5B	AR_08020205_005	L'Anguille R.	SULFATE 5		AL	Concur
5B	AR_08020205_005	L'Anguille R.	TOTAL DISSOLVED SOLIDS (TDS)	5	AL	Concur
5B	AR_08020205_005	L'Anguille R.	CHLORIDE	5	AL	Concur
5B	AR_08020205_005	L'Anguille R.	DISSOLVED OXYGEN	5	AL	Concur
5B	AR_08020205_007	First Creek	DISSOLVED OXYGEN	5	AL	Concur
5B	AR_08020205_008	Second Creek	DISSOLVED OXYGEN - PRIMARY 5		AL	Concur
5B	AR_08020205_008	Second Creek	DISSOLVED OXYGEN - CRITICAL 5		AL	Concur
5B	AR_08020205_901	Caney Creek	DISSOLVED OXYGEN	5	AL	Concur
5B	AR_08020205_902	Prairie Creek	TOTAL DISSOLVED SOLIDS (TDS) 5 DW, A&I		DW, A&I	Concur
5C	AR_08020204_001	Little River Left	DISSOLVED OXYGEN	5	AL	Concur
5C	AR_08020204_002	Little River	DISSOLVED OXYGEN	SSOLVED OXYGEN 5 AL		Concur

Key for T	Key for Table 2				
OU	Other Uses				
AL	Aquatic Life				
ORW	Outstanding Resource Waterbody				
DW	Drinking Water				
PC	Primary Contact				
A&I	Agriculture and Industry				
FC	Fish Consumption (not a Designated Use as defined by Rule 2)				
SC	Secondary Contact				
+	Biological data indicates uses being met				
Concur	Water quality limited segments for which EPA agrees with the State				

Table 3. Summary of Specific Waterbodies for which More Information was Identified or is Requested

Planning Segment	Waterbody Name	Assessment Unit	2018 Parameter	2018 Action	2020 Summary of Findings	2020 Action
2C	Lake Cox Creek	AR_08040203_4110	Unknown	Deferred	Will be assessed for the 2022 cycle	Defer
2F	Lake Ouachita	AR_08040101_4060 AR_08040101_4061 AR_08040101_4062 AR_08040101_4063	Mercury in Fish	Deferred	A taskforce has been assembled	Defer
4A	Lake Greenlee	AR_08020304_4060	Unknown	Deferred	Will be assessed for the 2022 cycle	Defer
4H	South Fork Spring River	AR_11010010_012	Dissolved Oxygen	Deferred	Listed for critical season dissolved oxygen	Concur
5A	Poinsette Lake	AR_08020203_4040	Unknown	Deferred	Scheduled for sampling in FY23	Defer