

TMDLS FOR TEMPERATURE AND TURBIDITY IN THE SULPHUR RIVER AND RED RIVER, ARKANSAS

FINAL SEPTEMBER 27, 2012

Revised July 9, 2025

TMDLS FOR TEMPERATURE AND TURBIDITY IN THE SULPHUR RIVER AND RED RIVER, ARKANSAS

Prepared for

Arkansas Department of Environmental Quality
Water Division
5301 Northshore Drive
North Little Rock, AR 72118

Prepared by

FTN Associates, Ltd.
3 Innwood Circle, Suite 220
Little Rock, AR 72211

FTN No. 3013-380

FINAL September 27, 2012

Revised by:

Arkansas Department of Energy and Environment

Division of Environmental Quality

Office of Water Quality

Water Quality Planning Branch

July 9, 2025

EXECUTIVE SUMMARY

Section 303(d) of the Federal Clean Water Act requires states to identify waterbodies that are not meeting water quality standards, and to develop total maximum daily pollutant loads for those waterbodies. A total maximum daily load (TMDL) is the amount of pollutant that a waterbody can assimilate without exceeding the established water quality standard for that pollutant. Through a TMDL, pollutant loads can be allocated to point sources and nonpoint sources discharging to the waterbody. This report presents TMDLs that have been developed for temperature and turbidity for the Sulphur River and Red River in southwestern Arkansas. These TMDLs cover five reaches of the Sulphur River starting at the Texas/Arkansas state line and extending to the mouth where it empties into the Red River. These TMDLs also cover one reach of the Red River, starting at the mouth of the Sulphur River and extending downstream to the Arkansas/Louisiana state line.

Both the Sulphur River and Red River have large upstream drainage areas in Texas (and Oklahoma for the Red River). The study area for the TMDLs in this report was limited to the Sulphur River drainage area downstream of Wright Patman Lake (excluding Days Creek) and the Red River drainage area starting just upstream of the Sulphur River mouth and extending to the Arkansas/Louisiana state line. Forest and grassland/pasture comprise almost two-thirds of the study area.

A search of point source permits within the study area yielded permits for twelve stormwater discharges, one industrial facility (International Paper Texarkana Mill), and one municipal wastewater treatment plant (Queen City, TX). All of the permits are for facilities in Texas except one stormwater permit.

The reaches of the Sulphur River and Red River addressed in this report were listed as impaired on the final version of the 2008 303(d) list for Arkansas. The pollutants causing the impairments were listed as turbidity/siltation (all reaches) and temperature (Sulphur River only). The 303(d) list specified high priority for the turbidity/siltation impairments in the Sulphur River, and low priority for the other impairments addressed in this report. The 2008 Integrated Water Quality Monitoring and Assessment Report stated that excessive turbidity in the Sulphur River was "predominately caused by surface erosion" (ADEQ 2008). No specific causes have

been documented for the temperature impairments; they appear to be caused simply by atmospheric heating.

The Arkansas Department of Environmental Quality (ADEQ) had collected historical water quality data at one location each on the Sulphur River and Red River within the study area. These data were tabulated and analyzed for basic statistics, seasonal patterns, and relationships between concentration and stream flow. Measurements of turbidity, total suspended solids (TSS), and temperature were higher in the Red River than the Sulphur River. In the seasonal analysis, TSS measurements from the Sulphur River showed slightly higher concentrations in the late summer and fall. Plots of Sulphur River turbidity and TSS versus stream flow indicated that the highest concentrations tended to occur during lower flows. Plots of Red River turbidity and TSS versus stream flow indicated that the highest concentrations tended to occur when flows were between 20,000 cubic feet per second (cfs) and 60,000 cfs.

ES.1 Turbidity TMDLs

The load duration curve method was used to develop the turbidity TMDLs in this report, with TSS used as a surrogate for turbidity. This method illustrates allowable loading at a wide range of stream flow conditions. The steps for applying this methodology for the TMDLs in this report were (1) developing flow duration curves; (2) converting the flow duration curves to load duration curves; (3) plotting observed loads with load duration curves; (4) calculating the TMDL and establishing the margin of safety (MOS); (5) calculating existing and allowable loads from diffuse sources; (6) calculating allowable loads for non-stormwater point sources; and (7) calculating loads reserved for future growth.

The load duration curves were plotted with units of tons/day on the vertical axis and percent exceedance (unit-less) on the horizontal axis. Each load duration curve was divided into five hydrologic ranges: high flows (0%-10% exceedance), moist conditions (10%-40% exceedance), mid-range flows (40%-60% exceedance), dry conditions (60%-90% exceedance), and low flows (90%-100% exceedance). The TMDLs were set equal to the allowable loads for the minimum stream flow within each hydrologic range. An implicit MOS was established

because the TMDLs were set at the minimum flow within each hydrologic range rather than at the median flow for each range.

Existing loads from diffuse sources were calculated based on ADEQ water quality data at the uppermost monitoring station in each reach. The diffuse loads consist of (1) industrial or municipal stormwater that is regulated by a National Pollutant Discharge Elimination System (NPDES) permit, and (2) nonpoint source inflows from all other areas that are not regulated by an NPDES permit. The total diffuse loading was divided between regulated stormwater and unregulated nonpoint source inflows based on drainage area. The loads from regulated stormwater were assigned to a wasteload allocation (WLA) and the remaining diffuse loading was assigned to the load allocation (LA).

Neither of the two non-stormwater point source discharges was included in the turbidity TMDLs because the TSS in their discharges was assumed to consist primarily of organic suspended solids rather than inorganic suspended solids which were assumed to be the primary cause of the turbidity impairment. Therefore, the WLA for non-stormwater point sources was set to not applicable (NA) zero.

ES.2 Temperature TMDLs

The temperature TMDLs were developed using a water quality model (QUAL2K) that simulates water temperature on a diurnally varying basis using meteorologic data and stream channel characteristics. During August and September 2010, FTN conducted field studies in the Sulphur River and Red River to collect data for water temperatures, stream flow rates, and cross-section measurements. These field data were used to set up and calibrate the model. The model was calibrated to three different time periods during August and September 2010. The atmospheric heat load was calculated for each of the three simulation periods as short-wave radiation plus long-wave radiation. The water temperatures predicted by the model were directly related to the atmospheric heat load. Linear interpolation between results from individual simulation periods yielded atmospheric loads that correspond with temperature criteria from the water quality standards. The TMDLs were set equal to these heat loads that correspond to the criteria.

The WLAs were set to zero because no point sources are currently discharging directly to these stream reaches during critical conditions for temperature. The International Paper Texarkana Mill has a large discharge directly into the Sulphur River just upstream of the Texas/Arkansas state line, but their current permit does not allow them to discharge during July and August (the two hottest months when temperature criteria in the stream are most likely to be exceeded).

The MOS for each temperature TMDL was set to 5% of the TMDL. The LA for nonpoint sources was then set to 95% of each TMDL (i.e., the TMDL minus the MOS and WLA).

The results of the TMDL calculations for turbidity and temperature are summarized in Tables ES.1 and ES.2.

Table ES.1. Summary of turbidity TMDLs for the Sulphur River and Red River.

		Allowable Loads of TSS (tons/day)					
		TAC NI	XXVI A C	WLA for	ay)		
Stream Reach	Hydrologic Range	LA for Non- Regulated Diffuse Sources	WLA for NPDES Regulated Stormwater	Non- Stormwater Point Sources	MOS	Future Growth	TMDL
Reach	Low flows	0.69	0.01	0* NA	implicit	0	0.70
Sulphur	Dry cond.	11.26	0.01	0 <u>1\/\lambda} 1\/\lambda</u> NA	implicit	0	11.27
River	Mid-range	44.75	0.01	0 <u>1\/\lambda</u> 0* NA	implicit	0	44.76
11140302-	Moist cond.	201.46	0.03	0* NA	implicit	52.24	253.73
008	High flows	326.85	0.04	0* NA	implicit	683.49	1010.38
	Low flows	0.74	0.01	0* NA	implicit	0	0.75
Sulphur	Dry cond.	11.33	0.01	0* NA	implicit	0	11.34
River	Mid-range	48.03	0.01	0 <u>1\/\lambda} 1\/\lambda</u> NA	implicit	0	48.04
11140302-	Moist cond.	205.27	0.03	0* NA	implicit	53.23	258.53
006	High flows	329.81	0.04	0* NA	implicit	689.69	1019.54
	Low flows	0.75	0*	<u>0* NA</u>	implicit	0	0.75
Sulphur	Dry cond.	11.35	0*	<u>0* NA</u>	implicit	0	11.35
River	Mid-range	49.60	0*	<u>0* NA</u>	implicit	0	49.60
11140302- 004	Moist cond.	207.51	0*	<u>0* NA</u>	implicit	53.80	261.31
004	High flows	330.96	0*	<u>0* NA</u>	implicit	692.00	1022.96
G 1 1	Low flows	2.25	0.01	0* NA	implicit	0	2.26
Sulphur	Dry cond.	13.16	0.01	<u>0* NA</u>	implicit	0	13.17
River 11140302-	Mid-range	58.84	0.01	<u>0* NA</u>	implicit	0	58.85
002	Moist cond.	221.33	0.01	<u>0* NA</u>	implicit	57.38	278.72
002	High flows	340.17	0.01	<u>0* NA</u>	implicit	711.28	1051.46
G 1 1	Low flows	2.26	0*	<u>0* NA</u>	implicit	0	2.26
Sulphur River	Dry cond.	13.18	0*	<u>0* NA</u>	implicit	0	13.18
11140302-	Mid-range	59.20	0*	<u>0* NA</u>	implicit	0	59.20
001	Moist cond.	221.75	0*	<u>0* NA</u>	implicit	57.49	279.24
001	High flows	340.52	0*	<u>0* NA</u>	implicit	712.00	1052.52
	Low flows	144.5	0*	<u>0* NA</u>	implicit	57.1	201.6
Red River	Dry cond.	300.4	0*	<u>0* NA</u>	implicit	87.9	388.3
11140201-	Mid-range	957	0*	<u>0* NA</u>	implicit	3427	4384
003	Moist cond.	2747	0*	<u>0* NA</u>	implicit	6362	9109
	High flows	11524	0*	<u>0* NA</u>	implicit	23892	35416

*Note: These WLAs are zero because there are currently no discharges to these reaches for these hydrologic ranges. Future discharges are allowable if they do not violate water quality standards.

Table ES.2. Summary of temperature TMDLs for Sulphur River and Red River.

Stream Reach	Existing Criterion (°C)	LA for Nonpoint Sources (W/m²)	WLA for Point Sources (W/m²)	MOS (W/m²)	TMDL (W/m²)
Sulphur River 11140302-008	30	530.8	0	27.9	558.7
Sulphur River 11140302-006	30	530.8	0	27.9	558.7
Sulphur River 11140302-004	30	530.8	0	27.9	558.7
Sulphur River 11140302-002	30	530.8	0	27.9	558.7
Sulphur River 11140302-001	30	530.8	0	27.9	558.7
Red River 11140201-003	32	584.2	0	30.8	615.0

TABLE OF CONTENTS

EXEC	UTIVE	SUMMARY	i
	ES.1	Turbidity TMDLs	.ii
	ES.2	Temperature TMDLs	iii
1.0 IN	TRODU	UCTION	1-1
2.0 B	ACKGR	OUND INFORMATION	2-1
	2.1	General Information	2-1
	2.2	Land Use	2-1
	2.3	Stream Flow Data	2-2
	2.4	Water Quality Standards	2-3
	2.5	Nonpoint Sources	2-4
	2.6	Point Sources	2-5
	2.7	Previous Water Quality Studies	2-6
3.0 Al	DEQ W	ATER QUALITY DATA	3-1
	3.1	General Description of Data	3-1
	3.2	Summary Statistics and Comparisons	3-1
	3.3	Seasonal Patterns	3-2
	3.4	Relationships between Concentration and Flow	3-3
	3.5	Relationships between Turbidity and TSS	3-3
4.0 FT	'N FIEL	D DATA	4-1
5.0 TH	EMPER	ATURE TMDL DEVELOPMENT	5-1
	5.1	Setup and Configuration of Temperature Model	5-1
	5.2	Flow Rates and Stream Hydraulics	5-1
	5.3	Water Temperature Inputs	5-3
	5.4	Meteorological Inputs	5-4
	5.5	Light and Heat Settings	5-4
	5.6	Tributary and Point Source Inflow Rates	5-4
	5.7	Model Calibration Results	5-5

TABLE OF CONTENTS (CONTINUED)

5.	.8	Allow	able Heat Loads	5-6
5.	.9	Tempe	erature TMDLs	5-7
6.0 TURI	BIDIT	Y TM	DL DEVELOPMENT	6-1
6.	.1	Seasor	nality and Critical Conditions	6-1
6.	.2	Water	Quality Targets	6-1
6.	.3	Metho	dology for TMDL Calculations	6-2
6.	.4]	Flow I	Duration Curves	6-3
6.	.5	Load I	Duration Curves	6-3
6.	.6	Observ	ved Loads	6-4
6.	.7	TMDI	_ Calculations	6-4
	(6.7.1	TMDLs	6-6
	(6.7.2	MOS	6-6
	(6.7.3	Loads from Diffuse Sources	6-6
	(6.7.4	Non-Stormwater Point Source Discharges	6-8
	(6.7.5	Loads Reserved for Future Growth	6-8
6.	.8	Impler	mentation in NPDES Permits	6-9
7.0 OTHI	ER RE	ELEVA	ANT INFORMATION	7-1
7.	.1	Ambie	ent Monitoring	7-1
7.	.2	Reason	nable Assurances	7-1
8.0 PUBI	LIC PA	ARTIC	CIPATION	8-1
0 U DEEE	PEN	CEC		0.1

LIST OF APPENDICES

APPENDIX A:	Maps of Watershed, Land Use, and Point Sources
APPENDIA A.	1
APPENDIX B:	Tabular Listings and Plots of Historic Water Quality Data
APPENDIX C:	FTN Field Data
APPENDIX D:	Temperature Modeling and TMDLs
APPENDIX E:	Turbidity TMDLs for the Sulphur River
APPENDIX F:	Turbidity TMDL for the Red River

LIST OF TABLES

Table ES.1 Table ES.2	Summary of turbidity TMDLs for the Sulphur River and Red River Summary of temperature TMDLs for Sulphur River and Red River	
Table ES.2	Summary of temperature TwiDLs for Sulphur River and Red River	V1
Table 1.1	Impairments being addressed by TMDLs in this report	1-2
Table 2.1	Land use percentages for the study area	2-2
Table 2.2	Information for stream flow data that were used for TMDLs	
Table 2.3	Numbers and types of NPDES permits in the study area	
Table 3.1	Summary of ADEQ data for temperature, turbidity, and TSS	3-2
Table 3.2	Summary of results of turbidity and TSS regressions	3-3
Table 4.1	Temperature logger locations and deployment periods	4-1
Table 4.2	Summary of field data collected at each site in September 2010	4-2
Table 5.1	Calibration time periods for temperature model	5-1
Table 5.2	Median relative error for model calibration	
Table 5.3	Summary of temperature TMDLs for Sulphur River and Red River	5-8
Table 6.1	Summary of target TSS concentrations	6-2
Table 6.2	Summary of turbidity TMDLs for the Sulphur River and Red River	
Table 6.3	Average existing TSS concentrations from diffuse sources	
Table 7.1	Pollutants and sources addressed by various BMPs	7-2

LIST OF ABBREVIATIONS

ADEQ Arkansas Department of Environmental Quality APCEC Arkansas Pollution Control and Ecology Commission

BMPs best management practices
CFR Code of Federal Regulations

cfs cubic feet per second

CPP Continuing Planning Process

EPA United States Environmental Protection Agency

FG future growth

FTN FTN Associates, Ltd.

GPS global positioning system

HUC12 12-digit hydrologic unit code

ICIS Integrated Compliance Information System

LA load allocation

LDEQ Louisiana Department of Environmental Quality

MGD million gallons per day

MOS margin of safety

MRLC Multi-Resolution Land Characterization
MS4 Municipal Separate Storm Sewer System

NLCD National Land Cover Database

NPDES National Pollutant Discharge Elimination System

NTU nephelometric turbidity units

TCEQ Texas Commission on Environmental Quality

TMDL total maximum daily load UAA use attainability analysis

USACE United States Army Corps of Engineers

USGS United States Geological Survey

WLA wasteload allocation

WQBEL water quality based effluent limitation

WWTP wastewater treatment plant

1.0 INTRODUCTION

This report presents total maximum daily loads (TMDLs) for the Sulphur River from the Texas/Arkansas state line to its confluence with the Red River (reaches 11140302-001, -002, -004, -006, and -008), and the Red River from the mouth of the Sulphur River to the Arkansas/Louisiana state line (reach 11140201-003). TMDLs were developed for temperature and turbidity for each of these stream reaches. These stream reaches were listed as impaired on the final version of the 2008 303(d) list for Arkansas (United States Environmental Protection Agency [EPA] 2008). Table 1.1 presents information concerning these impairments from the final 2008 303(d) list and the Arkansas Department of Environmental Quality (ADEQ) 2008 Integrated Water Quality Monitoring and Assessment Report (ADEQ 2008). The TMDLs in this report were developed in accordance with Section 303(d) of the Federal Clean Water Act and EPA regulations at Title 40 Code of Federal Regulations (CFR) Part 130.7.

The purpose of a TMDL is to determine the pollutant loading that a waterbody can assimilate without exceeding the water quality standard for that pollutant. The TMDL is the sum of the waste load allocation (WLA), load allocation (LA), and a margin of safety (MOS). The WLA is the load allocated to point sources of the pollutant of concern. The LA is the load allocated to nonpoint sources, including natural background. The MOS is a percentage of the TMDL that takes into account any lack of knowledge concerning the relationship between pollutant loadings and water quality.

Table 1.1. Impairments being addressed by TMDLs in this report.

Reach Number	Stream Name	Impaired Uses	Pollutants Causing Impairment	Suspected Pollutant Sources	TMDL Priority
11140201-003	Red River 1	Aquatic Life	Siltation / Turbidity	Surface Erosion ²	Low
11140302-001	Sulphur River	Aquatic	Temperature	Unknown	Low
11140302-001	Sulphur River	Life	Siltation / Turbidity	Surface Erosion ²	High
11140302-002	Carladana Diaga	Aquatic	Temperature	Unknown	Low
11140302-002	Sulphur River	Life	Siltation / Turbidity	Surface Erosion ²	High
11140202 004	Carladana Diaga	Aquatic	Temperature	Unknown	Low
11140302-004 Sulphur River		Life	Siltation / Turbidity	Surface Erosion ²	High
11140202 006	Carladana Dissa	Aquatic	Temperature	Unknown	Low
11140302-006	Sulphur River	Life	Siltation / Turbidity	Surface Erosion ²	High
11140202 009	Cylabya Dizza	Aquatic	Temperature	Unknown	Low
11140302-008	Sulphur River	Life	Siltation / Turbidity	Surface Erosion ²	High

Notes: 1. This reach of the Red River is not impaired for temperature but this reach of the Red River was included in the temperature modeling and TMDL development because this reach is immediately downstream of the temperature impairments in the Sulphur River.

^{2. &}quot;Surface Erosion" includes erosion from agriculture activities, unpaved road surfaces, in stream erosion, mainly from unstable stream banks, and any other land surface disturbing activity (ADEQ 2008).

2.0 BACKGROUND INFORMATION

2.1 General Information

The study area for this report is the watershed for the Sulphur River downstream of Wright Patman Lake (excluding Days Creek) and the Red River from the Sulphur River to the Arkansas/Louisiana state line (see Figure A.1 in Appendix A). Days Creek is a tributary of the Sulphur River that drains much of the urban area in and around Texarkana. The Days Creek watershed was excluded from the study area because ADEQ monitoring data on Days Creek show that it is not impaired for temperature or turbidity.

The Sulphur River originates in northeast Texas and flows generally eastward before emptying into the Red River just upstream of Highway 160, east of Doddridge, Arkansas. The drainage area of the Sulphur River at its mouth is approximately 3,748 square miles (United States Geological Survey [USGS] 1978). The Red River drains parts of Texas, Oklahoma, and the southwest corner of Arkansas before flowing into Louisiana. The portion of the Red River drainage area in the study area is approximately 12 square miles at the Arkansas/Louisiana state line (USGS 1978). The locations of the impaired stream reaches addressed in this report are shown on Figure A.1 in Appendix A.

The study area is in the Gulf Coastal Plain ecoregion and ADEQ Planning Segment 1B. Most of the study area lies within Miller and Lafayette counties in Arkansas, but it also includes parts of Bowie and Cass counties in Texas. The Sulphur River Wildlife Management Area is included in the study area.

2.2 Land Use

Land use within the study area was characterized using National Land Cover Database (NLCD) 2006 data, which were obtained from the Multi-Resolution Land Characterization consortium (MRLC 2011). These data were based on satellite imagery from 2006 and they represent the most recent available data for this area. The spatial distribution of these land uses is shown on Figure A.2 (located in Appendix A) and land use percentages are shown in Table 2.1. The predominant land uses in the study area are forest, grassland/pasture, and wetlands.

Table 2.1. Land use percentages for the study area.

Land Use Category	Percentage of Study Area
Open Water	5.1%
Wetlands	17.8%
Developed Areas	7.0%
Barren Land	0.5%
Grassland/Pasture	22.3%
Forest	41.6%
Cultivated Crops	5.7%
TOTAL	100.0%

2.3 Stream Flow Data

The study area covers the following 12-digit hydrologic units: 111403020706, 111403020701, 111403020704, 111402010405, 111403020708, 111403020702, 111403020709, 111403020703, 111403020707, 111403020705, and the portion of 111402010504 that is located within Arkansas. The TMDLs in this report were developed using flow data from several sources. The US Army Corps of Engineers (USACE) provided flow data for the Red River at Fulton, Arkansas, and release records for Wright Patman Lake, which releases water into the Sulphur River. The USGS gaging station for the Red River at Spring Bank, Arkansas (07344370) was also utilized. Selected information for these data sources is summarized in Table 2.2. The location of the USGS gaging station is shown on Figure A.1 in Appendix A.

Table 2.2. Information for stream flow data that were used for TMDLs.

Gage	C4 N	Cara Nama	Descriptive	Period of	Drainage Area
Number	Stream Name	Gage Name	Location	Record	(square miles)
		Red River at	Highway 160 (just	October	
07344370	Red River	Spring Bank,	downstream of	1997 to	56,909
		AR	Sulphur River)	present	
			Fulton, AR (just	Only 2010	
NA	Red River	Fulton	downstream of Little	data were	52,412
			River)	obtained	
		Wright Patman	At the dam for	September	
NA	Sulphur River	Lake (daily	Wright Patman Lake	1990 to	3,390
		releases)	wright rathlan Lake	June 2010	

2.4 Water Quality Standards

Water quality standards for Arkansas waterbodies are listed in Regulation No. 2 (Arkansas Pollution Control and Ecology Commission [APCEC] 2011). Designated uses for the Sulphur River and for the Red River downstream of the Sulphur River are primary and secondary contact recreation; domestic, industrial, and agricultural water supply; and perennial Gulf Coastal fishery.

Section 2.502 of Regulation No. 2 provides a temperature change criterion as well as criteria for maximum temperatures. The criterion for temperature change is given as follows: "Heat shall not be added to any waterbody in excess of the amount that will elevate the natural temperature, outside the mixing zone, by more than 5°F (2.8°C) based upon the monthly average of the maximum daily temperatures measured at mid-depth or three feet (whichever is less) in streams, lakes or reservoirs" (APCEC 2011). The Sulphur River in Arkansas does not have a stream-specific criterion for maximum temperature; therefore, the applicable criterion is the Gulf Coastal Plain ecoregion criterion, which is 30°C (86°F). The Red River in Arkansas does have a stream-specific criterion for maximum temperature; it is 32°C (89.6°F). These temperature criteria are intended to protect aquatic life. Thermal impacts that affect aquatic biota may include triggering seasonal variances in spawning based on water temperature as well as exacerbating lower dissolved oxygen in the summer months.

Although the temperature TMDLs in this report were developed based on Arkansas criteria, the temperature criteria from adjacent states are noted here for informational purposes. The Texas criterion that applies to the Sulphur River between Wright Patman Lake and the Texas/Arkansas state line is 32.2°C (90°F) (Texas Commission on Environmental Quality [TCEQ] 2010). The Louisiana criterion that applies to the Red River immediately downstream of the Arkansas/Louisiana state line is 34°C (93.2°F) (Louisiana Department of Environmental Quality [LDEQ] 2011). Each of these criteria is less stringent than the Arkansas criterion for the same stream.

Section 2.503 of Regulation No. 2 provides narrative and numeric criteria for turbidity. The general narrative criterion is given as follows: "There shall be no distinctly visible increase in turbidity of receiving waters attributable to municipal, industrial, agricultural, other waste

discharges or instream activities. Specifically, in no case shall any such waste discharge or instream activity cause turbidity values to exceed the base flows values listed below. Additionally, the non-point source runoff shall not result in the exceedance of the in stream all flows values in more than 20% of the ADEQ ambient monitoring network samples taken in not less than 24 monthly samples" (APCEC 2011). Stream-specific numeric criteria for Sulphur River turbidity are 21 Nephelometric turbidity units (NTU) for base flows and 32 NTU for all flows. For the Red River, the numeric turbidity criteria are 50 NTU for base flows, and 150 NTU for all flows. For these TMDLs, base flow was considered to be the lowest 40% of flows (in accordance with previous turbidity TMDLs approved by EPA Region 6).

As specified in EPA's regulations at 40 CFR 130.7(b)(2), applicable water quality standards include antidegradation requirements. Arkansas' antidegradation policy is listed in Sections 2.201 through 2.204 of Regulation No. 2. These sections impose the following requirements:

- Existing instream water uses and the level of water quality necessary to protect the existing uses shall be maintained and protected;
- Water quality that exceeds standards shall be maintained and protected unless allowing lower water quality is necessary to accommodate important economic or social development, although water quality must still be adequate to fully protect existing uses;
- For outstanding state or national resource waters, those uses and water quality for which the outstanding waterbody was designated shall be protected; and
- For potential water quality impairments associated with a thermal discharge, the antidegradation policy and implementing method shall be consistent with Section 316 of the Clean Water Act.

2.5 Nonpoint Sources

The Arkansas 2008 integrated assessment (ADEQ 2008) states that excessive turbidity in the Sulphur River is "predominately caused by surface erosion." The sources of temperature issues in the Sulphur River are specified as "unknown."

2.6 Point Sources

For development of these TMDLs, "point sources" were defined to include both continuous discharges (e.g., treated municipal or domestic wastewater) and stormwater runoff that is regulated under the National Pollutant Discharge Elimination System (NPDES). Information for point source discharges in the study area was obtained by searching ADEQ's online permits database and EPA's Integrated Compliance Information System (ICIS). This search yielded a total of 14 permits. Locations of the permitted facilities are shown on Figure A.3 and selected information for these facilities is listed in Table A.1 (Appendix A). Table 2.3 summarizes the numbers and types of permits that were identified, according to the first impaired reach downstream of the discharge.

Table 2.3. Numbers and types of NPDES permits in the study area.

First Impaired Reach			Other	Domestic	
Downstream*	Stream Name	MS4	Stormwater	Wastewater	Industrial
11140201-003	Red River	0	0	0	0
11140302-001	Sulphur River	0	0	0	0
11140302-002	Sulphur River	0	1 (AR)	0	0
11140302-004	Sulphur River	0	0	0	0
11140302-006	Sulphur River	0	4 (TX)	0	0
11140302-008	Sulphur River	0	7 (TX)	1(TX)	1(TX)
TOTALS:		0	12	1	1

*Note: Discharges may not directly enter the reach listed here, but this represents the first impaired reach downstream of the discharge.

None of the point sources discharging in the study area have permit limits for temperature or turbidity. However, both of the non-stormwater permits do have limits for total suspended solids (TSS), which is a surrogate used to develop TMDLs for turbidity. The International Paper Company Texarkana Mill has a TSS permit limit of 175 mg/L (single grab sample) and the Queen City, TX wastewater treatment plant (WWTP) has limits ranging from 15 mg/L for the daily average up to 60 mg/L for a single grab sample. As a surrogate for turbidity, TSS was considered to represent inorganic suspended solids (i.e., soil and sediment particles from erosion or sediment resuspension) for the TMDLs in this report. The suspended solids discharged by the

two non-stormwater point sources in the study area were assumed to consist primarily of organic solids rather than inorganic solids. Discharges of organic suspended solids from these two point sources are already addressed through the permitting of point sources to maintain water quality standards for dissolved oxygen. Therefore, neither of the two non-stormwater point sources was included in the turbidity TMDLs.

2.7 Previous Water Quality Studies

No previous water quality studies addressing temperature or turbidity were identified for the Sulphur River or the Red River in the study area. A "319" project to reduce turbidity was implemented in the watershed of Days Creek, a tributary to the Sulphur River in the study area.

The USACE Vicksburg District has studied streambank erosion along the Sulphur River in Arkansas associated with the Highway 237 and Highway 71 bridges.¹

¹ http://www.ar.nrcs.usda.gov/technical/coe vicksburg report 159th.html

3.0 ADEQ WATER QUALITY DATA

3.1 General Description of Data

Routine monitoring data for temperature, turbidity, and TSS have been collected by ADEQ at one site on Sulphur River (RED0005), and one site on the Red River downstream (RED0009). Locations of the sampling sites are shown on Figure A.1 in Appendix A. The data are summarized in Table 3.1, including comparisons with the current criteria in the water quality standards. Data for TSS are included in Table 3.1 because TSS was used as a surrogate parameter for the turbidity TMDLs, as discussed in Section 3.5 below. Appendix B includes tabular listings of the individual data (Tables B.1 and B.2) and time-series plots of the data (Figures B.1, B2, and B.7 through B.10).

The water quality standards for turbidity, as listed in Section 2.4, are divided into categories of "base flows" and "all flows." In order to compare the observed data to the criteria, it was necessary to similarly characterize individual observed values. For these turbidity TMDLs, base flow was considered to be the lowest 40% of flows. This assumption was consistent with previous turbidity TMDLs approved by EPA Region 6.

3.2 Summary Statistics and Comparisons

Table 3.1 summarizes data for the entire period of record; however, the period of record normally used as an assessment period by ADEQ consists of the previous 5 years of data, usually starting April 1 and ending March 30 of the fifth year.

The temperature statistics were similar between the Sulphur River (RED0005) and Red River (RED0009) sites. Turbidity and TSS values were higher at the Red River site than at the Sulphur River site, but there were more exceedances at the Sulphur River site because the turbidity criteria are more stringent for the Sulphur River.

Table 3.1. Summary of ADEQ data for temperature, turbidity, and TSS.

	RED0005	RED0009
Site description	Sulphur River south of	Red River near
one description	Texarkana, AR	Doddridge, AR
Reach number	11140302-006	11140201-003
Period of record	9/4/1990 – 2/9/2010	9/4/1990 – 2/9/2010
Temperature (criterion)	(30°C)	(32°C)
Number of values	242	243
Minimum (°C)	5.5	5.7
Maximum (°C)	36	38
Median (°C)	21	21
Number of values above criterion	25	23
Percent of values above criterion	10%	9%
Turbidity (base-flow / all-flow criteria)	(21 NTU / 32 NTU)	(50 NTU / 150 NTU)
Number of values	229	231
Minimum (NTU)	3.1	4.3
Maximum (NTU)	135	460
Median (NTU)	30	47.5
Number of values above base-flow criterion	78	33
Percent of values above base-flow criterion	81%	33.7%
Number of values above all-flow criterion	103	15
Percent of values above all-flow criterion	45%	6.5%
TSS		
Number of values	222	224
Minimum (mg/L)	0.5	2
Maximum (mg/L)	107	490
Median (mg/L)	39.1	51

3.3 Seasonal Patterns

Seasonal plots of temperature, turbidity, and TSS measurements in Sulphur River and Red River are shown on Figures B.3, B.4, and B.11 through B.14 in Appendix B. The temperature plots showed characteristic seasonal temperature variation (Figures B.3 and B.4). The seasonal TSS plot of the Sulphur River measurements showed generally higher

concentrations and greater numbers of criterion exceedances in the late summer and fall (Figure B.12). Turbidity measurements in the Sulphur River did not appear to exhibit seasonal variation (Figure B.11). Neither TSS nor turbidity measurements in the Red River appeared to exhibit seasonal variation (Figures B.13 and B.14).

3.4 Relationships between Concentration and Flow

Measurements of turbidity and TSS concentrations were plotted against stream flow to examine any visual correlation between these measurements and flow (Figures B.15 through B.18, Appendix B). In the Sulphur River, the highest values tended to occur during lower flows (Figures B.15 and B.16). In the Red River, the highest values tended to occur at flows between 20,000 cfs and 60,000 cfs (Figures B.17 and B.18).

3.5 Relationships between Turbidity and TSS

Plots of TSS versus turbidity for each station (Figures B.19 through B.22, Appendix B) showed a noticeable correlation, with higher turbidity values tending to correspond with higher TSS concentrations. For each water quality station, a linear regression was performed first on the logarithms of turbidity and TSS values and then on the raw (untransformed) values. Regressions using untransformed data gave the best results and are summarized in Table 3.2. Separate regressions were developed for base-flow conditions and for all-flow conditions.

Sampling Station	Flow	Regression Equation	Number of Data Points	Coefficient of Determination (R²)	Significance Level (P value)
RED0005	Base	Turbidity = $0.92*TSS-1.19$	86	0.47	< 0.01
RED0005	All	Turbidity = $0.66*TSS+9.56$	218	0.51	< 0.01
RED0009	Base	Turbidity = $0.84*TSS+4.79$	57	0.40	< 0.01
RED0009	All	Turbidity = $0.52*TSS+19.45$	220	0.69	< 0.01

Table 3.2. Summary of results of turbidity and TSS regressions.

The strength of the linear relationship is measured by the coefficient of determination (R²) calculated during the regression analysis (Zar 1996). The R² value is the percentage of the

total variation in the logarithm of turbidity that is explained or accounted for by the fitted regression (logarithm TSS). For example, 69% of the variation in all-flow turbidity at station RED0009 is accounted for by TSS, and the remaining 31% of variation in turbidity is unexplained. The unexplained portion is attributed to factors other than TSS.

The perfect explanation of the relationship between the measurement of turbidity and the measurement of TSS would require collecting and analyzing a large amount of research data. A number of the items affecting this perfect explanation of the relationship would need to be known. A partial list of the items affecting the relationship follows:

- Velocity of the water at the time of sampling;
- Algal and bacteria masses in the water column;
- Measured color of the water;
- Mass of the organic component of the TSS;
- Mass of the material passing through the filter during the TSS analysis;
- Grain size distribution of the inorganic portion of the TSS;
- Specific gravity of the different sizes of inorganic solids particles;
- Hydrographic conditions at the time of sampling;
- Number, magnitude, and lags of rainfall events represented by the sampling.

Collecting a large volume of research data would not change the fact that inorganic particles represented in the TSS measurements are the major contributors to the turbidity readings and are the major constituents reduced when sediment best management practices (BMPs) are applied to nonpoint sources. The BMPs used on nonpoint sources for sediment also reduce the load of many of the unexplained contributors in the regression. The effort to have a perfect explanation of turbidity may not result in a better selection of BMPs. The regressions presented above between TSS and turbidity are adequate for the preparation of these TMDLs. Stakeholder groups of knowledgeable persons from the watersheds may need additional information to set a plan of action for these TMDLs.

The statistical significance for each regression was evaluated by computing the "P-value" for the slope for each regression. The P-value is essentially the probability that the slope of the

regression line is really zero. A low P-value indicates that a non-zero slope calculated from the regression analysis is statistically significant. The P-values for these regressions were all less than 0.01, which is considered good.

4.0 FTN FIELD DATA

FTN collected field data for the temperature TMDLs in the Sulphur River and Red River during August and September 2010. The purpose of the field data collection was to obtain data for setting up and calibrating a water temperature model for the Sulphur River and Red River.

Water temperature loggers were deployed at four locations in the Sulphur River, one location in Days Creek, and two locations in the Red River from early August through late September. Each logger was set to measure and record water temperatures at 1-hour intervals. Table 4.1 lists the sites where the temperature loggers were deployed. A map showing the locations of the field sites is provided as Figure C.1 (Appendix C).

C'L ID	C.	D 1 (D)	D. I. ID.
Site ID	Stream	Deployment Date	Retrieval Date
RR-0.0	Red River	8/4/2010	Logger was lost
RR-7.3	Red River	8/4/2010	9/21/2010
SR-4.5	Sulphur River	8/4/2010	9/22/2010
SR-11.5	Sulphur River	8/3/2010	9/22/2010
DAYS CR	Days Creek	8/5/2010	9/22/2010
SR-19.0	Sulphur River	8/5/2010	9/23/2010
SR-28 0	Sulphur River	8/5/2010	9/23/2010

Table 4.1. Temperature logger locations and deployment periods.

Data from only five temperature loggers were used in the temperature TMDLs because the logger at RR-0.0 was not recovered and the data from the logger at SR-4.5 were found to be erroneous and were discarded. At several locations, the water level had dropped below the logger when the logger was retrieved. As a result, the temperature data recorded by each logger were plotted on top of air temperature data from the Texarkana airport to identify time periods when the water level dropped below that logger. Logger data were discarded for periods when the water level was below the logger. Plots of the temperature logger data are shown in Appendix C (Figures C.2 through C.6). The plots for RR-7.3, SR-19.0, and SR-28.0 show that daily maximum water temperatures exceeded 32.0°C from the beginning of the deployment period through August 24. The daily maximum temperatures at SR-19.0 and SR-28.0 did not drop

below 30.0°C (the current criterion in the water quality standards that applies to the Sulphur River) until August 29.

Table 4.2 lists the locations where cross sections, stream flows, and vertical profiles of water temperatures were measured during September 21 through 23, when the loggers were retrieved. Appendix C includes summaries of the cross-section data (Table C.1), stream flow measurements (Table C.2), and temperature profiles (Table C.3).

Table 4.2. Summary of field data collected at each site in September 2010.

				Temperature
Stream	Site ID	Cross Section	Stream Flow	Profile
Red River	RR-0.0	X		X
Red River	RR-1.0	X		X
Red River	RR-2.0	X		X
Red River	RR-3.0	X		X
Red River	RR-4.0	X		X
Red River	RR-5.0	X		X
Red River	RR-6.0	X		X
Red River	RR-7.3			X
Sulphur River	SR-0.5	X		X
Sulphur River	SR-1.5	X		X
Sulphur River	SR-4.5	X		X
Sulphur River	SR-5.5	X		X
Sulphur River	SR-6.5	X		X
Sulphur River	SR-7.5	X		X
Sulphur River	SR-8.5	X		X
Sulphur River	SR-9.5	X		X
Sulphur River	SR-10.5	X		X
Sulphur River	SR-11.5	X		X
Days Creek	DAYS CR		X	X
Sulphur River	SR-19.0	X	X	X
Sulphur River	SR-20.0	X		X
Sulphur River	SR-21.0	X		X
Sulphur River	SR-22.0	X		X
Sulphur River	SR-24.0	X		X
Sulphur River	SR-25.0	X		X
Sulphur River	SR-26.0	X		X
Sulphur River	SR-27.0	X		X
Sulphur River	SR-28.0	X	X	X

Except for several shallow sites, the cross sections were measured using a sonar transducer that was equipped with a global positioning system (GPS) to record simultaneous readings of water depth and GPS coordinates as the boat moved across the stream. At several sites that were too shallow for the sonar transducer, the cross sections were measured with a surveying rod (depth) and tape measure (horizontal distance). The cross-section data show average depths ranging from 2.1 to 13.0 ft in the Sulphur River and 4.0 to 15.6 ft in the Red River. Measured widths ranged from 46.9 to 238.0 ft in the Sulphur River and 232.8 to 732.5 ft in the Red River (Table C.1).

Stream flows were measured using a Marsh-McBirney velocity meter following standard USGS procedures. The stream flow measurements in the Sulphur River indicated slightly more flow at SR-19.0 than at SR-28.0 (Table C.2). This suggests there was a small amount of inflow along the length of the Sulphur River, presumably due to seepage from shallow groundwater and possibly some minor tributary inflows.

The vertical profiles of water temperature were measured using a Hydrolab sonde. The temperature profiles showed less than 1.0°C vertical variation in water temperatures at most of the sites (Table C.3).

5.0 TEMPERATURE TMDL DEVELOPMENT

5.1 Setup and Configuration of Temperature Model

The model used for this temperature TMDL was QUAL2K, which is a steady-state, one-dimensional water quality model that has the capability to simulate water temperature on a diurnal time scale.

The model starts in the Sulphur River at the Texas/Arkansas state line and continues downstream into the Red River to the Arkansas/Louisiana state line. The model is divided into 70 reaches and each reach is approximately 0.5 mile in length. The model further subdivides each reach into two elements. Consequently, each element is 0.25 mile in length. There are two tributaries in the model: Days Creek and the Red River upstream of the confluence of the Sulphur River. Each tributary was modeled as a single reach.

The three time periods that were selected for model calibration are displayed in Table 5.1. These are the time periods during which the temperature loggers were deployed and submerged, and there were not drastic changes in stream flow rates (QUAL2K simulates only steady flows).

Calibration Time Period	Start Date	End Date
1	8/10/2010	8/14/2010
2	8/18/2010	8/21/2010
3	9/19/2010	9/21/2010

Table 5.1. Calibration time periods for temperature model.

5.2 Flow Rates and Stream Hydraulics

For the model channel dimensions input parameter, the rating curves option was chosen. The exponents for depth, widths, and velocities were derived from the field data. Width and velocity coefficient were then calculated based on the exponents and the field cross-section data. For the depth coefficient, three-period moving averages of the field cross-section data and the exponents were used in the calculation. The model required several flow inputs, including the mainstem headwater (at the Texas/Arkansas state line), the ungauged flow, and the headwater for the tributaries.

The flow of the Sulphur River at the Texas/Arkansas state line was calculated by summing the USACE release flows from Wright Patman Lake, the flows from the International Paper mill taken from the discharge monitoring reports, and the ungauged flow. The ungauged flow was calculated by multiplying the ungauged flow per unit area by the drainage area that is between the Wright Patman Dam and the Texas/Arkansas state line. The drainage area is comprised of two HUC12s, 111403020701 and 111403020703, which cover a total of 88.7 square miles. The ungauged flow per unit area was assumed to be 0.15 cfs per square mile, as described below for calculations between the Texas/Arkansas state line and Days Creek.

The drainage area for the Sulphur River between the Texas/Arkansas state line and the mouth of Days Creek was determined by summing drainage areas from Mercer Bayou, Turkey Creek, and the adjacent HUC12s. The combined drainage area of Mercer Bayou and Turkey Creek is 18 square miles (USGS 1978). The drainage area was determined to be 62 square miles and is comprised of HUC12 111403020702 and part of HUC12 111403020709 that is upstream of Days Creek. Thus, the drainage area for the Sulphur River between the Texas/Arkansas state line and the mouth of Days Creek was calculated to be 80 square miles.

The ungauged flow per unit area between the Texas/Arkansas state line and the mouth of Days Creek was determined by dividing the ungauged flow into Sulphur River between the Texas/Arkansas state line and mouth of Days Creek by the drainage area. As stated above, the drainage area was found to be 80 square miles. The ungauged flow was calculated by subtracting the flow measured at station SR-28 from the flow measured at station SR-19. The resultant ungauged flow was calculated to be 12 cfs. Thus, the ungauged flow per unit area between the Texas/Arkansas state line and the mouth of Days Creek was calculated to be 0.15 cfs per square mile.

The drainage area for the Sulphur River between the mouth of Days Creek and the confluence with the Red River was determined by subtracting the drainage of the Sulphur River at its mouth from the drainage area of the Sulphur River downstream of the mouth of Days Creek. *Drainage Areas of Streams in Arkansas* (USGS 1978) lists the drainage area of the Sulphur River at its mouth as 3,748 square miles and lists the drainage area of the Sulphur River downstream of the mouth of Days Creek as 3,706 square miles. Therefore, drainage area for the

Sulphur River between the mouth of Days Creek and the confluence with the Red River was calculated to be 42 square miles.

The ungauged flow into the Sulphur River between the mouth of Days Creek and the confluence with the Red River was determined by multiplying the ungauged flow per unit area by the drainage area. As mentioned above, the drainage area for the Sulphur River between the mouth of Days Creek and the confluence with the Red River was calculated to be 42 square miles and the ungauged flow per unit area was assumed to be the same value, 0.15 cfs per square mile, as used between the Texas/Arkansas state line and the mouth of Days Creek. Therefore, the ungauged flow into the Sulphur River between the mouth of Days Creek and the confluence with the Red River was calculated to be 6.3 cfs.

The flow of Days Creek was measured by FTN to be 15 cfs on September 23, 2010. The flow of the Sulphur River at the mouth was determined by summing the flows from Days Creek, the ungauged flow into the Sulphur River between the mouth of Days Creek and the confluence with the Red River, the ungauged flow between the Texas/Arkansas state line and the mouth of Days Creek, and the flow of the Sulphur River at the Texas/Arkansas state line. The flow of the Red River upstream of the confluence with the Sulphur River was calculated by subtracting the flow calculated for the mouth of the Sulphur River from the flow at the Spring Bank, AR, USGS gauge.

5.3 Water Temperature Inputs

For the initial headwater temperatures, the QUAL2K model requires one day of hourly temperatures. The headwater temperatures specified in the QUAL2K model were calculated by averaging the hourly field logger temperatures for a given calibration time period. The initial headwater temperatures for the mainstem in the calibration model came from station SR 28.0. The headwater temperatures for the Days Creek tributary in the calibration model came from the Days Creek station. The headwater temperatures for the Red River tributary in the calibration model came from station RR 7.3. Temperatures from stations SR 19.0 and SR 11.5 were used as calibration points. Since the temperature logger at station RR 0.0 was lost, the data from the temperature logger at station RR 7.3 were used as calibration targets at station RR 0.0.

Only one temperature is required for the diffuse inflow. The initial diffuse inflow temperature, 28.5°C, used in the model was calculated from the field data temperature profiles by averaging temperatures at 3 meters or more in depth with the exclusion of station RR 0.0.

5.4 Meteorological Inputs

The QUAL2K model requires one day of hourly meteorological data for air temperatures, dew point temperatures, wind speed, and cloud cover. The meteorological data specified in the QUAL2K model are from the Texarkana Regional Airport-Webb Field weather station (WBAN# 13977). All meteorological data specified in the model were calculated by averaging the hourly data for a given calibration time period. A 50% factor was applied to the wind speeds to account for wind sheltering by trees along the edges of the rivers.

5.5 Light and Heat Settings

Several parameters in the QUAL2K model's "Light and Heat" tab were modified. These modifications included setting the atmospheric attenuation model to the Bras method and having the atmospheric turbidity coefficient set to a value of 4. The Brutsaert model was selected for the atmospheric longwave emissivity model and the "Adams 2" model was chosen for the wind speed function for evaporation and air convection/conduction. Each of these options was chosen because it provided the best calibration results.

5.6 Tributary and Point Source Inflow Rates

A review of discharge monitoring reports for the International Paper Texarkana Mill for August and September 2010 revealed a zero discharge for both months. Therefore, the discharge from the Texarkana Mill was set to zero in the calibration simulations.

Texarkana's South Regional WWTP discharges into Days Creek, which is a tributary to the Sulphur River in the calibration model. As discussed in Section 5.2, the flow rate for Days Creek in the calibration runs was from the flow measurement in the field survey. Because this flow was measured downstream of the South Regional WWTP's discharge, the South Regional WWTP's discharge was not included as a separate inflow in the calibration model.

5.7 Model Calibration Results

As previously stated, three time periods were selected for calibration and are shown in Table 5.1. Plots of predicted and observed values of temperature from the calibration model are shown in Appendix D.

For the first calibration time period, the simulated temperatures were close to the observed data for stations SR 19.0 and RR 0.0, but the temperatures were over-predicted at station SR 11.5. For the second calibration time period, the simulated temperatures were similar to the observed data at station RR 0.0 but the predicted diel fluctuation was greater than the observed range for station SR 19.0. For the third calibration time period, the simulated maximum temperatures were similar to the observed data at all three stations but the simulated mean and minimum temperatures were under-predicted at stations SR 19.0 and SR 11.5.

As with any simulation model, there is uncertainty associated with the model results because 1) the processes in the model are incomplete and/or simplified representations of the real system, and 2) the input data do not exactly describe the real system due to factors such as measurement error, aggregation and/or averaging, interpolation, and missing data. For example, the nearest meteorological station with the necessary data for QUAL2K was the Texarkana airport, which was more than 12 miles from the nearest part of the simulated streams. Another example is the input data for depth, which were obtained from cross sections taken at intervals of 1 mile or more; any abnormal variations in depth that may exist between cross section locations would not have been detected in the field data and are not represented in the model.

These inherent uncertainties in the model predictions are considered acceptable if reasonable model inputs are used and the calibration results show a good match between predicted and observed values. For this project, the goal for model calibration accuracy was a median relative error of 5% or less. Relative error is calculated by taking the absolute value of the difference between a pair of predicted and observed values, and dividing it by the observed value. As shown in Table 5.2, the median relative error for the three calibration simulations was determined to be 0.81%.

Calibration Time Period	Station	Observed Daily Average Temperature (°C)	Simulated Daily Average Temperature (°C)	Relative Error	Median Relative Error
	SR 19.0	33.74	33.87	0.39%	
1	SR 11.5	33.22	34.01	2.38%	
	RR 0.0	33.01	33.16	0.45%	
2	SR 19.0	32.80	32.42	1.16%	0.81%
	RR 0.0	31.72	31.82	0.32%	0.8170
3	SR 19.0	29.15	28.64	1.77%	
	SR 11.5	29.24	28.51	2.51%	
	RR 0.0	29.18	29.11	0.24%	

Table 5.2. Median relative error for model calibration.

5.8 Allowable Heat Loads

EPA regulations at 40 CFR 130.2 state the following: "TMDLs can be expressed in terms of either mass per time, toxicity, or other appropriate measure." The thermal energy that causes high water temperatures cannot be expressed as mass per time. Therefore, the temperature TMDLs in this report were expressed as maximum allowable atmospheric heat loads per unit area. Although atmospheric heat loads are essentially uncontrollable by human efforts, this approach was considered acceptable. For these rivers, the atmospheric heat load is by far the dominant source of heat because there are no point sources that are adding heat, and the thermal energy from upstream inflows is small due to low stream flow rates during critical conditions for temperature.

The atmospheric heat loads were calculated as the short-wave radiation plus the long-wave radiation. Short-wave radiation is commonly referred to as solar radiation and occurs only during the daytime as a result of sunshine. The QUAL2K model calculates short-wave radiation based primarily on variables that include latitude, day of the year, cloud cover, and atmospheric attenuation. The QUAL2K output includes calculated values of short-wave radiation over a full 24-hour diurnal cycle. Long-wave radiation occurs both day and night; it is the thermal energy that is being radiated by the atmosphere as a result of the air temperature. The QUAL2K model calculates long-wave radiation internally, but those values are not included in the model output. For the TMDL calculations, long-wave radiation was calculated in a spreadsheet using the equations that are printed in the QUAL2K manual. Appendix D includes

printouts of the spreadsheet with these calculations for daily averages of short-wave radiation, long-wave radiation, and total atmospheric radiation (short-wave + long-wave). These calculations were performed for each of the three simulation periods. Also included in Appendix D are excerpts from the QUAL2K User Manual showing the theory and equations for calculating short-wave and long-wave radiation, including literature references.

For each of the three simulation periods, the atmospheric heat load and the highest value of the predicted daily average temperature were compiled in a table (see Appendix D). As expected, these values show a direct relationship between atmospheric heat load and water temperature. The atmospheric heat load (i.e., total atmospheric radiation) that corresponds to the Sulphur River criterion (30°C) was calculated using linear interpolation between the values for simulation periods 2 and 3 (because 30°C fell in between the predictions for those simulation periods). In similar fashion, the atmospheric heat load that corresponds to the Red River criterion (32°C) was calculated using linear interpolation between the values for simulation periods 1 and 2. The TMDLs for the two rivers were set equal to the atmospheric heat loads that correspond to the temperature criteria (615.0 W/m² for the Red River and 558.7 W/m² for the Sulphur River).

5.9 Temperature TMDLs

The WLAs were set to zero because no point sources are currently discharging directly to these stream reaches during critical conditions for temperature. Twelve of the fourteen point source discharges in the study area are stormwater permits (Table 2.5); none of these point sources would discharge during low-flow conditions that are most critical for water temperature. One of the two non-stormwater point sources is the Queen City WWTP, which likely discharges on a continuous basis even during critical conditions for water temperature, but it is unlikely to affect temperatures in the Sulphur River because its effluent travels about 14 miles before reaching the Sulphur River and it has a small flow rate. The other non-stormwater point source discharge is the International Paper Texarkana Mill, which has a large discharge into the Sulphur River just upstream of the Arkansas/Texas state line. However, the Texarkana Mill's permit does not allow them to discharge during July or August (the two hottest months when water

temperature exceedances are most likely to occur). The WLA values of zero do not prohibit the Texarkana Mill or other point sources from discharging during non-critical conditions for temperature, nor do they prohibit point sources from discharging during critical conditions in such a way that they do not cause exceedances of water temperatures in the Sulphur River or Red River (e.g., Queen City WWTP). Current point source permits should not need any changes to be consistent with the requirements in these temperature TMDLs.

The MOS for each TMDL was set to 5% of the TMDL. The LA for nonpoint sources was then set to 95% of each TMDL (i.e., the TMDL minus the MOS and WLA). Because the TMDLs are expressed as a rate of energy per unit area (W/m²), the values are independent of the length of each reach. The TMDLs are summarized in Table 5.3.

The temperature TMDLs have been calculated for critical conditions as required by EPA regulations at 40 CFR 130.7. These streams have additional assimilative capacity for point source or nonpoint source thermal inputs during non-critical conditions (i.e., when stream flows are higher or when atmospheric heat loads are less).

Table 5.3. Summary of temperature TMDLs for Sulphur River and Red River.

Stream Reach	Existing Criterion (°C)	LA for Nonpoint Sources (W/m²)	WLA for Point Sources (W/m²)	MOS (W/m²)	TMDL (W/m²)
Sulphur River 11140302-008	30	530.8	0	27.9	558.7
Sulphur River 11140302-006	30	530.8	0	27.9	558.7
Sulphur River 11140302-004	30	530.8	0	27.9	558.7
Sulphur River 11140302-002	30	530.8	0	27.9	558.7
Sulphur River 11140302-001	30	530.8	0	27.9	558.7
Red River 11140201-003	32	584.2	0	30.8	615.0

6.0 TURBIDITY TMDL DEVELOPMENT

6.1 Seasonality and Critical Conditions

EPA regulations at 40 CFR 130.7 require the determination of TMDLs to take into account critical conditions for stream flow, loading, and water quality parameters. Also, both Section 303(d) of the Clean Water Act and regulations at 40 CFR 130.7 require TMDLs to consider seasonal variations for meeting water quality standards. Therefore, the historical data and analyses discussed in Section 3.0 were used to evaluate whether there were certain flow conditions or certain periods of the year that could be used to characterize critical conditions.

The turbidity TMDLs in this report were not developed for individual seasons because (1) the water quality data do not show strong, consistent seasonal patterns; (2) none of the point source discharges have seasonal permit limits for turbidity or TSS; and (3) the assimilative capacity for turbidity or TSS does not vary with seasonal temperature changes (unlike parameters such as dissolved oxygen). Critical flow conditions were addressed by using the load duration curve methodology to develop these TMDLs. This methodology results in allowable loads calculated for a wide range of flows.

6.2 Water Quality Targets

The water quality targets for TMDLs are generally the criteria that have been approved by EPA as discussed in Section 2.4. Turbidity is an expression of the optical properties in a water sample that cause light to be scattered or absorbed, and may be caused by suspended matter such as clay, silt, finely divided organic and inorganic matter, soluble colored organic compounds, and plankton and other microscopic organisms (Standard Methods 1999). Turbidity cannot be expressed as a load as preferred for TMDLs. To achieve a load-based value, turbidity is often correlated with a surrogate parameter such as TSS that may be expressed as a load. In general, activities that generate varying amounts of suspended sediment will proportionally change or affect turbidity (EPA 1991). Research by Relyea et al. (2000) states that "increased turbidity by sediments can reduce stream primary production by reducing photosynthesis, physically abrading algae and other plants, and preventing attachment of autotrophs to substrate surfaces."

The relationships between turbidity and TSS presented in Table 3.4 were used to develop target TSS concentrations (i.e., numeric endpoints for the TMDLs). The target TSS concentrations developed for these TMDLs are shown in Table 6.1.

Turbidity Criterion **Target TSS** Sampling **Stream Name Station** Flow Category (NTU) (mg/L)Base flow 21 24 Sulphur River RED0005 All flow 32 34 Base flow 50 53 Red River **RED0009** 252 All flow 150

Table 6.1. Summary of target TSS concentrations.

6.3 Methodology for TMDL Calculations

The methodology used for the turbidity TMDLs in the report is the load duration curve. Because loading capacity varies as a function of the flow present in the stream, these TMDLs represent a continuum of allowable loads (both point source and nonpoint source) over all flow conditions, rather than fixed at a single value. This methodology is described in an EPA guidance document titled "An Approach for Using Load Duration Curves in the Development of TMDLs" (EPA 2007). The steps for application of this methodology for the TMDLs in this report can be summarized as follows:

- 1. Develop flow duration curves (Section 6.4),
- 2. Convert the flow duration curve to load duration curve (Section 6.5),
- 3. Plot observed loads with the load duration curves (Section 6.6),
- 4. Calculate the TMDL and establish the MOS (Section 6.7),
- 5. Calculate existing and allowable loads from diffuse sources (Section 6.7.3),
- 6. Calculate allowable loads for non-stormwater point sources (Section 6.7.4), and
- 7. Calculate the loads reserved for future growth (Section 6.7.5).

6.4 Flow Duration Curves

For the Sulphur River, daily stream flows were estimated for each reach by adding ambient flows (Lake Wright Patman releases plus ambient flows originating downstream of Lake Wright Patman), allowable effluent flows from the International Paper Texarkana Mill, and estimated flows from upstream WWTPs in the Days Creek watershed. Selected percentiles of the daily flow data were calculated for each reach.

For the Red River, daily stream flows at the downstream end of reach 11140201-003 were estimated by taking published flows from the USGS gage at Spring Bank (07344370; just downstream of the mouth of the Sulphur River) and adding local ambient inflow that was estimated based on the Red River drainage area between the USGS gage and the Arkansas/Louisiana state line. Selected percentiles of the daily flow data were calculated.

Each flow duration curve was then formulated as daily flow (cfs) versus percent exceedance (100% minus percentile ranking). Each flow duration curve was divided into five hydrologic ranges: high flows (0%-10% exceedance), moist conditions (10%-40% exceedance), mid-range flows (40%-60% exceedance), dry conditions (60%-90% exceedance), and low flows (90%-100% exceedance). These ranges were defined the same as in EPA's guidance document for load duration curves (EPA 2007). The flow duration curve for the farthest downstream Sulphur River reach (11140302-001) is shown on Figure E.1 (Appendix E). The flow duration curve for Red River reach 11140201-003 is shown on Figure F.1 in Appendix F.

6.5 Load Duration Curves

For each TMDL, the flow values from the flow duration curves were multiplied by the appropriate target concentration of TSS (from Section 6.2) to make a duration curve of allowable loads. Each load duration curve is a plot of tons per day of TSS versus the percent exceedances from the flow duration curve. The load duration curves for the Sulphur River are shown on Figures E.2 through E.6 (Appendix E), and the load duration curve for the Red River is shown in Figure F.2 (Appendix F). The calculations for these load duration curves are shown in Tables E.1 through E.5 (Appendix E) for the Sulphur River reaches, and Table F.1 (Appendix F) for the Red River.

The load duration curve shows the calculation of the TMDL at a wide range of flows rather than at a single critical flow. The official TMDL number is reported as one or more discrete numbers, but the curve is provided to demonstrate the value of the acceptable load at other flows. This will allow analysis of load cases in the future for different flow regimes.

6.6 Observed Loads

The plots of the load duration curves for Sulphur River reach 11140302-006 and Red River reach 11140201-003 also show observed loads on sampling days because those are the two stream reaches for which observed TSS data were available. The observed loads were calculated by multiplying observed TSS concentrations from the ADEQ stations in the reaches by the estimated flow at the downstream end of the reach on the sampling day. These observed loads were then plotted versus the percent exceedances of the flow on the sampling day and placed on the plot with the corresponding load duration curve. These plots with the load duration curves and observed loads are shown in Appendices E and F of this report as listed in Section 6.5.

These plots provide visual comparisons between observed and allowable loads under different flow conditions. Observed loads that are plotted above the load duration curve (identified as "TMDL" curve in the legend) represent conditions where observed loads exceed the loads corresponding to the numeric criterion from the calculated target concentration. Observed loads below the load duration curve represent conditions where observed loads were less than loads corresponding to the numeric criterion or target concentration (i.e., not violating water quality standards).

The load duration curve is beneficial when analyzing monitoring data with its corresponding flow information plotted as a load. This allows the monitoring data to be plotted in relation to its place in the flow continuum.

6.7 TMDL Calculations

The turbidity TMDLs are summarized in Table 6.2. The methods used to calculate each element of the TMDLs are described below.

Table 6.2. Summary of turbidity TMDLs for the Sulphur River and Red River.

			Allowable Loads of TSS							
				(tons/da	ay)					
				WLA for						
		LA for Non-	WLA for	Non-						
		Regulated	NPDES	Stormwater						
Stream	Hydrologic	Diffuse	Regulated	Point		Future				
Reach	Range	Sources	Stormwater	Sources	MOS	Growth	TMDL			
Carladana	Low flows	0.69	0.01	<u>0* NA</u>	implicit	0	0.70			
Sulphur River	Dry cond.	11.26	0.01	<u>0* NA</u>	implicit	0	11.27			
River 11140302-	Mid-range	44.75	0.01	<u>0* NA</u>	implicit	0	44.76			
008	Moist cond.	201.46	0.03	<u>0* NA</u>	implicit	52.24	253.73			
008	High flows	326.85	0.04	<u>0* NA</u>	implicit	683.49	1010.38			
C 1 1	Low flows	0.74	0.01	<u>0* NA</u>	implicit	0	0.75			
Sulphur River	Dry cond.	11.33	0.01	<u>0* NA</u>	implicit	0	11.34			
11140302-	Mid-range	48.03	0.01	<u>0* NA</u>	implicit	0	48.04			
006	Moist cond.	205.27	0.03	<u>0* NA</u>	implicit	53.23	258.53			
006	High flows	329.81	0.04	<u>0* NA</u>	implicit	689.69	1019.54			
C11	Low flows	0.75	0*	<u>0* NA</u>	implicit	0	0.75			
Sulphur River	Dry cond.	11.35	0*	<u>0* NA</u>	implicit	0	11.35			
11140302-	Mid-range	49.60	0*	<u>0* NA</u>	implicit	0	49.60			
004	Moist cond.	207.51	0*	<u>0* NA</u>	implicit	53.80	261.31			
004	High flows	330.96	0*	<u>0* NA</u>	implicit	692.00	1022.96			
C.,1,,1,,,,,	Low flows	2.25	0.01	<u>0* NA</u>	implicit	0	2.26			
Sulphur River	Dry cond.	13.16	0.01	<u>0* NA</u>	implicit	0	13.17			
11140302-	Mid-range	58.84	0.01	<u>0* NA</u>	implicit	0	58.85			
002	Moist cond.	221.33	0.01	<u>0* NA</u>	implicit	57.38	278.72			
002	High flows	340.17	0.01	<u>0* NA</u>	implicit	711.28	1051.46			
C11	Low flows	2.26	0*	<u>0* NA</u>	implicit	0	2.26			
Sulphur River	Dry cond.	13.18	0*	<u>0* NA</u>	implicit	0	13.18			
11140302-	Mid-range	59.20	0*	<u>0* NA</u>	implicit	0	59.20			
001	Moist cond.	221.75	0*	<u>0* NA</u>	implicit	57.49	279.24			
001	High flows	340.52	0*	<u>0* NA</u>	implicit	712.00	1052.52			
	Low flows	144.5	0*	<u>0* NA</u>	implicit	57.1	201.6			
Red River	Dry cond.	300.4	0*	<u>0* NA</u>	implicit	87.9	388.3			
11140201-	Mid-range	957	0*	<u>0* NA</u>	implicit	3427	4384			
003	Moist cond.	2747	0*	<u>0* NA</u>	implicit	6362	9109			
	High flows	11524	0*	<u>0* NA</u>	implicit	23892	35416			

*Note: These WLAs are zero because there are currently no discharges to these reaches for these hydrologic ranges. Future discharges are allowable if they do not violate water quality standards.

6.7.1 TMDLs

The TMDLs were set equal to the allowable loads for the minimum flow within each hydrologic range. In other words, TMDLs were set to the allowable loads with an exceedance of 10% for high flows, 40% for moist conditions, 60% for mid-range flows, and 90% for dry conditions. For low-flow conditions, the Red River allowable loads were computed for stream flows at the 7Q10 flow, which was estimated to be approximately 1,400 cfs based on the published 7Q10 flow for the Red River at Index, AR (1,240 cfs; USGS 2008) plus additional inflows from the Little River and Sulphur River. For the Sulphur River reaches, the allowable loads for low-flow conditions were computed for the 99.9 percent exceedance level because those flows were consistent with published ranges of 7Q10 flows for the Sulphur River (USGS 1983). These calculations for TMDLs for each hydrologic range are shown for the Sulphur River in Tables E.7 through E.11 (Appendix E) and for the Red River in Table F.3 (Appendix F).

6.7.2 **MOS**

Both Section 303(d) of the Clean Water Act and regulations at 40 CFR 130.7 require TMDLs to include an MOS to account for any lack of knowledge concerning the relationship between pollutant loading and water quality. The MOS may be expressed explicitly as unallocated assimilative capacity or implicitly through conservative assumptions used in establishing the TMDL. For the TMDLs in this report, an implicit MOS was established by setting each TMDL equal to the allowable load for the minimum flow within each hydrologic range rather than at the median flow for the range. This procedure is conservative because the allowable load is lowest at the minimum flow.

6.7.3 Loads from Diffuse Sources

Loads from diffuse sources consist of (1) industrial or municipal stormwater that is regulated by an NPDES permit, and (2) nonpoint source runoff or baseflow from all other areas that are not regulated by an NPDES permit. The total existing loads from diffuse sources were calculated for each hydrologic range using the same percent exceedance flows as for calculating the TMDLs. The ambient stream flows were multiplied by existing average concentrations from

(RED0009)

diffuse sources. The existing average concentrations for the different hydrologic ranges were estimated from historical water quality data for the ADEQ monitoring sites within the study area. For each monitoring site, the water quality data were averaged within each of the hydrologic ranges, based on the stream flow rate on the sampling date. These calculations are shown in Tables E.6 and F.2. The average concentrations are shown in Table 6.3. The calculated loads from diffuse sources are shown on the rows labeled "Existing load from diffuse sources" in Tables E.7 through E.11 and F.3.

Average Existing Concentration (mg/L) from Diffuse Sources for Each Hydrologic Range Reductions of Mid-Range **Diffuse Sources Stream High Flows** Moist Cond. **Flows** Dry Cond. **Low Flows** Needed? Yes, for flows at Sulphur River 11 54 51 27 43 mid-range and (RED0005) lower Red River 82 76 41 No 55 38

Table 6.3. Average existing TSS concentrations from diffuse sources.

The allowable diffuse loads were calculated in the same manner as the existing diffuse loads except that the concentration used in the calculation was not allowed to exceed the applicable TSS target concentration. In other words, the ambient flow rate for each hydrologic range was multiplied by either the target concentration or the average existing concentration in Table 6.3, whichever was lower. The results of these calculations are shown in Tables E.7 through E.11 and F.3 (rows labeled "Allowable load from diffuse sources").

The allowable diffuse loads were then divided into WLAs for stormwater regulated by an NPDES permit and LAs for all other diffuse loading. Dividing the diffuse loading was necessary because EPA requires loads from stormwater regulated by an NPDES permit to be classified as a WLA rather than an LA (EPA 2002). The total diffuse loading was divided based on drainage area. Because information concerning drainage area was not available for individual stormwater facilities, each facility was assumed to cover 40 acres. The WLA for regulated stormwater was then calculated as the total diffuse loading multiplied by the percentage of the total drainage area

that was comprised of facilities with regulated stormwater discharges. The remainder of the total diffuse loading was assigned to the LA.

The WLAs for regulated stormwater were not specified for individual facilities because there was not sufficient information available. EPA's latest guidance for stormwater WLAs recommends that "WLAs for NPDES-regulated stormwater discharges be disaggregated ... to the extent feasible based on available data and/or modeling projections" and that "these disaggregated WLAs should be defined as narrowly as available information allows ..." (EPA 2010). For this report, though, the WLAs for regulated stormwater were not disaggregated because there is no readily available information concerning either the quantity or quality of regulated stormwater discharges in the study area.

6.7.4 Non-Stormwater Point Source Discharges

The WLAs for non-stormwater point source loads were set to zero NA because the surrogate being used for turbidity (TSS) is considered to represent inorganic suspended solids (i.e., soil and sediment particles from erosion or sediment resuspension). The suspended solids discharged by the two non-stormwater point sources discharging to these streams are assumed to consist primarily of organic solids rather than inorganic solids (see Section 2.6). Discharges of organic suspended solids from point sources are already addressed through the permitting of point sources to maintain water quality standards for dissolved oxygen.

6.7.5 Loads Reserved for Future Growth

For certain flow conditions, the total allowable loading to meet the criterion (i.e., the TMDL) exceeded the sum of the loading that was allocated to non-regulated diffuse sources, NPDES-regulated stormwater, and continuous point source discharges. The portion of the allowable loading that exceeded the sum of the allocations was reserved for future growth of either nonpoint or point sources. The loads reserved for future growth are calculated in Tables E.7 through E.11 and F.3. These calculations show that future growth is permissible for certain reaches during certain hydrologic conditions.

6.8 Implementation in NPDES Permits

This TMDL report provides allowable loadings but does not specify numeric permit limits because the permitting authorities (ADEQ and TCEQ) will calculate limits where applicable when permits are issued, modified, or renewed. The permitting authorities can take into account detailed information such as specific discharge regimes of individual facilities to ensure that the discharges do not cause or contribute to a violation of water quality standards. EPA regulations at 40 CFR 122.44(d)(1)(iii) require an NPDES permit to have numeric limits when the discharge has reasonable potential to cause or contribute to a violation of water quality standards. However, there are no state or federal regulations that require numeric limits if the discharge does not have reasonable potential to cause or contribute to a violation of water quality standards. Reasonable potential can be determined much more effectively during the permitting process rather than during development of the TMDL.

EPA regulations at 40 CFR 122.44(d)(1)(vii)(B) require that permit limits be "consistent with the assumptions and requirements" of WLAs in approved TMDLs. If a discharge does not have reasonable potential to exceed the allowable load determined from a TMDL, numeric limits are not required in the NPDES permit for that discharge because the expected load would be less than (i.e., consistent with) the allowable load in the TMDL.

The NPDES permits that regulate stormwater in the study area do not currently contain numeric limits for turbidity or TSS. EPA's 2002 guidance concerning stormwater WLAs and permits stated that "most WQBELs [water quality-based effluent limitations] for NPDES-regulated municipal and small construction storm water discharges will be in the form of BMPs, and that numeric limits will be used only in rare instances" (EPA 2002). Since that time, EPA has issued revised guidance, stating the following:

"EPA recommends that NPDES permitting authorities use numeric effluent limitations where feasible.... The permitting authority's decision as to how to express the WQBEL(s), either as numeric effluent limitations or BMPs, including BMPs accompanied by numeric benchmarks, should be based on an analysis of the specific facts and circumstances surrounding the permit, and/or the underlying WLA, including the nature of the stormwater discharge, available data, modeling results or other relevant information" (EPA 2010).

The use of BMPs to control the discharge of pollutants from stormwater is consistent with EPA regulations at 40 CFR 122.44(k). In the Sulphur River, erosion has been identified as a source of the turbidity/siltation impairment.

Future growth for point sources (i.e., growth of existing facilities or establishment of new point sources) is allowed by these TMDLs as long as the discharge does not cause or contribute to a downstream violation of water quality standards for turbidity or sediment (including narrative criteria prohibiting excessive silt deposits).

7.0 OTHER RELEVANT INFORMATION

7.1 Ambient Monitoring

In accordance with Section 106 of the Federal Clean Water Act and under its own authority, ADEQ has established a comprehensive program for monitoring the quality of the state's surface waters. ADEQ collects surface water samples at various locations, utilizing appropriate sampling methods and procedures for ensuring the quality of the data collected. The objectives of the surface water monitoring program are to determine the quality of the state's surface waters, to develop a long-term data base for long-term trend analysis, and to monitor the effectiveness of pollution controls. The data obtained through the surface water monitoring program is used to develop the state's biennial 305(b) report (*Water Quality Inventory*) and the 303(d) list of impaired waters, which are issued as a single document titled *Arkansas Integrated Water Quality Monitoring and Assessment Report*.

7.2 Reasonable Assurances

This section of the TMDL report focuses on implementation activities that have reasonable potential to achieve the WLAs and LAs presented in this report. The focus of this section is to identify the most appropriate structural and non-structural best management practices (BMPs) and control technologies to reduce temperature as well as turbidity/TSS loads from sources throughout the watershed.

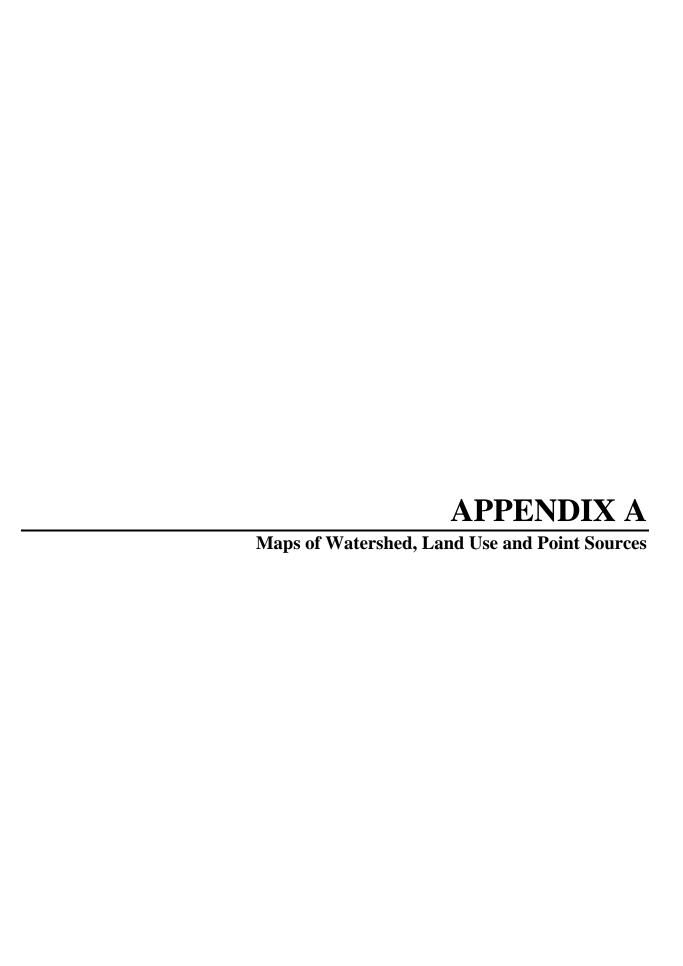
Many BMPs intended to reduce TSS may have a beneficial impact on in-stream temperatures. Increased TSS leads to pools being filled in with sediment, leaving shallower streams, which are more likely to have higher temperatures. Wide streams may also be more susceptible to higher water temperatures as there is less stream area protected by shade provided by riparian buffers. Erosive land use practices may lead to increased TSS, which leads to more turbid waters, which in turn causes increased temperature as suspended sediments darken water and absorb more heat from sunlight, thus increasing the temperature of the water.

Implementation, including the BMPs listed in the table below, can reduce turbidity and TSS loads. The implementation of BMPs to reduce the turbidity and TSS within the Red and

Sulphur Rivers will reasonably assure that reductions in the turbidity, TSS loads and temperature will occur, allowing the rivers to meet allocations.

Table 7.1. Pollutants and sources addressed by various BMPs.

	Pollutant		Poin	t Sou	irces			Nor	poin	t Sou	rces	
Implementation Activities	Sediment	WWTPs and Industrial Facilities	CSOs	Regulated Stormwater Sources	CAFOs	Illicitly Connected " Straight Pipe"	Cropland	Pastures and Livestock Operations	CFOs and AFOs	Streambank Erosion	Onsite Wastewater Treatment Systems	Wildlife/Domestic Pets
Inspection and maintenance	X	X	X	X	X						X	
Outreach and education and training	X	X	X	X	X	X	X	X	X	X	X	X
Conservation tillage/residue management	X						X					
Cover crops	X						X			X		
Filter strips	X			X	X		X	X	X	X		
Grassed waterways	X				X		X		X	X		
Riparian buffers	X				X		X	X	X	X		X
Stream fencing (animal exclusion)	X							X				
Grazing land management	X							X		X		
Conservation easements	X											
Levee or dike modification or removal	X											
Constructed wetland	X	X				X	X					X
Critical area planting	X							X		X		
Terrace	X						X					


8.0 PUBLIC PARTICIPATION

Federal regulations at 40 CFR 130.7(c)(1)(ii) specify that TMDLs shall be subject to public review as defined in the state's Continuing Planning Process (CPP). In accordance with this requirement, ADEQ conducted a public review period to seek comments and relevant information from the public concerning the TMDLs in this report. The public review period was initiated on August 3, 2012 and concluded on September 4, 2012. This report was available on ADEQ's web site throughout the public review period. ADEQ did not receive any public comments concerning these TMDLs during the public review period.

9.0 REFERENCES

- ADEQ. 2008. 2008 Integrated Water Quality Monitoring and Assessment Report. Prepared pursuant to Section 305(b) and 303(d) of the Federal Water Pollution Control Act. Published by Arkansas Department of Environmental Quality. Downloaded from ADEQ web site (www.adeq.state.ar.us/water/branch_planning/pdfs/WQ08-04-01.pdf).
- APCEC. 2011. Regulation No. 2, As Amended. Regulation Establishing Water Quality Standards for Surface Waters of the State of Arkansas. Adopted by the Arkansas Pollution Control and Ecology Commission on August 26, 2011. Effective September 26, 2011. Downloaded from ADEQ web site (www.adeq.state.ar.us/regs/files/reg02_final_110926.pdf).
- EPA. 1991. Monitoring Guidelines to Evaluate Effects of Forestry Activities on Streams in Pacific Northwest [EPA 910/9-91/001]. United States Environmental Protection Agency, Region 10. Seattle, WA.
- EPA. 2002. "Establishing Total Maximum Daily Load (TMDL) Wasteload Allocations (WLAs) for Storm Water Sources and NPDES Permit Requirements Based on Those WLAs". Memorandum from Robert Wayland and James Hanlon to Regional Water Division Directors. Dated November 22, 2002. Downloaded from EPA web site (http://water.epa.gov/lawsregs/lawsguidance/cwa/tmdl/upload/final-wwtmdl.pdf).
- EPA. 2007. An Approach for Using Load Duration Curves in the Development of TMDLs [EPA 841-B-07-006]. US Environmental Protection Agency, Office of Wetlands, Oceans and Watersheds. Downloaded from EPA web site (http://water.epa.gov/lawsregs/lawsguidance/cwa/tmdl/upload/2007_08_23_tmdl_duration_curve_guide_aug2007.pdf)
- EPA. 2008. Approved Arkansas 2008 Section 303(d) List. Downloaded from EPA web site (www.epa.gov/Region6/water/npdes/tmdl/303d/ar/2008-epa-final-approved-list.pdf).
- EPA. 2010. "Revisions to the November 22, 2002 Memorandum 'Establishing Total Maximum Daily Load (TMDL) Wasteload Allocations (WLAs) for Storm Water Sources and NPDES Permit Requirements Based on Those WLAs." Memorandum from James Hanlon and Denise Keehner to Regional Water Management Division Directors. Dated November 12, 2010. Downloaded from EPA web site (www.epa.gov/npdes/pubs/establishingtmdlwla_revision.pdf)
- LDEQ. 2011. Surface Water Quality Standards. Title 33 Environmental Regulatory Code, Part IX Water Quality, Chapter 11. With amendments through October 2011. Downloaded from Louisiana Department of Environmental Quality web site (www.deq.louisiana.gov/portal/Portals/0/planning/regs/title33/33v09-201110.pdf)
- MRLC. 2011. *National Land Cover Database 2006*. Data generated by the Multi-Resolution Land Characterization consortium. Downloaded from the MRLC web site (http://www.mrlc.gov/nlcd2006.php).

- Relyea, C.D., C.W. Marshall, and R.J. Danehy. 2000. *Stream insects as indicators of fine sediment*. Stream Ecology Center, Idaho State University, Pocatello, ID. Presented at WEF 2000 Watershed Management Conference.
- TCEQ. 2010. Texas Surface Water Quality Standards. Texas Administrative Code, Title 30, Part 1, Chapter 307, Rule §307.10, Appendix A (Site-specific Uses and Criteria for Classified Segments). Available online at http://info.sos.state.tx.us/fids/201003720-6.pdf
- USGS. 1978. *Drainage Areas of Streams in Arkansas, Red River Basin*. Open-File Report. By M.S. Hines and J.J. Yanchosek. United States Geological Survey, Little Rock, AR.
- USGS. 1983. Identification and Classification of Perennial Streams of Arkansas. Water Resources Investigations Report 83-4063. By R. A. Hunrichs, U.S. Geological Survey, Little Rock, Arkansas.
- USGS. 2003. Low-flow Characteristics of Louisiana Streams. Water Resources Technical Report No. 70. By P.A. Ensminger, and L.S. Wright, US Geological Survey, Baton Rouge, LA.
- USGS. 2008. Low-flow characteristics and regionalization of low-flow characteristics for selected streams in Arkansas. Scientific Investigations Report 2008-5065. By J.E. Funkhouser, K. Eng, and M.W. Moix, U.S. Geological Survey, Little Rock, AR.
- USGS. 2011. Water Data Report 2010 07344370 Red River at Spring Bank, AR. US Geological Survey. October 2011. Downloaded from USGS web site (http://wdr.water.usgs.gov/wy2010/pdfs/07344370.2010.pdf).
- Zar, J.H. 1996. Biostatistical Analysis, 3rd edition. Prentice Hall. New Jersey.

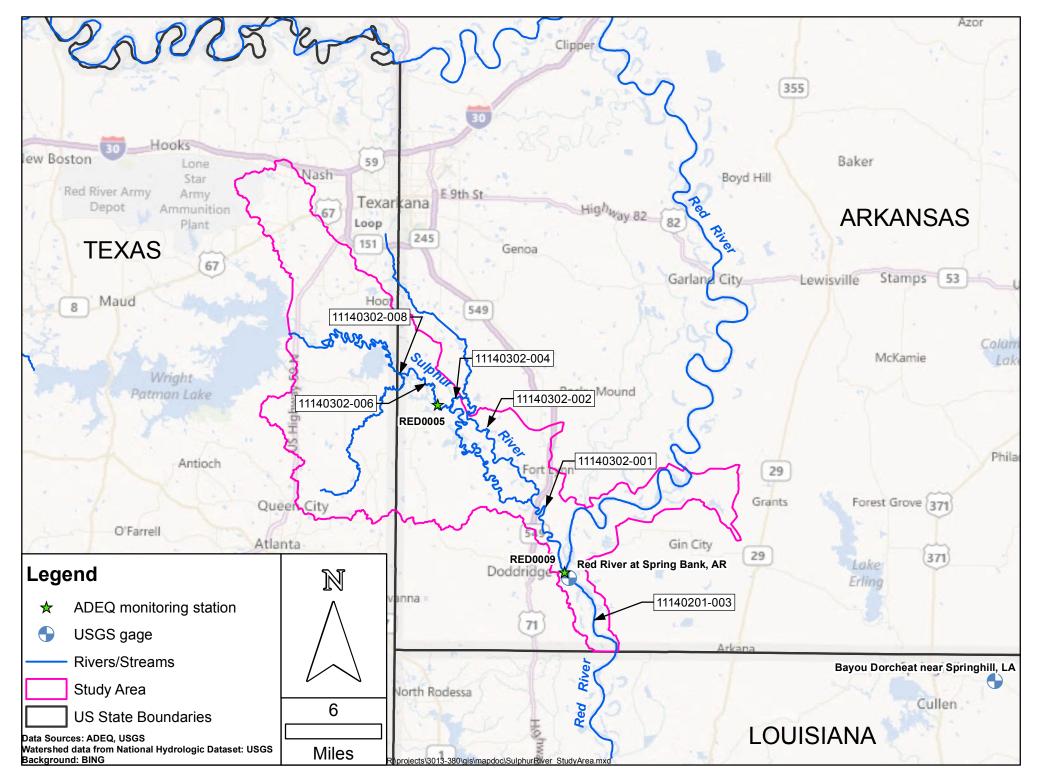


Figure A.1. Study Area Map

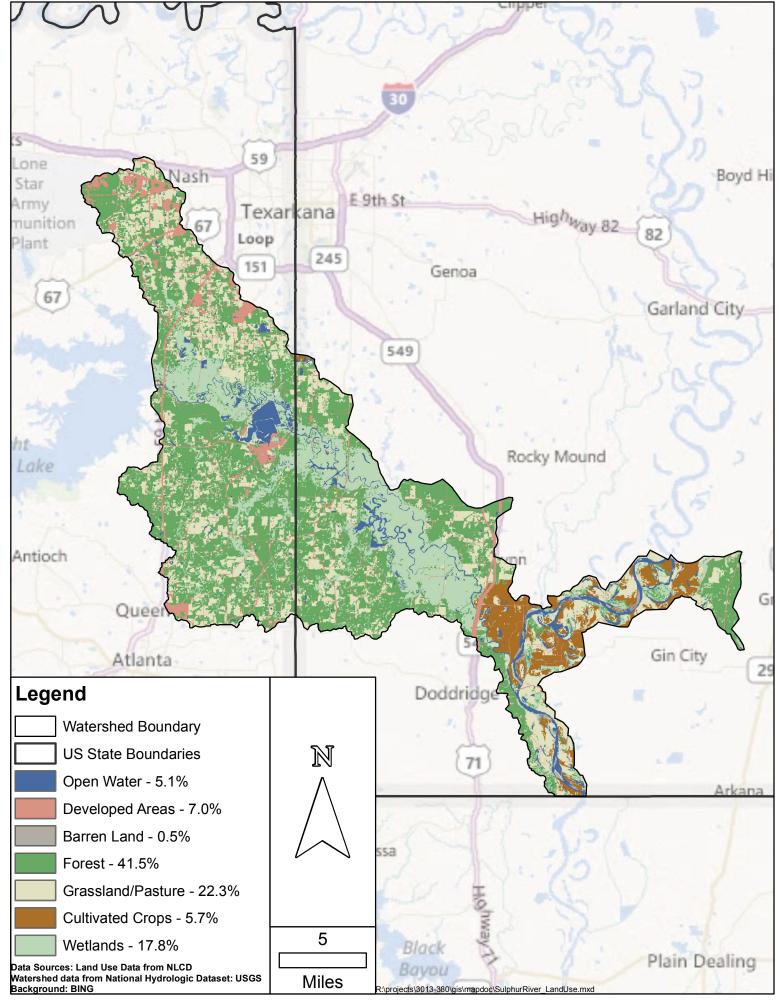


Figure A.2. Land use map

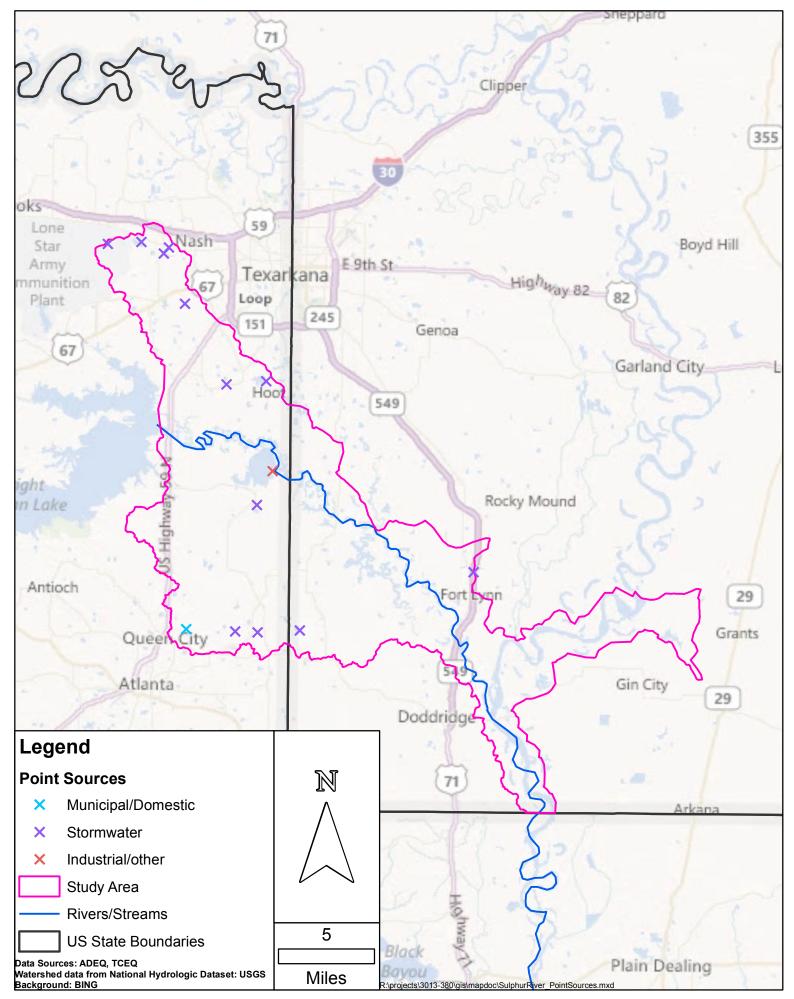


Figure A.3. Point Source Map

Table A.1. Inventory of Permitted Discharges in the Study Area for Temperature and Turbidity TMDLs for the Sulphur River and Red River, Arkansas

Sorted by "First impaired reach downstream", and then by "Permit number"

Permit		Type of	Flow rate		First impaired reach down-	Permit expiration
number	Facility name	discharge	(MGD)	Receiving waterbody	stream	date
ARR10C801	Ark Hwy Dept / Fouke- South	Storm Runoff	n.a.	Unnamed Tributary, Sulphur River	11140302-002	12/31/2011
TXR05Z598	International Paper Co. Texarkana Mill	Storm Runoff	n.a.	Unnamed Tributary, Sulphur River	11140302-006	8/14/2016
TXR15PR02	TX Dept of Transportation -Atl- Csj3195-01-010	Storm Runoff	n.a.	Sulphur River	11140302-006	3/5/2013
TXR15SP26	TX Dept of Transportation -Atl-Csj 0218-03-076 Etc	Storm Runoff	n.a.	Sulphur River Basin	11140302-006	3/5/2013
TXR15SR96	International Paper Waste Water Lagoon Improvements	Storm Runoff	n.a.	Area Creeks Thence To Sulphur River	11140302-006	3/5/2013
TX0000167	International Paper Co. Texarkana Mill	Industrial Wastewater	646.3*	Baker Slough, Sulphur River	11140302-008	1/1/2012
TX0034797	City Of Queen City WWTP	Municipal Wastewater	0.25	Cypress Creek, Cypress Slough, Sulphur River	11140302-008	1/1/2013
TXR05AE46	Specified C&D Recycling Yard	Storm Runoff	n.a.	Sulpher River via drainage	11140302-008	8/14/2016
TXR05L095	Lone Star Army Ammunition Plant	Storm Runoff	n.a.	Red River; Sulphur River; and Wright Patman Lake	11140302-008	8/14/2016

Permit number	Facility name	Type of discharge	Flow rate (MGD)	Receiving waterbody	First impaired reach down- stream	Permit expiration date
TXR05N304	JCM Industries	Storm Runoff	n.a.	Unnamed Tributary, Aiken Creek	11140302-008	8/14/2016
TXR05O455	Texana Tank Car	Storm Runoff	n.a.	Aiken Creek	11140302-008	8/14/2016
TXR05Q775	Martin Nash Facility	Storm Runoff	n.a.	Aiken Creek	11140302-008	8/14/2016
TXR15MX58	New House Construction	Storm Runoff	n.a.		11140302-008	3/5/2013
TXR15PC54	Buchanan Road Pit	Storm Runoff	n.a.	Crutchers Creek	11140302-008	3/5/2013

^{*}Daily average effluent flow is limited by the flow in the Sulphur River at Wright Patman Dam. The allowable effluent flow as a percentage of Sulphur River flow varies from 0% in May, July, and August to 100% in January (Outfall 001B). The maximum daily flow can never exceed 646.3 MGD.

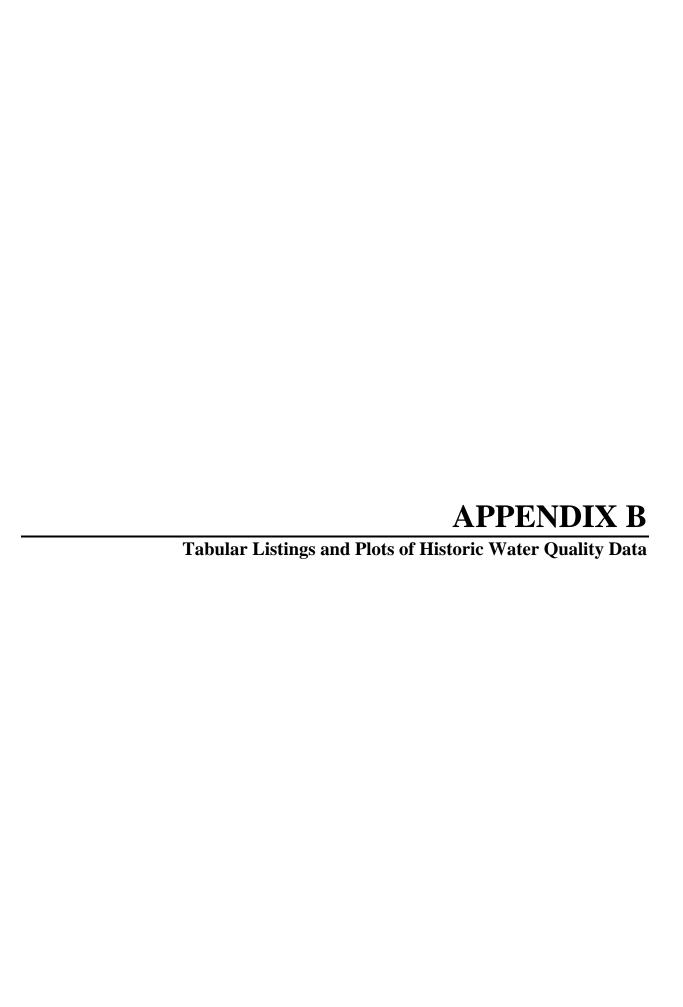


Table B.1 Historical Water Quality Data for Sulphur River south of Texarkana, AR

				Base-flow		Base-flow
		Temperature	Turbidity	Turbidity	TSS	TSS
Site ID	Date Collected	(°C)	(NTU)	(NTU)	(mg/L)	(mg/L)
RED0005	9/4/1990	30	8.1		18	
RED0005	10/2/1990	25	30		54	
RED0005	10/30/1990	17	8.0		28	
RED0005	11/27/1990	18	9.4		36	
RED0005	1/22/1991	6	38		23	
RED0005	2/19/1991	12	44		42	
RED0005	3/26/1991	20	38		39	
RED0005	4/16/1991	21	28			
RED0005	5/21/1991	25	18		12	
RED0005	6/18/1991	29	29		43	
RED0005	7/16/1991	28	28		38	
RED0005	8/20/1991	28	40	40	27.5	27.5
RED0005	9/17/1991	28	9		43	
RED0005	10/15/1991	20	24		36	
RED0005	11/12/1991	13	22		72	
RED0005	12/10/1991		18		15	
RED0005	1/21/1992	7	27		22	
RED0005	2/25/1992	13	29		24	
RED0005	3/17/1992	15	27		16	
RED0005	4/21/1992	20	28		37	
RED0005	5/19/1992	26	21	21	36	36
RED0005	6/16/1992	26	11		4	
RED0005	7/21/1992	28	9		14	
RED0005	8/18/1992	25	10		16	
RED0005	9/15/1992	27	41		28	
RED0005	10/13/1992	21	16		34	
RED0005	11/9/1992	14	14	14	26	26
RED0005	12/8/1992	7	21		22	
RED0005	1/26/1993	8	24		16	
RED0005	2/23/1993	10	22		32	
RED0005	3/23/1993	14	28		26	
RED0005	5/4/1993	18	19		28	
RED0005	5/17/1993	23	13		25	
RED0005	6/29/1993	29	21		40.0	
RED0005	7/13/1993	31	33	33	37	37
RED0005	8/10/1993	28	45	45	76	76
RED0005	9/7/1993	29	28	28	46	46
RED0005	10/12/1993	23	35	35	46	46
RED0005	11/9/1993	13	16		6	
RED0005	12/21/1993		34		10.5	
RED0005	1/25/1994	13.0	19		19.5	
RED0005	2/14/1994	9	12		32.5	

				Base-flow		Base-flow
		Temperature	Turbidity	Turbidity	TSS	TSS
Site ID	Date Collected	(°C)	(NTU)	(NTU)	(mg/L)	(mg/L)
RED0005	3/14/1994	15	26		12.0	
RED0005	4/18/1994	21	29		32.5	
RED0005	5/23/1994	25	11		27.0	
RED0005	6/27/1994	30	50	50	87.0	87.0
RED0005	7/18/1994	29	16		56.5	
RED0005	8/15/1994	26	37		67.5	
RED0005	9/26/1994	23	24	24	53.5	53.5
RED0005	10/24/1994	21	15		29.5	
RED0005	11/29/1994	15	22		23.0	
RED0005	12/20/1994	10.5	11		9.5	
RED0005	1/9/1995		19			
RED0005	2/13/1995	7	26		9	
RED0005	3/27/1995		15		32*	
RED0005	4/24/1995		16		15.5	
RED0005	5/22/1995	23	18		10.5	
RED0005	6/19/1995	26	23		48.5	
RED0005	7/18/1995		27	27	55.0	55.0
RED0005	8/7/1995	29	32	32	62.0	62.0
RED0005	9/18/1995	25	41	41	56.5	56.5
RED0005	10/16/1995	21	30		78.0	
RED0005	11/14/1995	13	15		21.5	
RED0005	11/28/1995	12	12		17.5	
RED0005	1/2/1996	8	15	15	21.5	21.5
RED0005	2/13/1996	9	3	3	37.5	37.5
RED0005	3/5/1996	15	3	3	41.0	41.0
RED0005	4/2/1996	15	40	40	60.0	60.0
RED0005	5/14/1996	23	48	48	61.0	61.0
RED0005	6/11/1996	24	35		53.0	
RED0005	7/16/1996	31	37	37	44.0	44.0
RED0005	8/20/1996	29	19		39.0	
RED0005	9/24/1996	24	35	35	55.0	55.0
RED0005	10/22/1996	18	35		48.0	
RED0005	11/19/1996	14	18		14.5	
RED0005	12/17/1996	9	32		6.5	
RED0005	1/28/1997	8	35		36.5	
RED0005	2/25/1997	11	52		18.5	
RED0005	3/25/1997	18	40		14.5*	
RED0005	4/14/1997	18	20		4.5	
RED0005	5/12/1997	20.4	13		15.0	
RED0005	6/16/1997	25.5	19		27.0	
RED0005	7/14/1997	33.2	39		64.0	
RED0005	8/25/1997	29	24	24	59.5	59.5
RED0005	9/15/1997	28.8	37	37	50.0	50.0
RED0005	10/21/1997	22	23		49.0	

				Base-flow		Base-flow
		Temperature	Turbidity	Turbidity	TSS	TSS
Site ID	Date Collected	(°C)	(NTU)	(NTU)	(mg/L)	(mg/L)
RED0005	11/18/1997	11	13		18.0*	
RED0005	12/16/1997	9.5	16		20.0	
RED0005	1/27/1998	11	30		6.0	
RED0005	2/17/1998	10	23			
RED0005	3/3/1998	13	22		9.0	
RED0005	4/7/1998	21	29		22.5	
RED0005	5/5/1998	25	43	43	68.0	68.0
RED0005	6/2/1998	28	27		26.0	
RED0005	7/21/1998	36	43	43	49.5	49.5
RED0005	8/11/1998	30	60	60	57.5	57.5
RED0005	9/22/1998	32	30	30	43.0	43.0
RED0005	10/27/1998	20	16		30.0	
RED0005	11/17/1998	16	16		28.0	
RED0005	12/21/1998	13	29		11.5	
RED0005	1/26/1999	15	18		9.5	
RED0005	2/16/1999	14	21*		17.5	
RED0005	3/23/1999	16	19		24.0	
RED0005	4/27/1999	23	44		70.0*	
RED0005	5/18/1999	24	28	28	40.5	40.5
RED0005	6/29/1999	30	39.5	39.5	62.0*	
RED0005	7/27/1999	34	78	78	72.0	72.0
RED0005	8/31/1999		26	26	39.0	39.0
RED0005	9/28/1999	28	35	35	51.5	51.5
RED0005	10/12/1999	26	43	43	64.0	64.0
RED0005	11/16/1999	21	28	28	45.5	45.5
RED0005	12/14/1999	12			48	48
RED0005	1/18/2000	16	34	34	52.0	52.0
RED0005	2/15/2000	14	26	26	42	42
RED0005	3/21/2000	17	18		31	
RED0005	4/18/2000	21	23		33	
RED0005	5/23/2000	27	21		38.5	
RED0005	6/20/2000	29	20			
RED0005	7/25/2000	31	57		106.5	
RED0005	8/29/2000	30			55.0	55.0
RED0005	9/26/2000	23	40	40	60.0	60.0
RED0005	10/24/2000	23	32	32	49.5	49.5
RED0005	11/14/2000	13	12		16.5	
RED0005	12/18/2000	9	22		5.5	
RED0005	1/29/2001	11	29		16.0	
RED0005	2/26/2001	15	13		6.0	
RED0005	3/27/2001	13	18		2.2	
RED0005	4/16/2001	19	14		7.0	
RED0005	5/22/2001	22.5	6.8		5.25*	
RED0005	6/19/2001	27	5.7		6.8	

				Base-flow		Base-flow
		Temperature	Turbidity	Turbidity	TSS	TSS
Site ID	Date Collected	(°C)	(NTU)	(NTU)	(mg/L)	(mg/L)
RED0005	7/17/2001	30	45		68.5	
RED0005	8/21/2001	31	32	32	49.5	49.5
RED0005	9/18/2001	26	29		51.5	
RED0005	10/23/2001	23	14		21.8	
RED0005	11/19/2001	17	47	47	60.0	60.0
RED0005	12/11/2001	12	23		19.5	
RED0005	1/2/2002	6	45		13.0	
RED0005	2/19/2002	11	30		4.5	
RED0005	3/19/2002	14	27		14.5	
RED0005	4/16/2002	21	21		13.5	
RED0005	5/21/2002	22	40		57.5	
RED0005	6/4/2002	29	35		51.5	
RED0005	7/1/2002	28	38	38	53.3	53.3
RED0005	8/6/2002	32	38	38	60.0	60.0
RED0005	9/3/2002	31	30.8	30.8	46.3	46.3
RED0005	10/1/2002	27.0	55	55	67.5	67.5
RED0005	11/5/2002	15.0	42.8		27.5	
RED0005	12/3/2002	11.0	24.2	24.2	18.2	18.2
RED0005	1/7/2003	12.0	22.0		17.8	
RED0005	2/4/2003	12.0	54.4		44.8	
RED0005	3/3/2003	10.0	28.4		13.5	
RED0005	4/8/2003	18.0	54.7		46.0	
RED0005	5/6/2003	25.0	135.0	135.0	52.3	52.3
RED0005	6/10/2003	31.0	75.5	75.5	57.7	57.7
RED0005	7/15/2003	32.0	57.8	57.8	64.0	64.0
RED0005	8/12/2003	30.0	50.7	50.7	49.3	49.3
RED0005	9/23/2003	25.0	44.0	44.0	45.0	45.0
RED0005	10/21/2003	23.0	39.5		37.5	
RED0005	11/18/2003	20.0	78.3	78.3	86.7	86.7
RED0005	12/16/2003	9.00	32.7	32.7	33.0	33.0
RED0005	1/27/2004	10.0	69.0	69.0	51.8	51.8
RED0005	2/24/2004	12.0	28.7		19.0	
RED0005	3/30/2004	21.0	67.5	67.5	61.9	61.9
RED0005	4/27/2004	24.0	53.0	53.0	53.5	53.5
RED0005	5/25/2004	27.0	79.2	79.2	87.9	87.9
RED0005	6/29/2004	27.0	27.3		33.8	
RED0005	7/27/2004	29.0	108	108	91.5	91.5
RED0005	8/17/2004	28.0	83.8	83.8	69.6	69.6
RED0005	9/21/2004	27.0	86.8	86.8	95.6	95.6
RED0005	10/26/2004	25.0	36.1		43.7	
RED0005	11/16/2004	18.0	69.9	69.9	80.0	80.0
RED0005	12/7/2004	17.0	40.1		22.2	
RED0005	1/25/2005	14.0	93.8		102	
RED0005	2/22/2005	18.0	44.5		31.3	

				Base-flow		Base-flow
		Temperature	Turbidity	Turbidity	TSS	TSS
Site ID	Date Collected	(°C)	(NTU)	(NTU)	(mg/L)	(mg/L)
RED0005	3/29/2005	18.0	43.9		39.2	
RED0005	4/26/2005	23.0	46.2		41.2	
RED0005	5/17/2005	28.0	60.1	60.1	48.8	48.8
RED0005	6/28/2005	32.0	89.7	89.7	72.0	72.0
RED0005	7/26/2005	33.0	94.8	94.8	75.5	75.5
RED0005	8/30/2005	34.0	96.7	96.7	75.0	75.0
RED0005	9/27/2005	30.0	62.3	62.3	46.2	46.2
RED0005	10/18/2005	24.0	43.9	43.9	33.8	33.8
RED0005	11/15/2005	21.0	61.2	61.2	51.2	51.2
RED0005	12/13/2005	10.0	23.8	23.8	17.8	17.8
RED0005	1/10/2006	12.0	57.3	57.3	51.0	51.0
RED0005	1/31/2006	13.0	30.3		28.0	
RED0005	3/14/2006	19.0	65.4	65.4	61.2	61.2
RED0005	4/11/2006	21.0	47.6		41.2	
RED0005	5/16/2006	24.0	49.2	49.2	51.5	51.5
RED0005	6/13/2006	32.0	58.4	58.4	48.9	48.9
RED0005	7/11/2006	32.0	58.8	58.8	55.8	55.8
RED0005	8/1/2006	33.0	74.8	74.8	66.2	66.2
RED0005	9/5/2006	28.0	55.5	55.5	48.0	48.0
RED0005	10/3/2006	28.0	44.6	44.6	46.2	46.2
RED0005	10/31/2006	19.0	51.2	51.2	47.5	47.5
RED0005	12/19/2006	14.0	53.2	53.2	54.8	54.8
RED0005	1/23/2007	8.00	36.7		12.5	
RED0005	2/20/2007	12.0	56.6		39.8	
RED0005	3/27/2007	20.8	73.8	73.8	74.2	74.2
RED0005	4/24/2007	20.0	46.5		48.5	
RED0005	5/15/2007	28.3	25.3	25.3	15.8	15.8
RED0005	6/12/2007	27.9	28.1		37.3	
RED0005	7/17/2007	29.7	4.1		< 1.0	
RED0005	9/11/2007	28.8	46.4	46.4	46.1	46.1
RED0005	10/15/2007	21.0	44.1	44.1	49.2	49.2
RED0005	11/13/2007	19.4	41.6		52.2	
RED0005	12/4/2007	12.6	31.6	31.6	33.0	33.0
RED0005	1/15/2008	10.9	26.0	26.0	40.5	40.5
RED0005	2/12/2008	11.7	83.8	83.8	107	107
RED0005	3/11/2008	12.5	28.3		60.0	
RED0005	4/1/2008		31.1		6.5	
RED0005	5/6/2008	20.8	17.2		7.5	
RED0005	6/17/2008	28.5	60.5		65.0	
RED0005	7/15/2008	30.7	38.9		48.0	
RED0005	8/12/2008		70.7	70.7	75.3	75.3
RED0005	9/1/2008	30.1	48.7	48.7	56.8	56.8
RED0005	9/30/2008	24.8	35.4	4	39.0	4=
RED0005	11/4/2008	18.2	45.4	45.4	47.0	47.0

Site ID	Date Collected	Temperature (°C)	Turbidity (NTU)	Base-flow Turbidity (NTU)	TSS (mg/L)	Base-flow TSS (mg/L)
RED0005	12/8/2008	, ,	32.2	32.2	32.0	32.0
RED0005	1/6/2009	9.70	27.6		33.5	
RED0005	2/3/2009	10.8	26.4	26.4	28.5	28.5
RED0005	3/31/2009	15.4	31.5		45.0	
RED0005	4/14/2009	16.6	46.1		64.0	
RED0005	5/26/2009	23.0	11.0		5.8	
RED0005	6/15/2009	27.5	11.4		9.0	
RED0005	7/14/2009	32.0	71.5		85.3	
RED0005	8/4/2009	30.2	37.7		57.2	
RED0005	9/29/2009	24.9	29.9		45.5	
RED0005	10/27/2009	16.0				
RED0005	11/17/2009	14.3	16.1		7.5	
RED0005	12/8/2009	11.3	13.3		8.0	
RED0005	1/26/2010	9.50	16.5		3.0	
RED0005	2/9/2010	7.10	18.8		3.0	

Notes:

- Base-flow defined as less than the 40th percentile.
- Values below detection limits are treated as being one-half of detection limit.
- * Values with asterisk were flagged in original data received from ADEQ as failing ADEQ's QC criteria; therefore this value is not used in statistics or graphs.

Summary:

Period of Record	9/4/90 - 2/9/10							
No. of Values	227	229	88	222	89			
Minimum	6	3.1	3.1	0.5	15.8			
Maximum	36	135	135	107	107			
Median	21	30	43.95	39.1	51.5			
Criterion from standards	30	32	21	n/a	n/a			
No. Values > criterion	22	103	83					
% Values > criterion	9.7%	45.0%	94.3%					

FILE: R:\PROJECTS\3013-380\TECH\ADEQ_WQ_DATA\RED RIVER\RED0005 SULPHUR RIVER.XLSX

Table B.2 Historical Water Quality Data for Red River near Doddridge, AR

		Temperature	Turbidity	Base-flow Turbidity	TSS	Base-flow TSS
Site ID	Date Collected	(°C)	(NTU)	(NTU)	(mg/L)	(mg/L)
RED0009	9/4/1990	29	25	n/a	28	n/a
RED0009	10/2/1990	24	74	n/a	100	n/a
RED0009	10/30/1990	18	7.6	n/a	23	n/a
RED0009	11/27/1990	19	33	n/a	33	n/a
RED0009	1/22/1991	7	52	n/a	51	n/a
RED0009	2/19/1991	12	130	n/a	160	n/a
RED0009	3/26/1991	21	30	n/a	2	n/a
RED0009	4/16/1991	21	460	n/a		n/a
RED0009	5/21/1991	25	74	n/a	100	n/a
RED0009	6/18/1991	28	340	n/a	310	n/a
RED0009	7/16/1991	28	36	n/a	42	n/a
RED0009	8/20/1991	28	49	n/a	39.5	n/a
RED0009	9/10/1991	27	4.3	n/a	4	n/a
RED0009	9/17/1991	28	55	n/a	135	n/a
RED0009	10/15/1991	20	21	n/a	26	n/a
RED0009	11/12/1991	13	110	n/a	264	n/a
RED0009	12/10/1991		80	n/a	181	n/a
RED0009	1/21/1992	6	195	n/a	307	n/a
RED0009	2/25/1992	13	59	n/a	166	n/a
RED0009	3/17/1992	15	78	n/a	173	n/a
RED0009	4/21/1992	20	52	n/a	86	n/a
RED0009	5/19/1992	25	90	n/a	201	n/a
RED0009	6/16/1992	26	190	n/a	379	n/a
RED0009	7/21/1992	28	260	n/a	69	n/a
RED0009	8/18/1992	25	41	n/a	68	n/a
RED0009	9/15/1992	26	73	n/a	108	n/a
RED0009	10/13/1992	20	24	n/a	41	n/a
RED0009	11/9/1992	14	28	n/a	51	n/a
RED0009	12/8/1992	7	52	n/a	106	n/a
RED0009	1/26/1993	7	130	n/a	236	n/a
RED0009	2/23/1993	9	170	n/a	83	n/a
RED0009	3/23/1993	13	105	n/a	229	n/a
RED0009	5/4/1993	19	94	n/a	191	n/a
RED0009	5/17/1993	22	200	n/a	444	n/a
RED0009	6/29/1993	29	92	n/a	160	n/a
RED0009	7/13/1993	31	13	n/a	20	n/a
RED0009	8/10/1993	29	48	n/a	77	n/a
RED0009	9/7/1993	27	19	n/a	32	n/a
RED0009	10/12/1993	23	31	n/a	32	n/a
RED0009	11/9/1993	11	38	n/a	24	n/a
RED0009	12/21/1993	9.0	74	n/a	126	n/a
RED0009	1/25/1994	13.0	41	n/a	65.5	n/a

				Base-flow		Base-flow
		Temperature	Turbidity	Turbidity	TSS	TSS
Site ID	Date Collected	(°C)	(NTU)	(NTU)	(mg/L)	(mg/L)
RED0009	2/14/1994	9	16	n/a	38.0	n/a
RED0009	3/14/1994	14	110	n/a	260	n/a
RED0009	4/18/1994	20	32	n/a	56.0	n/a
RED0009	5/23/1994	26	75	n/a	168	n/a
RED0009	6/27/1994	29	16	n/a	26.0	n/a
RED0009	7/18/1994	28	120	n/a	272	n/a
RED0009	8/15/1994	28	120	n/a	174	n/a
RED0009	9/26/1994	23	17	n/a	22.0	n/a
RED0009	10/24/1994	24	43	n/a	93.5	n/a
RED0009	11/29/1994	15	200	n/a	371	n/a
RED0009	12/20/1994	11	43	n/a	95.5	n/a
RED0009	1/9/1995		38	n/a		n/a
RED0009	2/13/1995	7	26	n/a	57.5	n/a
RED0009	3/27/1995		89	n/a	211.5*	n/a
RED0009	4/24/1995		112	n/a	152.5	n/a
RED0009	5/22/1995	24	68	n/a	108	n/a
RED0009	6/19/1995	27	210	n/a	490.0	n/a
RED0009	7/18/1995		110	n/a	221.0	n/a
RED0009	8/7/1995	30	28	n/a	36.0	n/a
RED0009	9/18/1995	25	29	n/a	48.5	n/a
RED0009	10/16/1995	20	29	n/a	36.0	n/a
RED0009	11/14/1995	13	20	n/a	34.0	n/a
RED0009	11/28/1995	12	17	n/a	22.0	n/a
RED0009	1/2/1996		22	n/a	25.0	n/a
RED0009	2/13/1996	10	46	n/a	64.5	n/a
RED0009	3/5/1996	15	26	n/a	35.0	n/a
RED0009	4/2/1996	14	210	n/a	305.0	n/a
RED0009	5/14/1996		160	n/a	251.0	n/a
RED0009	6/11/1996		109	n/a	114.0	n/a
RED0009	7/16/1996		73	n/a	105.0	n/a
RED0009	8/20/1996		84	n/a	152.0	n/a
RED0009	9/24/1996		190	n/a	300.0	n/a
RED0009	10/22/1996		190	n/a	258.0	n/a
RED0009	11/19/1996		99	n/a	134.0	n/a
RED0009	12/17/1996		66	n/a	99.5	n/a
RED0009	1/28/1997	9	73	n/a	89.0	n/a
RED0009	2/25/1997	11	300	n/a	419.0	n/a
RED0009	3/25/1997	18	112	n/a	1139.0*	n/a
RED0009	4/14/1997	18	47	n/a	99.0	n/a
RED0009	5/12/1997	20	55	n/a	88.5	n/a
RED0009	6/16/1997	27.0	90	n/a	139.5	n/a
RED0009	7/14/1997	32.5 29	31	n/a	38.0	n/a
RED0009	8/25/1997		38	n/a	62.5	n/a
RED0009	9/15/1997	28.5	20	n/a	31.0	n/a

				Base-flow		Base-flow
		Temperature	Turbidity	Turbidity	TSS	TSS
Site ID	Date Collected	(°C)	(NTU)	(NTU)	(mg/L)	(mg/L)
RED0009	10/21/1997	22	29	29	47.5	47.5
RED0009	11/18/1997	10.5	25		20.5*	
RED0009	12/16/1997	11	46		39.5	
RED0009	1/27/1998	11	100		185.5	
RED0009	2/17/1998	10	58			
RED0009	3/3/1998	12	8.6		118.0	
RED0009	4/7/1998	20	150		248.0	
RED0009	5/5/1998	25	25		46.0	
RED0009	6/2/1998	29	5.4		2.5	
RED0009	7/21/1998	34	26	26	44.5	44.5
RED0009	8/11/1998	28	16	16	35.0	35.0
RED0009	9/22/1998	30	21		44.0	
RED0009	10/27/1998	20	36		73.0	
RED0009	11/17/1998	16	41		55.5	
RED0009	12/21/1998	15	90		112.5	
RED0009	1/26/1999	16	39		94.0	
RED0009	2/16/1999	13	53*		72.5	
RED0009	3/23/1999	16	65		66.0	
RED0009	4/27/1999	24	56		95.5*	
RED0009 RED0009	5/18/1999 6/29/1999	23 30	100 37		149.0 46.0*	
RED0009	7/27/1999	33	22		39.0	
RED0009	8/31/1999	33	24	24	37.0	37.0
RED0009	9/28/1999	27	18	18	26.0	26.0
RED0009	10/12/1999	27	36	36	38.0	38.0
RED0009	11/16/1999	21	23	23	29	29
RED0009	12/14/1999	12		20	51	51
RED0009	1/18/2000		25	25	46.5	46.5
RED0009	2/15/2000	16	25	25	46	46
RED0009	3/21/2000	17	69		124	
RED0009	4/18/2000	22	120		218	
RED0009	5/23/2000	27	73		132.5	
RED0009	6/20/2000	28	39			
RED0009	7/25/2000	31	24		37.5	
RED0009	8/29/2000	31			71.5	71.5
RED0009	9/26/2000	22	23	23	31.0	31.0
RED0009	10/24/2000	23	22	22	32.0	32.0
RED0009	11/14/2000	12	87		156.8	
RED0009	12/18/2000	8	43		38.5	
RED0009	1/29/2001	11	59		64.3	
RED0009	2/26/2001	15	46		61.8	
RED0009	3/27/2001	15	50		77.8	
RED0009	4/16/2001	19	59		101.0	
RED0009	5/22/2001	21.5	27		32.75*	

				Base-flow		Base-flow
		Temperature	Turbidity	Turbidity	TSS	TSS
Site ID	Date Collected	, (°C)	(NTU)	(NTU)	(mg/L)	(mg/L)
RED0009	6/19/2001	27	28		37.8	
RED0009	7/17/2001	31	16		21.0	
RED0009	8/21/2001	31	18	18	26.0	26.0
RED0009	9/18/2001	27	40		50.5	
RED0009	10/23/2001	20	47		62.7	
RED0009	11/19/2001	18	24	24	24.5	24.5
RED0009	12/11/2001	12	42		45.8	
RED0009	1/2/2002	6	63		37.8	
RED0009	2/19/2002	10	48		37.5	
RED0009	3/19/2002	15	64		48.8	
RED0009	4/16/2002	21	135		152.7	
RED0009	5/21/2002	21	41		56.5	
RED0009	6/4/2002	30	20		33.5	
RED0009	7/1/2002	28	30	30	61.8	61.8
RED0009	8/6/2002	32	21		31.5	
RED0009	9/3/2002	31	20.4	20.4	42.8	42.8
RED0009	10/1/2002	28.0	27	27	28.2	28.2
RED0009	11/5/2002	15.0	117		114	
RED0009	12/3/2002	12.0	25.0	25.0	21.2	21.2
RED0009	1/7/2003	12.0	53.5		44.8	
RED0009	2/4/2003	13.0	6.3		36.0	
RED0009	3/3/2003	10.0	73.2		76.5	
RED0009	4/8/2003	19.0	51.5	51.5	39.2	39.2
RED0009	5/6/2003	25.0	108	108	33.5	33.5
RED0009	6/10/2003	29.0	27.1	27.1	44.5	44.5
RED0009	7/15/2003	32.0	48.3	48.3	55.2	55.2
RED0009	8/12/2003	29.0	67.5		75.6	
RED0009	9/23/2003	26.0	38.0	38.0	36.0	36.0
RED0009	10/21/2003	25.0	68.8	68.8	54.5	54.5
RED0009	11/18/2003	20.0	47.8	47.8	41.5	41.5
RED0009	12/16/2003		36.5	36.5	29.0	29.0
RED0009	1/27/2004		134		101	
RED0009	2/24/2004	12.0	70.3		56.5	
RED0009	3/30/2004		51.8	51.8	39.4	39.4
RED0009	4/27/2004		50.1	50.1	59.0	59.0
RED0009	5/25/2004		33.2	33.2	29.0	29.0
RED0009	6/29/2004		66.6		59.8	
RED0009	7/27/2004		68.4		66.0	
RED0009	8/17/2004		89.4		76.2	
RED0009	9/21/2004		58.3	58.3	52.1	52.1
RED0009	10/26/2004		80.6	80.6	73.3	73.3
RED0009	11/16/2004		97.5		84.6	
RED0009	12/7/2004		169		173	
RED0009	1/25/2005	14.0	32		16.8	

				Base-flow		Base-flow
		Temperature	Turbidity	Turbidity	TSS	TSS
Site ID	Date Collected	(°C)	(NTU)	(NTU)	(mg/L)	(mg/L)
RED0009	2/22/2005	17.0	76		64.3	
RED0009	3/29/2005	17.0	130		138	
RED0009	4/26/2005	23.0	47.5	47.5	42.2	42.2
RED0009	5/17/2005	26.0	5.2	5.2	3.2	3.2
RED0009	6/28/2005	31.0	27.2	27.2	25.8	25.8
RED0009	7/26/2005	33.0	28.6	28.6	32.8	32.8
RED0009	8/30/2005	38.0	28.9	28.9	25.7	25.7
RED0009	9/27/2005	29.0	24.2	24.2	24.2	24.2
RED0009	10/18/2005	26.0	33.7	33.7	29.5	29.5
RED0009	11/15/2005	21.0	36.4	36.4	31.8	31.8
RED0009	12/13/2005	12.0	31.3	31.3	26.2	26.2
RED0009	1/10/2006	14.0	21.2	21.2	19.5	19.5
RED0009	1/31/2006	13.0	81.0	81.0	82.8	82.8
RED0009	3/14/2006	20.0	56.1	56.1	50.5	50.5
RED0009	4/11/2006	22.0	83.5		69.0	
RED0009	5/16/2006	24.0	134		96.0	
RED0009	6/13/2006	31.0	41.9	41.9	35.0	35.0
RED0009	7/11/2006	32.0	28.4	28.4	27.2	27.2
RED0009	8/1/2006	31.0	23.0	23.0	27.8	27.8
RED0009	9/5/2006	29.0	22.7	22.7	23.5	23.5
RED0009	10/3/2006	29.0	24.9	24.9	26.0	26.0
RED0009	10/31/2006	21.0	52.6	52.6	46.5	46.5
RED0009	12/19/2006	13.0	59.9		38.0	
RED0009	1/23/2007	8.0	63.4		57.8	
RED0009	2/20/2007	10.0	55.6		53.2	
RED0009	3/27/2007	20.4	39.5	39.5	37.0	37.0
RED0009	4/24/2007	22.0	69.5		68.5	
RED0009	5/15/2007	26.3	144		109	
RED0009	6/12/2007	27.8	129		167	
RED0009	7/17/2007	28.1	78.6		66.6	
RED0009	9/11/2007	27.3	106		107	
RED0009	10/15/2007	21.0	32.5		44.0	22.2
RED0009	11/13/2007	20.5	29.4	29.4	30.8	30.8
RED0009	12/4/2007	12.9	39.0	05.5	37.0	07.0
RED0009	1/15/2008	11.2	35.5	35.5	37.0	37.0
RED0009	2/12/2008	11.8	80.3		59.5	
RED0009	3/11/2008	12.6	54.7		4.0	
RED0009	4/1/2008	17.7	47.0		32.0	
RED0009	5/6/2008	21.1	46.4		47.5	
RED0009	6/17/2008	29.0	34.5	40.0	44.5	40 F
RED0009	7/15/2008	31.2	40.0	40.0	42.5	42.5
RED0009	8/12/2008	26.1	26.9 54.8	26.9 54.8	31.8 55.0	31.8 55.0
RED0009	9/1/2008	29.5		54.8	55.0 35.5	55.0 35.5
RED0009	9/30/2008	25.1	41.9	41.9	35.5	35.5

Site ID	Date Collected	Temperature (°C)	Turbidity (NTU)	Base-flow Turbidity (NTU)	TSS (mg/L)	Base-flow TSS (mg/L)
RED0009	11/4/2008	18.8	38.0	38.0	37.0	37.0
RED0009	12/8/2008	11.1	29.4	29.4	26.2	26.2
RED0009	1/6/2009	9.8	42.2		32.3	
RED0009	2/3/2009	9.1	25.7		24.8	
RED0009	3/31/2009	16.0	59.8		74.0	
RED0009	4/14/2009	19.0	67.0		59.3	
RED0009	5/26/2009	22.6	49.1		42.5	
RED0009	6/15/2009	27.9	58.9		70.3	
RED0009	7/14/2009	32.8	31.7	31.7	32.0	32.0
RED0009	8/4/2009	30.2	53.2		50.0	
RED0009	9/29/2009	25.5	57.6		53.0	
RED0009	10/27/2009	15.8	62.4		37.0	
RED0009	11/17/2009	14.9	51.0		45.0	
RED0009	12/8/2009	10.5	39.6		35.0	
RED0009	1/26/2010	9.8	31.3		19.0	
RED0009	2/9/2010	7.8	35.4		16.0	

Notes:

- Base-flow defined as less than the 40th percentile.
- Base-flows not determined prior to Oct 1997 due to lack of available flow data.
- * Values with asterisk were flagged in original data received from ADEQ as failing ADEQ's QC criteria; therefore this value is not used in statistics or graphs.

Summary:

Period of Record	9/4/90 - 2/9/10						
No. of Values	228	231	58	224	60		
Minimum	6	4.3	5.19	2	3.2		
Maximum	38	460	108	490	82.8		
Median	21	47.5	29.7	51	35.25		
Criterion from standards	32	150	50	n/a	n/a		
No. Values > criterion	6	15	11				
% Values > criterion	2.6%	6.5%	19.0%				

FILE: R:\PROJECTS\3013-380\TECH\ADEQ_WQ_DATA\RED RIVER\RED0009 RED RIVER.XLSX

Figure B.1 Time Series Plot of Temperature in Sulphur River south of Texarkana, AR (RED0005) 40 35 30 25 Temperature (°C) 15 10 5 0 | 1/1/90 1/1/92 1/1/94 1/1/98 1/1/00 1/1/02 1/1/04 1/1/96 1/1/06 1/1/08 1/1/10

Figure B.2 Time Series Plot of Temperature in Red River near Doddridge, AR (RED0009)

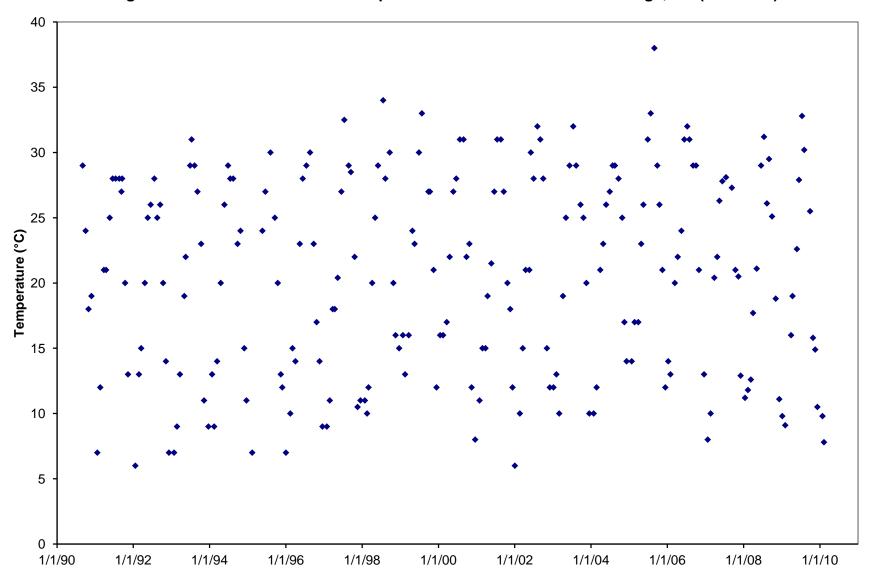


Figure B.3 Seasonal Plot of Temperature in Sulphur River south of Texarkana, AR (RED0005)

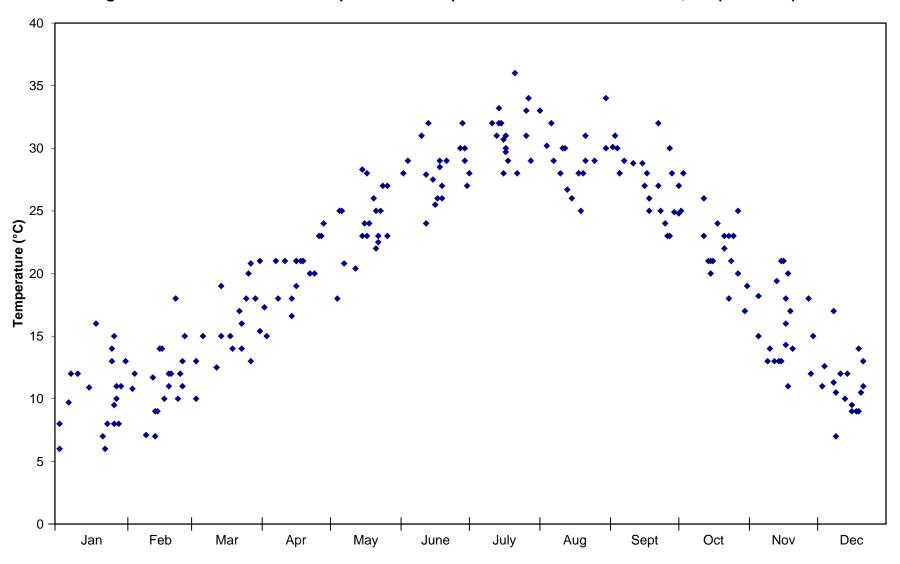


Figure B.4 Seasonal Plot of Temperature in Red River near Doddridge, AR (RED0009)

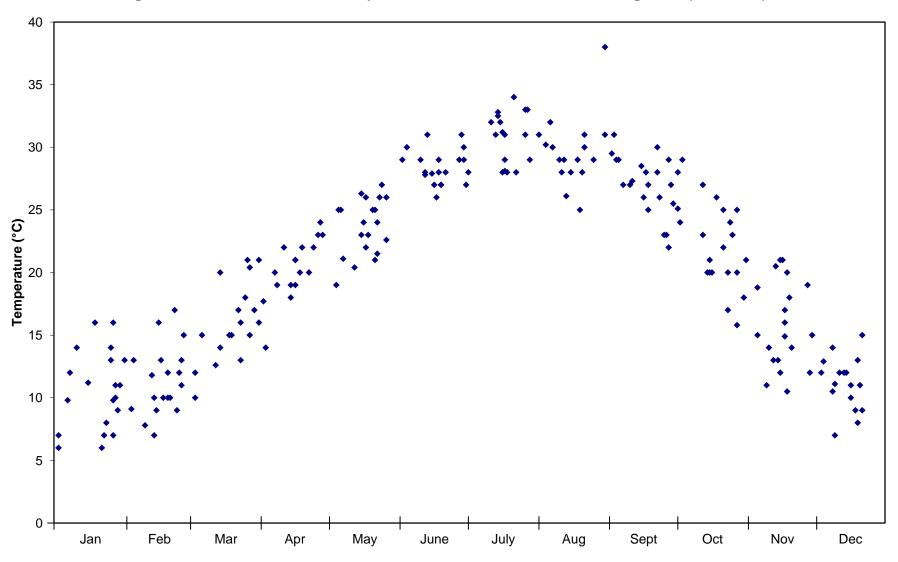


Figure B.5 Temperature versus Flow in Sulphur River south of Texarkana, AR (RED0005)

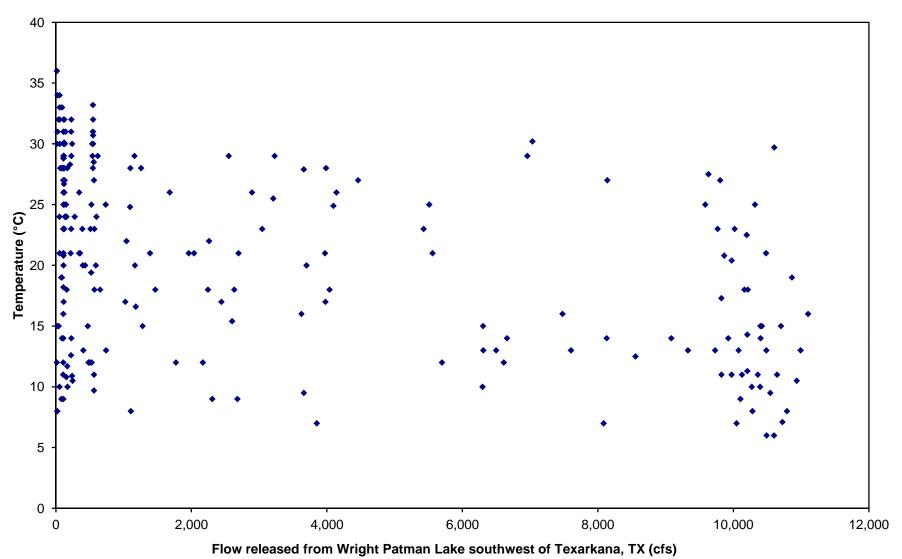


Figure B.6 Temperature versus Flow in Red River near Doddridge, AR (RED0009)

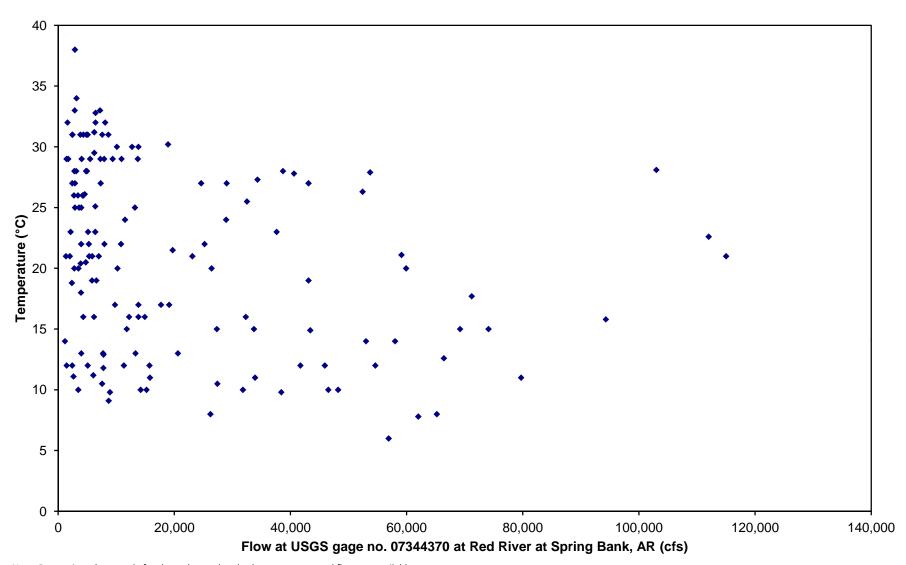


Figure B.7 Time Series Plot of Turbidity in Sulphur River south of Texarkana, AR (RED0005)

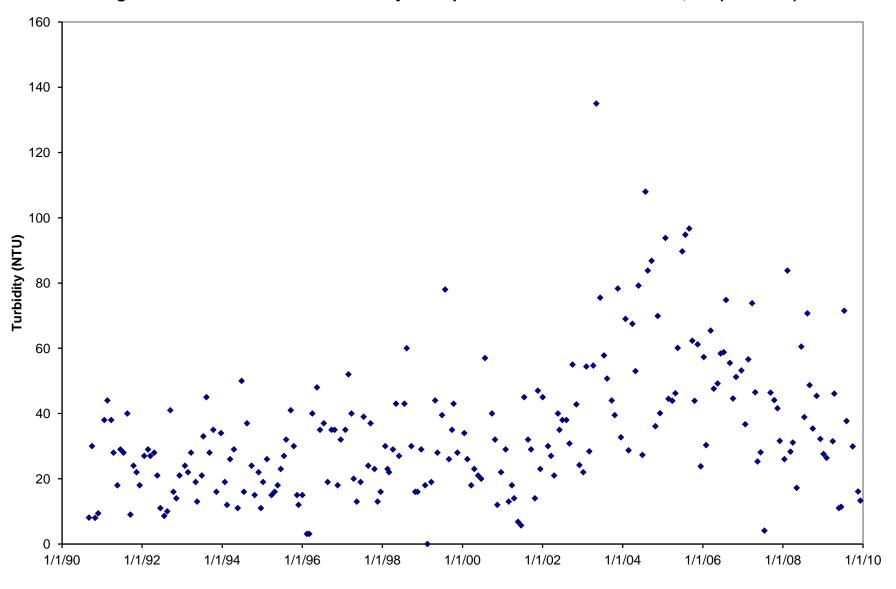


Figure B.8 Time Series Plot of TSS in Sulphur River south of Texarkana, AR (RED0005)

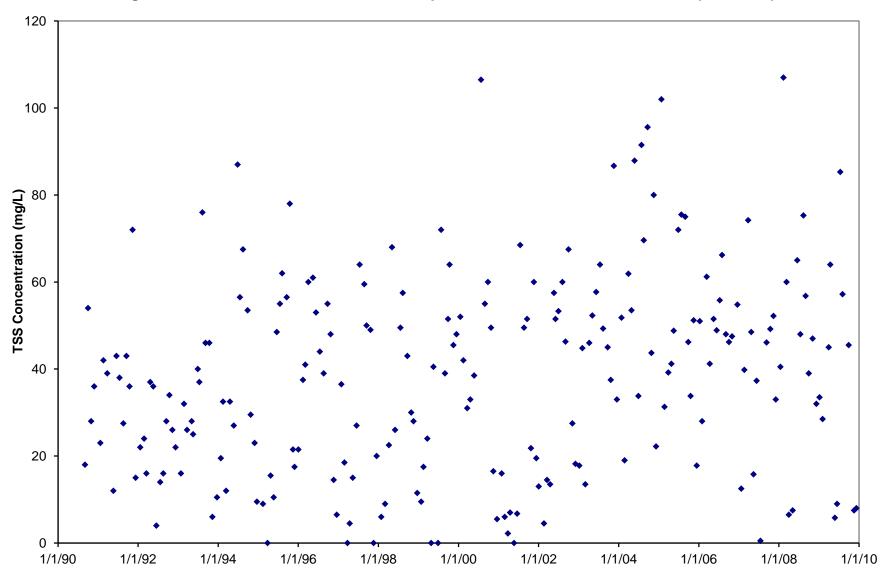
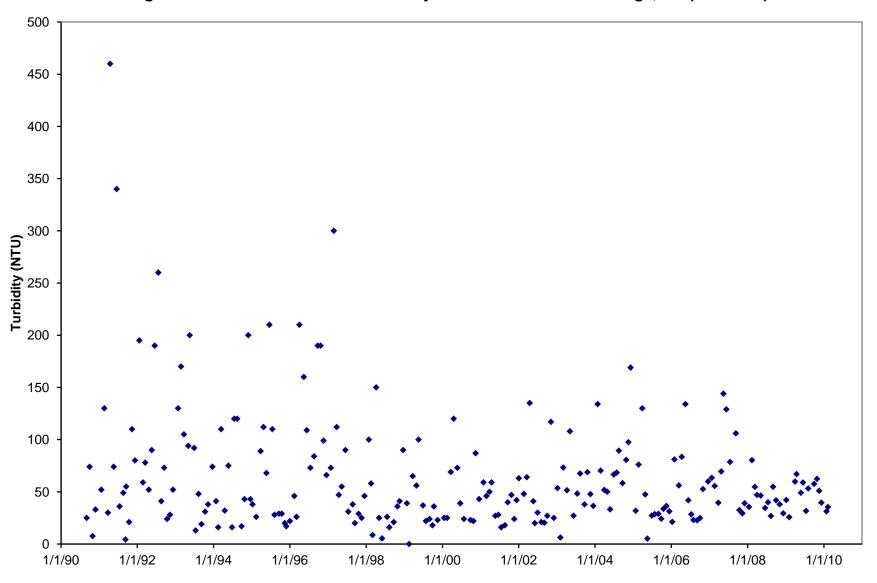



Figure B.9 Time Series Plot of Turbidity in Red River near Doddridge, AR (RED0009)

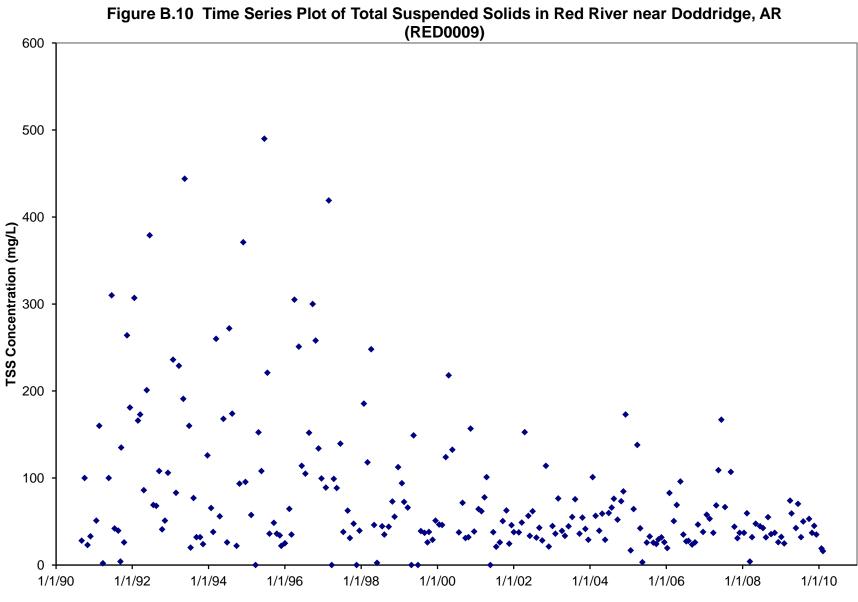


Figure B.11 Seasonal Plot of Turbidity in Sulphur River south of Texarkana, AR (RED0005)

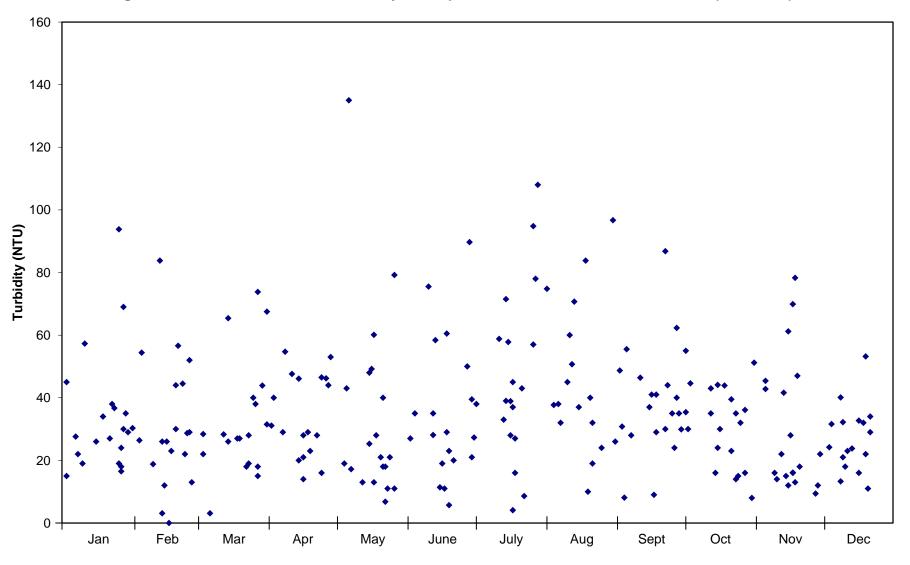


Figure B.12 Seasonal Plot of TSS in Sulphur River south of Texarkana, AR (RED0005)

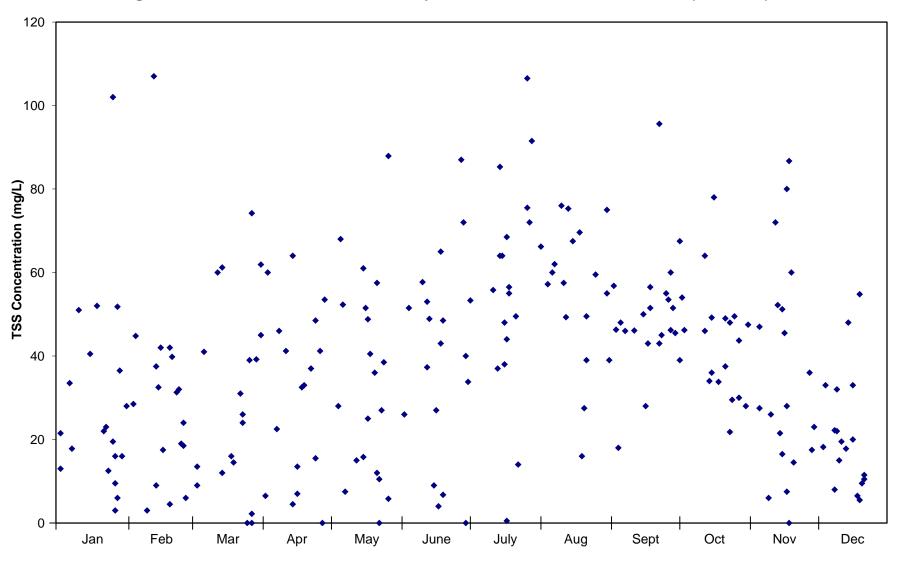
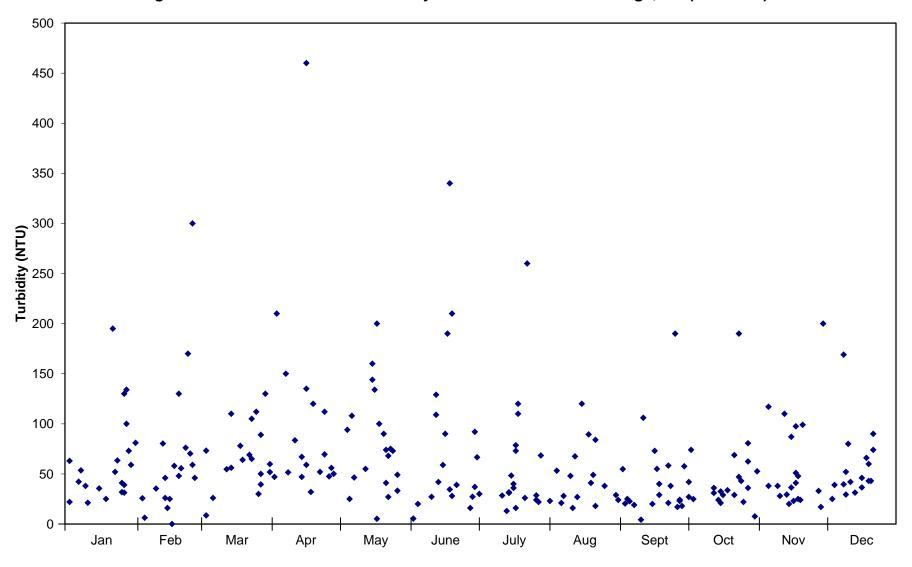



Figure B.13 Seasonal Plot of Turbidity in Red River near Doddridge, AR (RED0009)

600 500 TSS Concentration (mg/L) 200 100 0 + Feb June July Aug Sept Oct Nov Dec Jan Mar Apr May

Figure B.14 Seasonal Plot of Total Suspended Solids in Red River near Doddridge, AR (RED0009)

Figure B.15 Turbidity versus Flow in Sulphur River south of Texarkana, AR (RED0005)

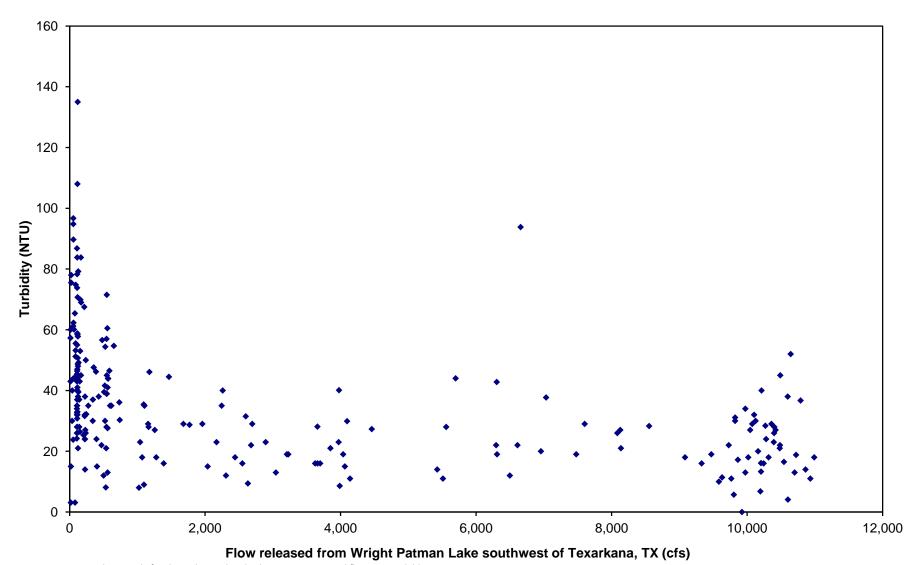
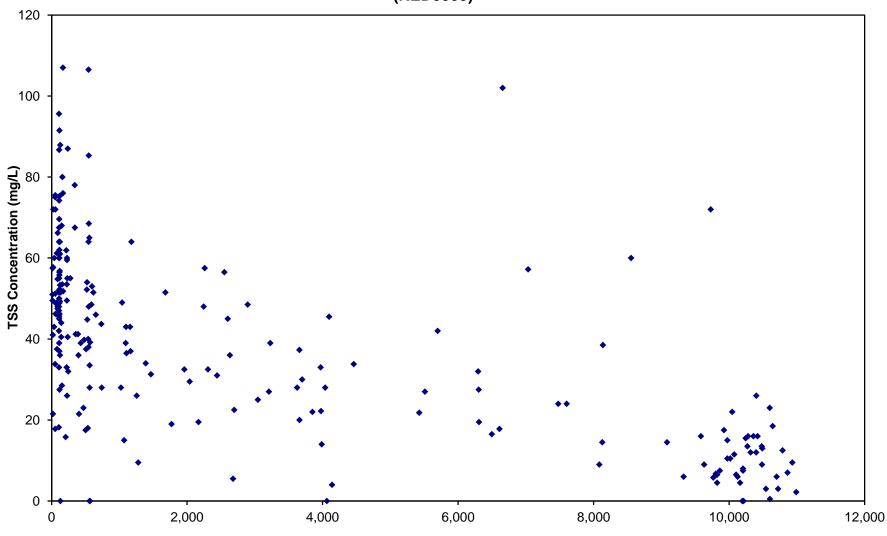



Figure B.16 TSS Concentration versus Flow in Sulphur River south of Texarkana, AR (RED0005)

Flow released from Wright Patman Lake southwest of Texarkana, TX (cfs)

Figure B.17 Turbidity versus Flow in Red River near Doddridge, AR (RED0009)

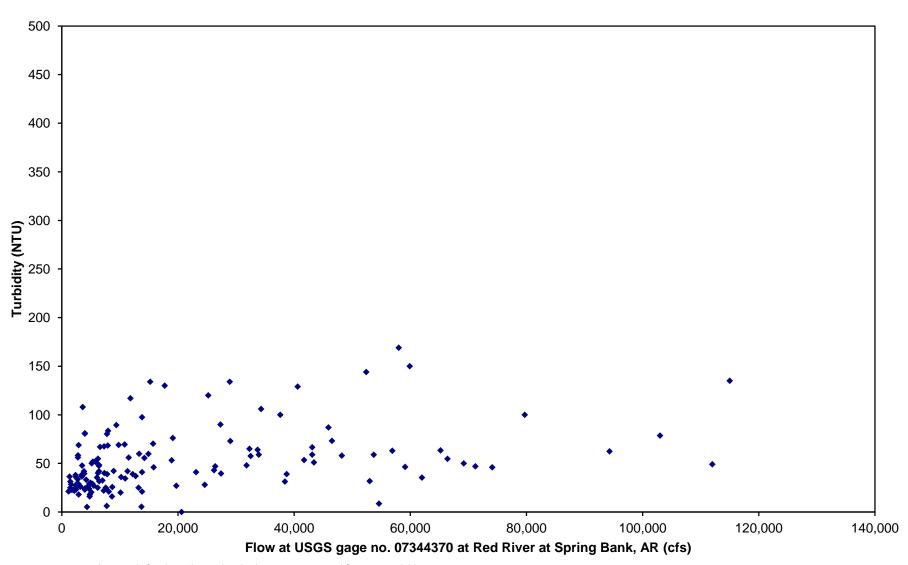


Figure B.18 Total Suspended Solids Concentration versus Flow in Red River near Doddridge, AR (RED0009)

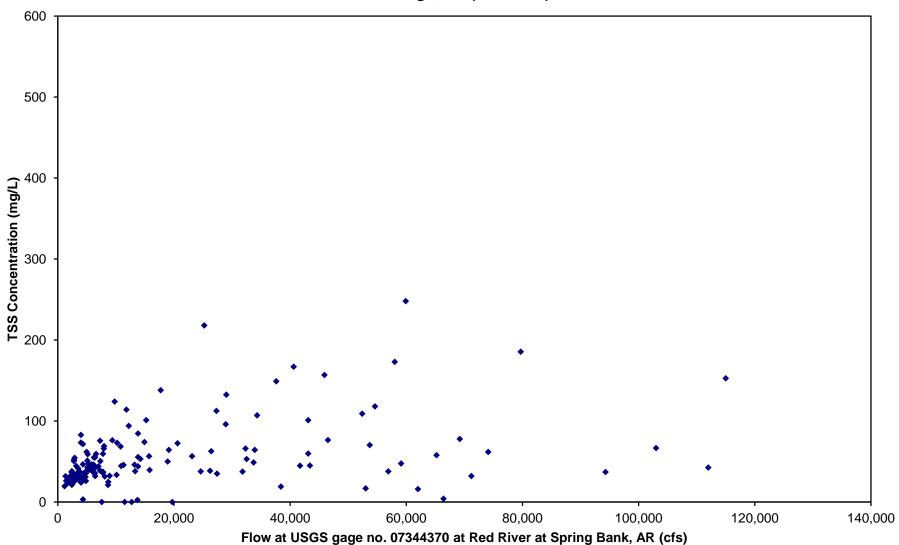


Figure B.19 Turbidity versus TSS for Base Flows in Sulphur River south of Texarkana, AR (RED0005)

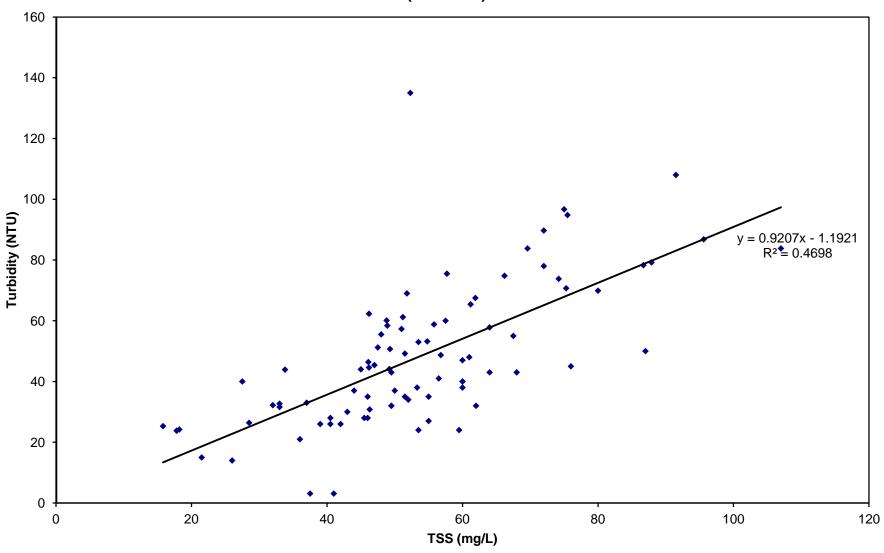


Figure B.20 Turbidity versus TSS for All Flows in Sulphur River south of Texarkana, AR (RED0005)

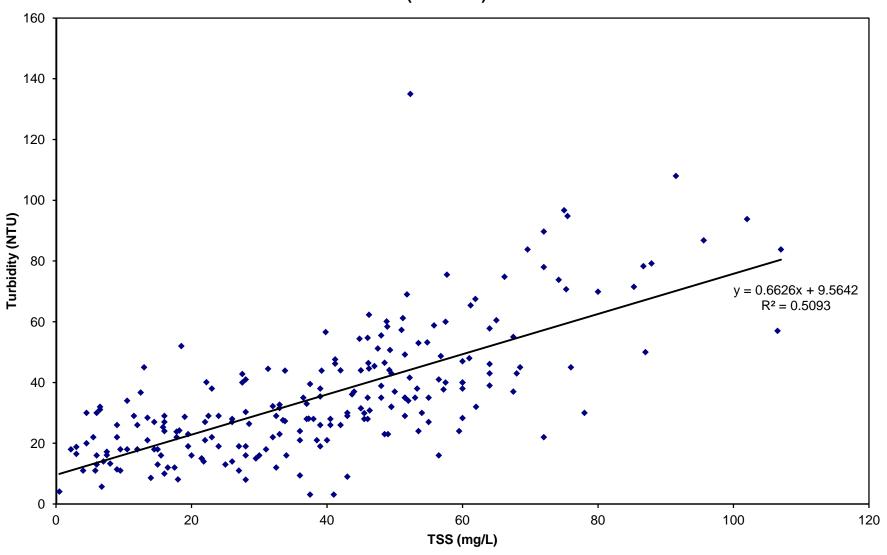


Figure B.21 Turbidity versus TSS for Base Flows in Red River near Doddridge, AR (RED0009)

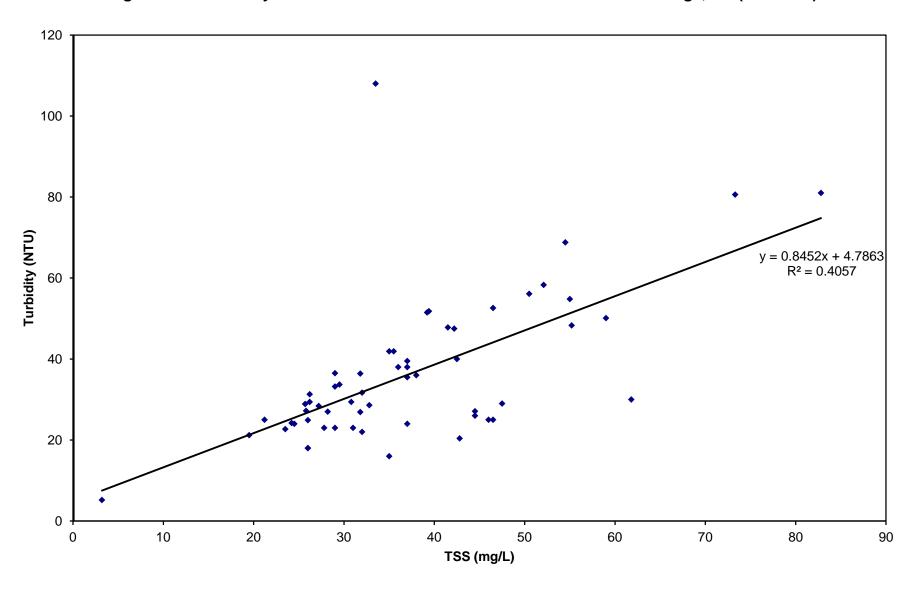
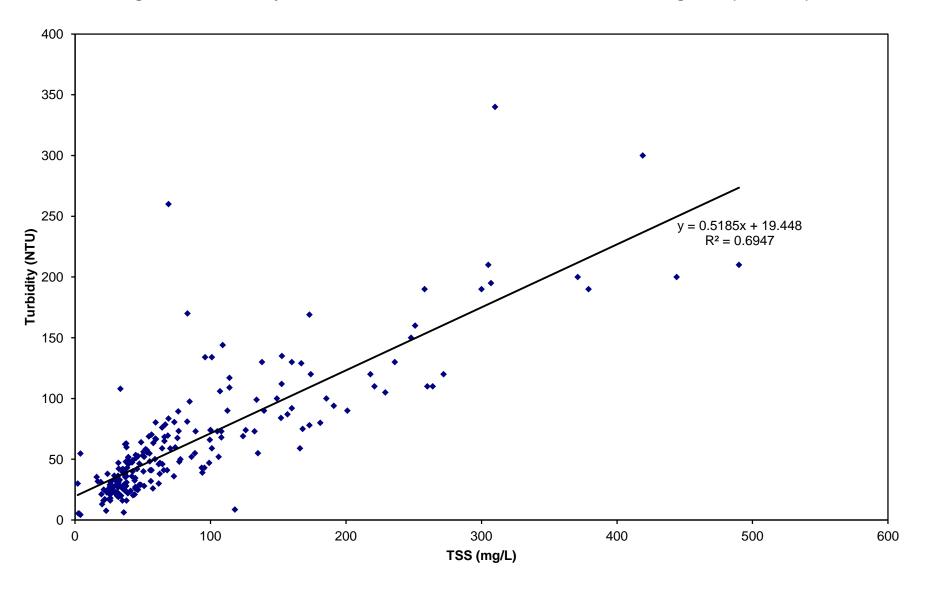



Figure B.22 Turbidity versus TSS for All Flows in Red River near Doddridge, AR (RED0009)

FTN Field Data

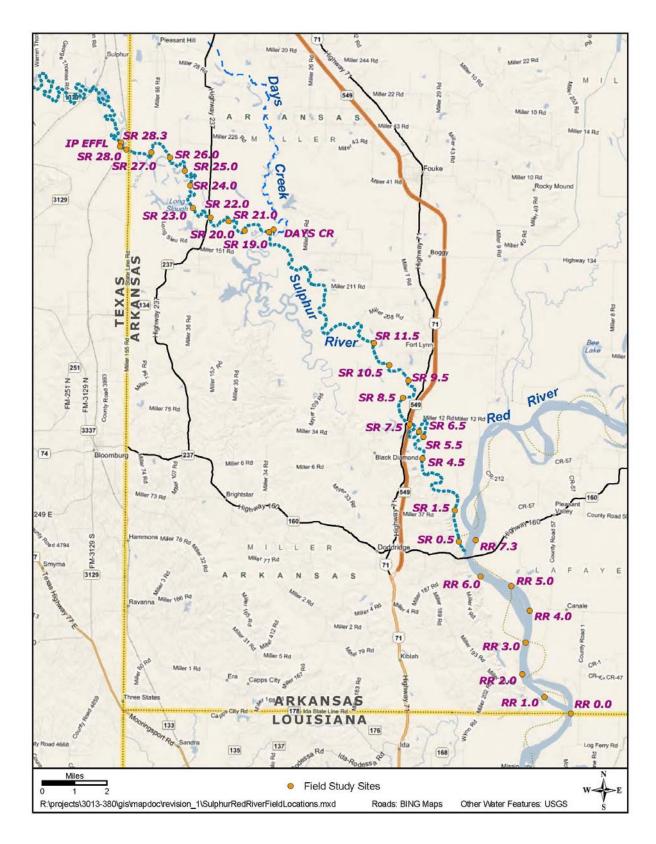


Figure C.1. Field study sampling site locations.

Figure C.2. Measured Water Temperatures at RR-7.3

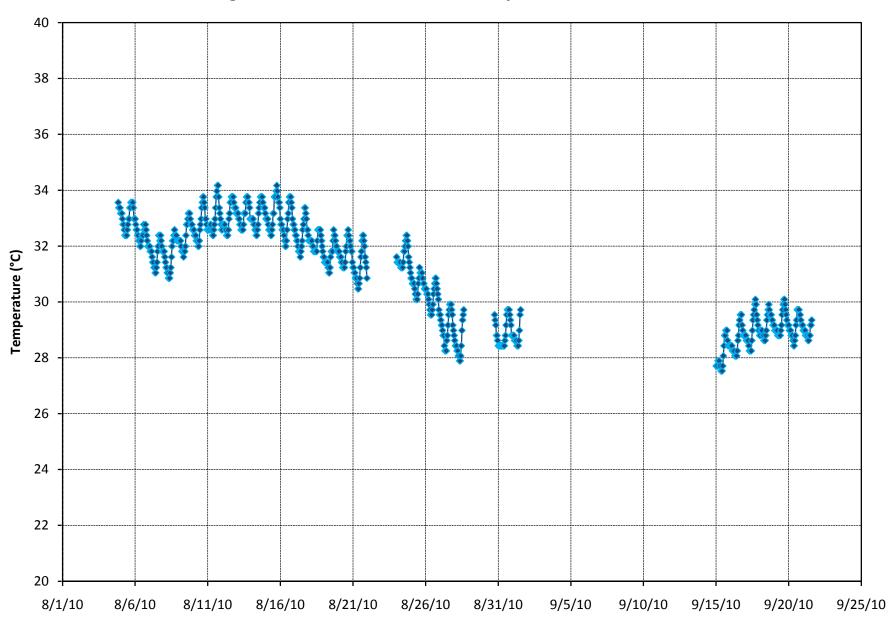


Figure C.3. Measured Water Temperatures at SR-11.5

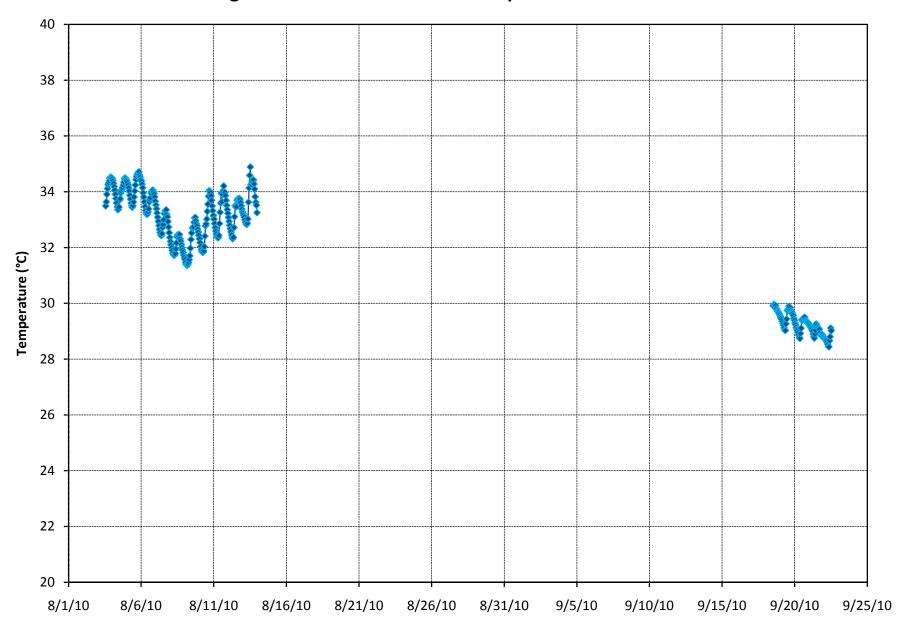


Figure C.4. Measured Water Temperatures in Days Creek

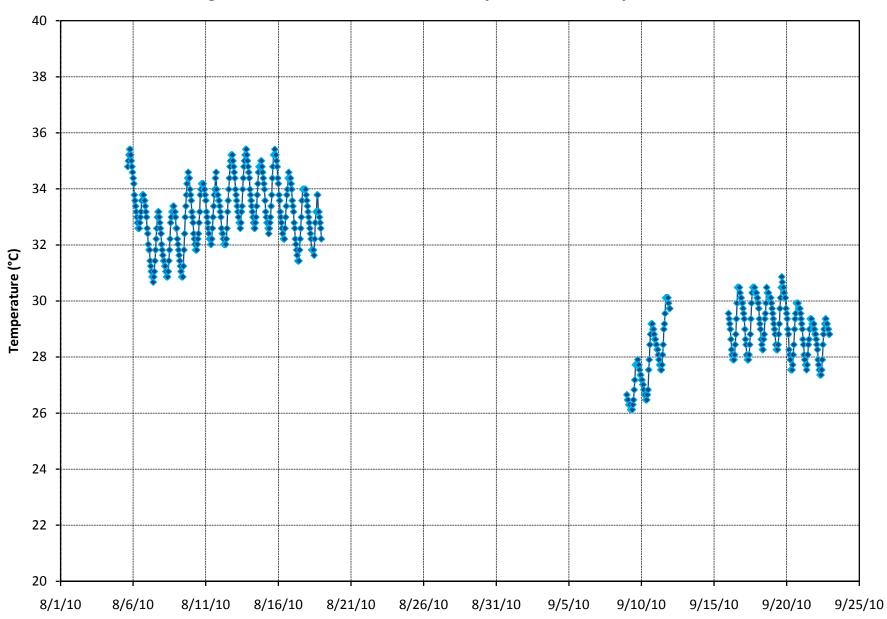


Figure C.5. Measured Water Temperatures at SR-19

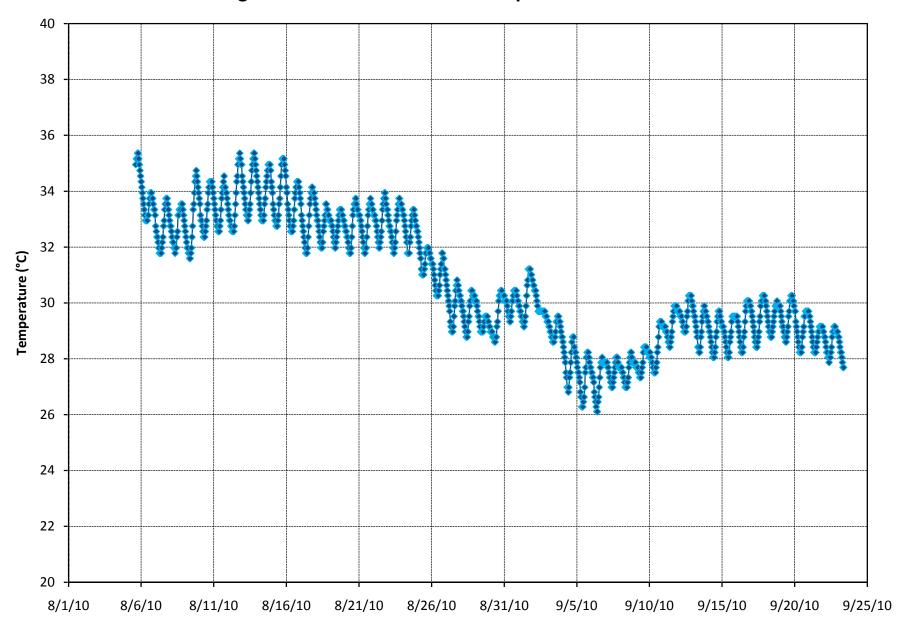


Figure C.6. Measured Water Temperatures at SR-28

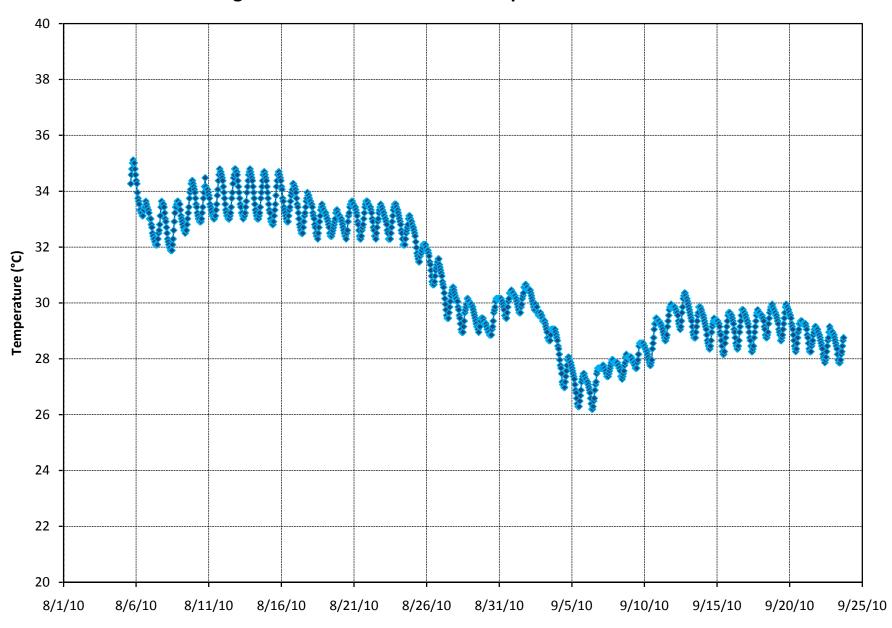
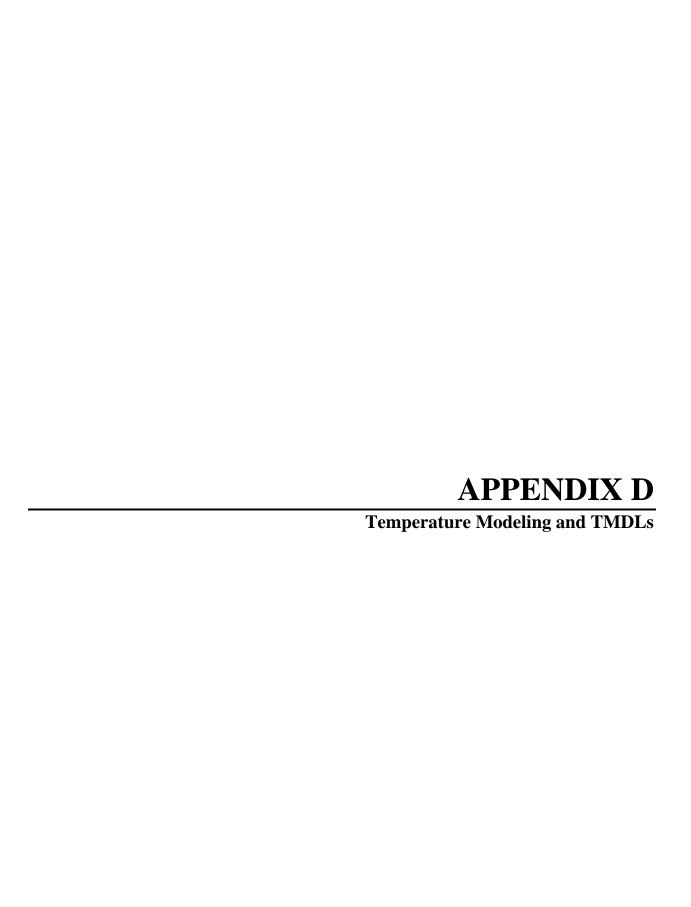
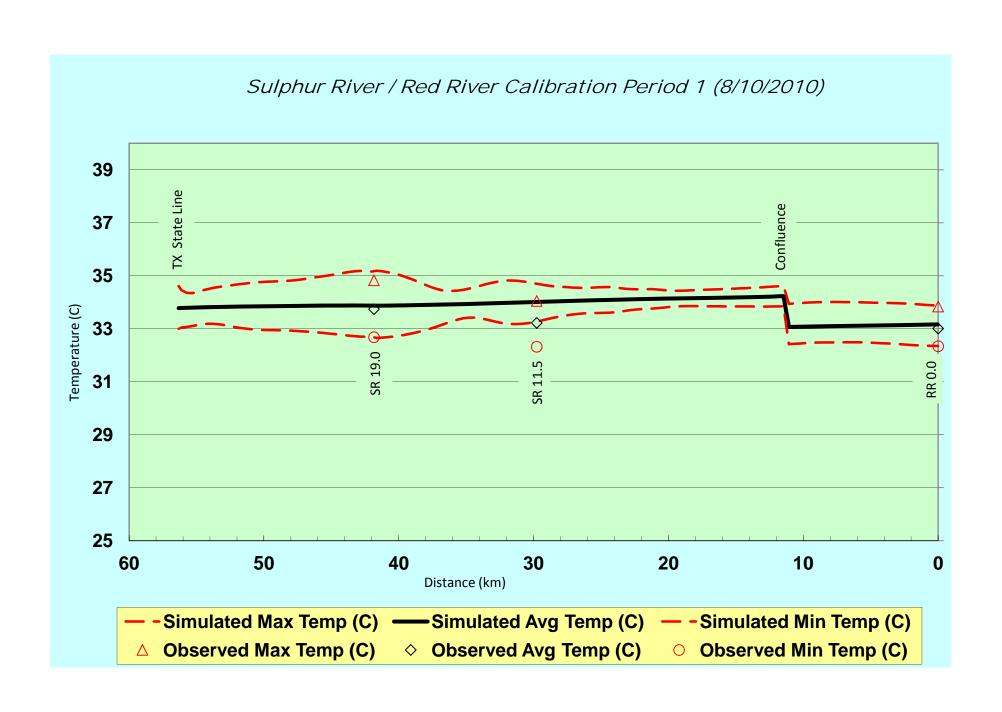
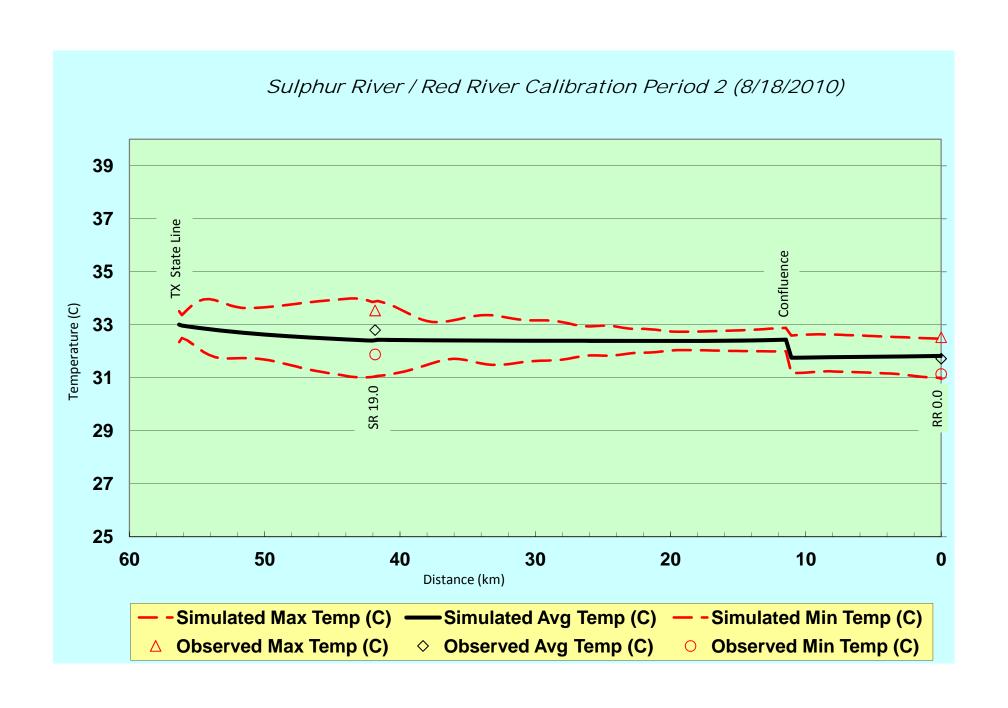
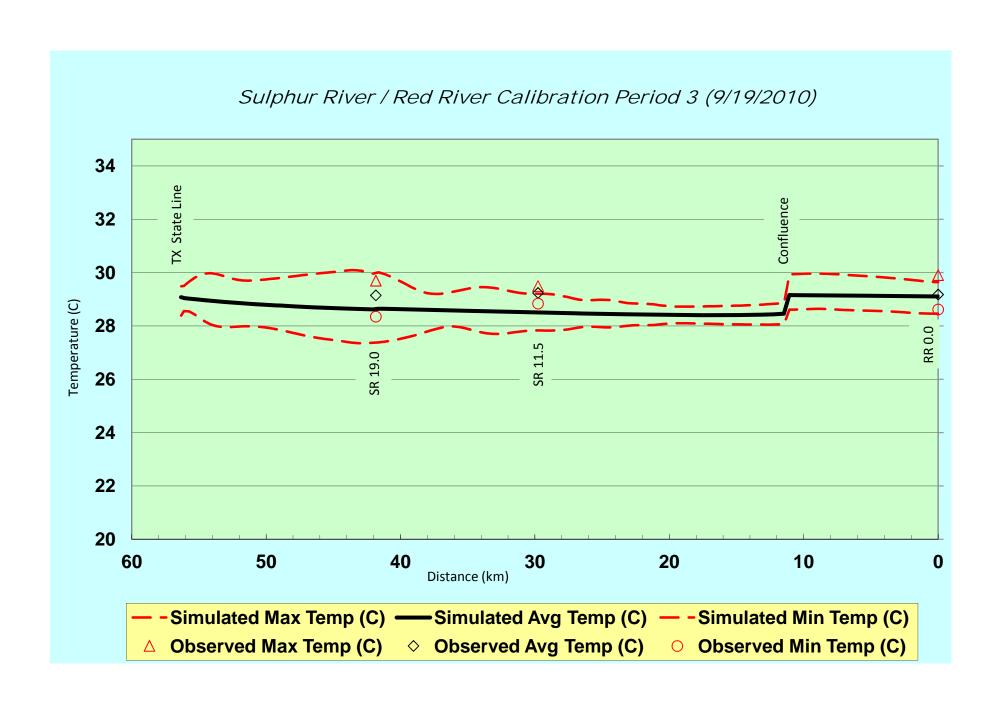


Table C.1 Summary of cross section data


Site ID	River Mile	Width (ft)	Depth (ft)
RR 0.0	0.00	232.83	15.56
RR 1.0	1.00	732.52	4.02
RR 2.0	2.00	472.41	4.90
RR 3.0	3.00	362.94	6.51
RR 4.0	4.00	413.16	10.76
RR 5.0	5.00	531.25	7.92
RR 6.0	6.00	517.06	6.38
SR 0.5	7.50	238.04	6.24
SR 1.5	8.50	129.89	13.03
SR 4.5	11.50	94.3	11.89
SR 5.5	12.50	99.12	11.90
SR 6.5	13.50	114.76	11.71
SR 7.5	14.50	119.46	4.61
SR 8.5	15.50	108.45	10.56
SR 9.5	16.50	119.86	6.52
SR 10.5	17.50	112.58	5.42
SR 11.5	18.50	108.2	6.22
SR 19.0	26.00	46.93	4.21
SR 20.0	27.00	91.94	2.08
SR 21.0	28.00	59.54	2.09
SR 22.0	29.00	101.14	4.19
SR 24.0	31.00	81.18	3.26
SR 25.0	32.00	91.6	4.49
SR 26.0	33.00	93.27	4.53
SR 27.0	34.00	99.64	5.00
SR 28.0	35.00	129.3	4.03


Table C.2 Summary of stream flow measurements


Stream	Site ID	Stream Flow (cfs)	Average Depth (ft)
Days Creek	DAYS CR	15	1.8
Sulphur River	SR-19.0	141	3.0
Sulphur River	SR-28.0	129	4.0


Table C.3 Temperature profile

			Depth (meters)						
Site ID	Date	Time	0	1	2	3	4	5	6
SR 28.0	9/23/2010	16:15	28.5	28.1	28				
SR 27.0	9/23/2010	15:47	29	28.3	28	28			
SR 26.0	9/23/2010	15:30	29.2	29	29				
SR 25.0	9/23/2010		29.1	28.7	28.8				
SR 24.0	9/23/2010	14:52	30.9	30.5					
SR 23.0	9/23/2010	14:30	29	28.5					
SR 22.0	9/23/2010	13:30	29	28.9	28.9				
SR 21.0	9/23/2010	13:00	28.8	28.8					
SR 20.0	9/23/2010	12:30	28	27.9					
DAYS CR	9/23/2010	11:25	25.8	25.6					
SR 19.0	9/23/2010	9:20	27.1	27.1					
SR 11.5	9/22/2010	12:40	28.5	28.2	28.1	28			
SR 10.5	9/22/2010	12:10	28.2	28.1	28.1	28.1			
SR 9.5	9/22/2010	11:30	28.5	28.1	28.1	28			
SR 8.5	9/22/2010	11:15	29	28.7	28.5	28.5	28.5	28.5	
SR 7.5	9/22/2010	10:45	28.6	28.2	28	28			
SR 6.5	9/22/2010	10:25	28.8	28.3	28.1	28.1	28.1	28.1	
SR 5.5	9/22/2010	9:30	29.7	29.5	29.5	29.4	29.4	29.3	
SR 4.5	9/22/2010	9:00	28.4	28.4	28.4	28.5	28.8		
SR 1.5	9/21/2010	15:40	29.5	29	28.5	28	28	27	27
SR 0.5	9/21/2010	15:15	29.1	29.2	28.5	28.1			
RR 7.3	9/21/2010	14:45	29.6	29.5	29.5				
RR 6.0	9/21/2010	14:10	29	29	28.9	28.9			
RR 5.0	9/21/2010	13:48	29.2	29	29	29	29	29	
RR 4.0	9/21/2010	13:30	29.7	29.5	29.5	29.5	29.4		
RR 3.0	9/21/2010	13:10	29.3	29.2	29				
RR 2.0	9/21/2010	12:45	29.1	29	29	29			
RR 1.0	9/21/2010	12:25	28.9	28.9	28.9	28.9			
RR 0.0	9/21/2010	11:00	29.6	29.6	29.6	29.7	29.8	31	31.1

CALCULATION OF DAILY AVERAGE ATMOSPHERIC HEAT LOAD FOR SIMULATION PERIOD 1

Solar (short wave) radiation calculated by QUAL2K model (from "Diel Output" tab)

ALZK MOUCI		atput tabj
	(cal/cm2	() (() () ()
<u>Hour</u>	per day)	(W/m2)
0.000	0	0
0.094	0	0
0.188	0	0
0.281	0	0
0.375	0	0
0.469	0	0
0.563	0	0
0.656	0	0
0.750	0	0
0.844	0	0
0.938	0	0
1.031	0	0
1.125	0	0
1.219	0	0
1.313	0	0
1.406	0	0
1.500	0	0
1.594	0	0
1.688	0	0
1.781	0	0
1.875	0	0
1.969	0	0
2.063	0	0
2.156	0	0
2.250	0	0
2.344	0	0
2.438	0	0
2.531	0	0
2.625	0	0
2.719	0	0
2.813	0	0
2.906	0	0
3.000	0	0
3.094	0	0
3.188	0	0
3.281	0	0
3.375	0	0
3.469	0	0
	0	0
3.563 3.656	0	0
3.750	0	0
3.844	0	0
3.938	0	0
4.031	0	0
4.125	0	0
4.219	0	0

(cal/cm2						
<u>Hour</u>	per day)	(W/m2)				
4.313	0	0				
4.406	0	0				
4.500	0	0				
4.594	0	0				
4.688	0	0				
4.781	0	0				
4.875	0	0				
4.969	0	0				
5.063	0	0				
5.156	0	0				
5.250	0	0				
5.344	0	0				
5.438	0	0				
5.531	0	0				
5.625	0	0				
5.719	0	0				
5.813	0	0				
5.906	0	0				
6.000	0	0				
6.094	0	0				
6.188	0	0				
6.281	0	0				
6.375	0	0				
6.469	0	0				
6.563	0	0				
6.656	0	0				
6.750	0	0				
6.844	0.06	0.03				
6.938	0.76	0.37				
7.031	2.63	1.27				
7.125	6.21	3.01				
7.219	11.92	5.78				
7.313	19.95	9.67				
7.406	30.35	14.71				
7.500	43.07	20.87				
7.594	58.03	28.12				
7.688	75.07	36.38				
7.781	94.04	45.57				
7.875	114.80	55.63				
7.969	137.18	66.48				
8.063	161.03	78.03				
8.156	186.21	90.24				
8.250	212.59	103.02				
8.344	240.03	116.31				
8.438	268.41	130.07				
8.531	208.41	144.23				
8.625	327.59	158.74				
8.719	358.17	173.56				
8.813	389.29	188.64				
8.906	420.86	203.94				
0.500	420.00	203.34				

Hour per day (W/m2) 9.000 452.79 219.42 9.094 485.02 235.03 9.188 517.47 250.76 9.281 550.07 266.55 9.375 582.75 282.39 9.469 615.45 298.24 9.563 648.11 314.06 9.656 680.67 329.84 9.750 713.08 345.55 9.844 745.28 361.15 9.938 777.24 376.64 10.031 808.89 391.98 10.125 840.20 407.15 10.219 871.12 422.13 10.313 901.60 436.90 10.406 931.61 451.44 10.500 961.11 465.74 10.594 990.07 479.77 10.688 1018.43 493.52 10.781 1046.18 506.96 10.875 1073.28 520.09 10.969 1099.6		(cal/cm2	
9.094 485.02 235.03 9.188 517.47 250.76 9.281 550.07 266.55 9.375 582.75 282.39 9.469 615.45 298.24 9.563 648.11 314.06 9.656 680.67 329.84 9.750 713.08 345.55 9.844 745.28 361.15 9.938 777.24 376.64 10.031 808.89 391.98 10.125 840.20 407.15 10.219 871.12 422.13 10.313 901.60 436.90 10.406 931.61 451.44 10.500 961.11 465.74 10.594 990.07 479.77 10.688 1018.43 493.52 10.781 1046.18 506.96 10.875 1073.28 520.09 10.969 1099.69 532.89 11.063 1125.39 545.35 11.438 12	<u>Hour</u>	per day)	(W/m2)
9.188 517.47 250.76 9.281 550.07 266.55 9.375 582.75 282.39 9.469 615.45 298.24 9.563 648.11 314.06 9.656 680.67 329.84 9.750 713.08 345.55 9.844 745.28 361.15 9.938 777.24 376.64 10.031 808.89 391.98 10.125 840.20 407.15 10.219 871.12 422.13 10.313 901.60 436.90 10.406 931.61 451.44 10.500 961.11 465.74 10.594 990.07 479.77 10.688 1018.43 493.52 10.781 1046.18 506.96 10.875 1073.28 520.09 10.969 1099.69 532.89 11.063 1125.39 545.35 11.156 1150.23 557.38 11.250	9.000	452.79	219.42
9.281 550.07 266.55 9.375 582.75 282.39 9.469 615.45 298.24 9.563 648.11 314.06 9.656 680.67 329.84 9.750 713.08 345.55 9.844 745.28 361.15 9.938 777.24 376.64 10.031 808.89 391.98 10.125 840.20 407.15 10.219 871.12 422.13 10.313 901.60 436.90 10.406 931.61 451.44 10.500 961.11 465.74 10.594 990.07 479.77 10.688 1018.43 493.52 10.781 1046.18 506.96 10.875 1073.28 520.09 10.969 1099.69 532.89 11.156 1150.23 557.38 11.250 1173.79 568.80 11.344 1195.97 579.55 11.438 1216.73 589.61 11.531 1236.01 598.95	9.094	485.02	235.03
9.375 582.75 282.39 9.469 615.45 298.24 9.563 648.11 314.06 9.656 680.67 329.84 9.750 713.08 345.55 9.844 745.28 361.15 9.938 777.24 376.64 10.031 808.89 391.98 10.125 840.20 407.15 10.219 871.12 422.13 10.313 901.60 436.90 10.406 931.61 451.44 10.500 961.11 465.74 10.594 990.07 479.77 10.688 1018.43 493.52 10.781 1046.18 506.96 10.875 1073.28 520.09 10.969 1099.69 532.89 11.063 1125.39 545.35 11.156 1150.23 557.38 11.250 1173.79 568.80 11.344 1195.97 579.55 11.438 1216.73 589.61 11.531 1236.01 598.95	9.188	517.47	250.76
9.375 582.75 282.39 9.469 615.45 298.24 9.563 648.11 314.06 9.656 680.67 329.84 9.750 713.08 345.55 9.844 745.28 361.15 9.938 777.24 376.64 10.031 808.89 391.98 10.125 840.20 407.15 10.219 871.12 422.13 10.313 901.60 436.90 10.406 931.61 451.44 10.500 961.11 465.74 10.594 990.07 479.77 10.688 1018.43 493.52 10.781 1046.18 506.96 10.875 1073.28 520.09 10.969 1099.69 532.89 11.063 1125.39 545.35 11.156 1150.23 557.38 11.250 1173.79 568.80 11.344 1195.97 579.55 11.438 1216.73 589.61 11.531 1236.01 598.95	9.281	550.07	266.55
9.469 615.45 298.24 9.563 648.11 314.06 9.656 680.67 329.84 9.750 713.08 345.55 9.844 745.28 361.15 9.938 777.24 376.64 10.031 808.89 391.98 10.125 840.20 407.15 10.219 871.12 422.13 10.313 901.60 436.90 10.406 931.61 451.44 10.500 961.11 465.74 10.594 990.07 479.77 10.688 1018.43 493.52 10.781 1046.18 506.96 10.875 1073.28 520.09 10.969 1099.69 532.89 11.063 1125.39 545.35 11.156 1150.23 557.38 11.250 1173.79 568.80 11.344 1195.97 579.55 11.438 1216.73 589.61 11.531 1236.01 598.95 11.625 1265.61 613.29			
9.563 648.11 314.06 9.656 680.67 329.84 9.750 713.08 345.55 9.844 745.28 361.15 9.938 777.24 376.64 10.031 808.89 391.98 10.125 840.20 407.15 10.219 871.12 422.13 10.313 901.60 436.90 10.406 931.61 451.44 10.500 961.11 465.74 10.594 990.07 479.77 10.688 1018.43 493.52 10.781 1046.18 506.96 10.875 1073.28 520.09 10.969 1099.69 532.89 11.063 1125.39 545.35 11.250 1173.79 568.80 11.344 1195.97 579.55 11.438 1216.73 589.61 11.531 1236.01 598.95 11.625 1265.61 613.29 11.719 1281.97 621.22 11.813 1296.70 628.36 <td></td> <td></td> <td></td>			
9.656 680.67 329.84 9.750 713.08 345.55 9.844 745.28 361.15 9.938 777.24 376.64 10.031 808.89 391.98 10.125 840.20 407.15 10.219 871.12 422.13 10.313 901.60 436.90 10.406 931.61 451.44 10.500 961.11 465.74 10.594 990.07 479.77 10.688 1018.43 493.52 10.781 1046.18 506.96 10.875 1073.28 520.09 10.969 1099.69 532.89 11.063 1125.39 545.35 11.156 1150.23 557.38 11.250 1173.79 568.80 11.344 1195.97 579.55 11.438 1216.73 589.61 11.531 1236.01 598.95 11.625 1265.61 613.29 11.719 1281.97 621.22 11.813 1296.70 628.36<			
9.750 713.08 345.55 9.844 745.28 361.15 9.938 777.24 376.64 10.031 808.89 391.98 10.125 840.20 407.15 10.219 871.12 422.13 10.313 901.60 436.90 10.406 931.61 451.44 10.500 961.11 465.74 10.594 990.07 479.77 10.688 1018.43 493.52 10.781 1046.18 506.96 10.875 1073.28 520.09 10.969 1099.69 532.89 11.063 1125.39 545.35 11.156 1150.23 557.38 11.250 1173.79 568.80 11.344 1195.97 579.55 11.438 1216.73 589.61 11.531 1236.01 598.95 11.625 1265.61 613.29 11.719 1281.97 621.22 11.813 1296.70 628.36 12.094 1330.74 644.8			
9.844 745.28 361.15 9.938 777.24 376.64 10.031 808.89 391.98 10.125 840.20 407.15 10.219 871.12 422.13 10.313 901.60 436.90 10.406 931.61 451.44 10.500 961.11 465.74 10.594 990.07 479.77 10.688 1018.43 493.52 10.781 1046.18 506.96 10.875 1073.28 520.09 10.969 1099.69 532.89 11.063 1125.39 545.35 11.156 1150.23 557.38 11.250 1173.79 568.80 11.344 1195.97 579.55 11.438 1216.73 589.61 11.531 1236.01 598.95 11.625 1265.61 613.29 11.719 1281.97 621.22 11.813 1296.70 628.36 12.000 1321.11 640.19 12.094 1330.74 644			
9.938 777.24 376.64 10.031 808.89 391.98 10.125 840.20 407.15 10.219 871.12 422.13 10.313 901.60 436.90 10.406 931.61 451.44 10.500 961.11 465.74 10.594 990.07 479.77 10.688 1018.43 493.52 10.781 1046.18 506.96 10.875 1073.28 520.09 10.969 1099.69 532.89 11.063 1125.39 545.35 11.156 1150.23 557.38 11.250 1173.79 568.80 11.344 1195.97 579.55 11.438 1216.73 589.61 11.531 1236.01 598.95 11.625 1265.61 613.29 11.719 1281.97 621.22 11.813 1296.70 628.36 12.000 1321.11 640.19 12.094 1330.74 644.85 12.281 1359.58 6			
10.031 808.89 391.98 10.125 840.20 407.15 10.219 871.12 422.13 10.313 901.60 436.90 10.406 931.61 451.44 10.500 961.11 465.74 10.594 990.07 479.77 10.688 1018.43 493.52 10.781 1046.18 506.96 10.875 1073.28 520.09 10.969 1099.69 532.89 11.063 1125.39 545.35 11.156 1150.23 557.38 11.250 1173.79 568.80 11.344 1195.97 579.55 11.438 1216.73 589.61 11.531 1236.01 598.95 11.625 1265.61 613.29 11.719 1281.97 621.22 11.813 1296.70 628.36 11.906 1309.76 634.69 12.094 1330.74 644.85 12.188 1345.66 652.08 12.281 1359.58 <td< td=""><td></td><td></td><td></td></td<>			
10.125 840.20 407.15 10.219 871.12 422.13 10.313 901.60 436.90 10.406 931.61 451.44 10.500 961.11 465.74 10.594 990.07 479.77 10.688 1018.43 493.52 10.781 1046.18 506.96 10.875 1073.28 520.09 10.969 1099.69 532.89 11.063 1125.39 545.35 11.156 1150.23 557.38 11.250 1173.79 568.80 11.344 1195.97 579.55 11.438 1216.73 589.61 11.531 1236.01 598.95 11.625 1265.61 613.29 11.719 1281.97 621.22 11.813 1296.70 628.36 12.094 1330.74 644.85 12.188 1345.66 652.08 12.281 1359.58 658.83 12.375 1372.50 665.09 12.469 1384.38 <t< td=""><td></td><td></td><td></td></t<>			
10.219 871.12 422.13 10.313 901.60 436.90 10.406 931.61 451.44 10.500 961.11 465.74 10.594 990.07 479.77 10.688 1018.43 493.52 10.781 1046.18 506.96 10.875 1073.28 520.09 10.969 1099.69 532.89 11.063 1125.39 545.35 11.156 1150.23 557.38 11.250 1173.79 568.80 11.344 1195.97 579.55 11.438 1216.73 589.61 11.531 1236.01 598.95 11.625 1265.61 613.29 11.719 1281.97 621.22 11.813 1296.70 628.36 12.000 1321.11 640.19 12.094 1330.74 644.85 12.281 1359.58 658.83 12.375 1372.50 665.09 12.469 1384.38 670.85 12.750 1413.76 <			
10.313 901.60 436.90 10.406 931.61 451.44 10.500 961.11 465.74 10.594 990.07 479.77 10.688 1018.43 493.52 10.781 1046.18 506.96 10.875 1073.28 520.09 10.969 1099.69 532.89 11.063 1125.39 545.35 11.156 1150.23 557.38 11.250 1173.79 568.80 11.344 1195.97 579.55 11.438 1216.73 589.61 11.531 1236.01 598.95 11.625 1265.61 613.29 11.719 1281.97 621.22 11.813 1296.70 628.36 11.906 1309.76 634.69 12.000 1321.11 640.19 12.094 1330.74 644.85 12.281 1359.58 658.83 12.375 1372.50 665.09 12.469 1384.38 670.85 12.750 1413.76			
10.406 931.61 451.44 10.500 961.11 465.74 10.594 990.07 479.77 10.688 1018.43 493.52 10.781 1046.18 506.96 10.875 1073.28 520.09 10.969 1099.69 532.89 11.063 1125.39 545.35 11.156 1150.23 557.38 11.250 1173.79 568.80 11.344 1195.97 579.55 11.438 1216.73 589.61 11.531 1236.01 598.95 11.625 1265.61 613.29 11.719 1281.97 621.22 11.813 1296.70 628.36 11.906 1309.76 634.69 12.000 1321.11 640.19 12.094 1330.74 644.85 12.281 1359.58 658.83 12.375 1372.50 665.09 12.469 1384.38 670.85 12.563 1395.23 676.11 12.656 1405.03			_
10.500 961.11 465.74 10.594 990.07 479.77 10.688 1018.43 493.52 10.781 1046.18 506.96 10.875 1073.28 520.09 10.969 1099.69 532.89 11.063 1125.39 545.35 11.156 1150.23 557.38 11.250 1173.79 568.80 11.344 1195.97 579.55 11.438 1216.73 589.61 11.531 1236.01 598.95 11.625 1265.61 613.29 11.719 1281.97 621.22 11.813 1296.70 628.36 12.000 1321.11 640.19 12.094 1330.74 644.85 12.188 1345.66 652.08 12.281 1359.58 658.83 12.375 1372.50 665.09 12.469 1384.38 670.85 12.563 1395.23 676.11 12.656 1405.03 680.85 12.750 1413.76			
10.594 990.07 479.77 10.688 1018.43 493.52 10.781 1046.18 506.96 10.875 1073.28 520.09 10.969 1099.69 532.89 11.063 1125.39 545.35 11.156 1150.23 557.38 11.250 1173.79 568.80 11.344 1195.97 579.55 11.438 1216.73 589.61 11.531 1236.01 598.95 11.625 1265.61 613.29 11.719 1281.97 621.22 11.813 1296.70 628.36 11.906 1309.76 634.69 12.000 1321.11 640.19 12.094 1330.74 644.85 12.188 1345.66 652.08 12.281 1359.58 658.83 12.375 1372.50 665.09 12.469 1384.38 670.85 12.563 1395.23 676.11 12.656 1405.03 680.85 12.750 1413.76			
10.688 1018.43 493.52 10.781 1046.18 506.96 10.875 1073.28 520.09 10.969 1099.69 532.89 11.063 1125.39 545.35 11.156 1150.23 557.38 11.250 1173.79 568.80 11.344 1195.97 579.55 11.438 1216.73 589.61 11.531 1236.01 598.95 11.625 1265.61 613.29 11.719 1281.97 621.22 11.813 1296.70 628.36 11.906 1309.76 634.69 12.000 1321.11 640.19 12.094 1330.74 644.85 12.188 1345.66 652.08 12.281 1359.58 658.83 12.375 1372.50 665.09 12.469 1384.38 670.85 12.563 1395.23 676.11 12.656 1405.03 680.85 12.750 1413.76 685.08 12.844 1421.41			
10.781 1046.18 506.96 10.875 1073.28 520.09 10.969 1099.69 532.89 11.063 1125.39 545.35 11.156 1150.23 557.38 11.250 1173.79 568.80 11.344 1195.97 579.55 11.438 1216.73 589.61 11.531 1236.01 598.95 11.625 1265.61 613.29 11.719 1281.97 621.22 11.813 1296.70 628.36 11.906 1309.76 634.69 12.000 1321.11 640.19 12.094 1330.74 644.85 12.188 1345.66 652.08 12.281 1359.58 658.83 12.375 1372.50 665.09 12.469 1384.38 670.85 12.563 1395.23 676.11 12.656 1405.03 680.85 12.750 1413.76 685.08 <td< td=""><td></td><td></td><td></td></td<>			
10.875 1073.28 520.09 10.969 1099.69 532.89 11.063 1125.39 545.35 11.156 1150.23 557.38 11.250 1173.79 568.80 11.344 1195.97 579.55 11.438 1216.73 589.61 11.531 1236.01 598.95 11.625 1265.61 613.29 11.719 1281.97 621.22 11.813 1296.70 628.36 11.906 1309.76 634.69 12.000 1321.11 640.19 12.094 1330.74 644.85 12.188 1345.66 652.08 12.281 1359.58 658.83 12.375 1372.50 665.09 12.469 1384.38 670.85 12.563 1395.23 676.11 12.656 1405.03 680.85 12.750 1413.76 685.08 12.844 1421.41 688.79 12.938 1427.98 691.98 13.031 1433.46		20201.0	
10.969 1099.69 532.89 11.063 1125.39 545.35 11.156 1150.23 557.38 11.250 1173.79 568.80 11.344 1195.97 579.55 11.438 1216.73 589.61 11.531 1236.01 598.95 11.625 1265.61 613.29 11.719 1281.97 621.22 11.813 1296.70 628.36 11.906 1309.76 634.69 12.000 1321.11 640.19 12.094 1330.74 644.85 12.188 1345.66 652.08 12.281 1359.58 658.83 12.375 1372.50 665.09 12.469 1384.38 670.85 12.563 1395.23 676.11 12.656 1405.03 680.85 12.750 1413.76 685.08 12.844 1421.41 688.79 12.938 1427.98 691.98 13.031 1433.46 694.63 13.313 1452.14			
11.063 1125.39 545.35 11.156 1150.23 557.38 11.250 1173.79 568.80 11.344 1195.97 579.55 11.438 1216.73 589.61 11.531 1236.01 598.95 11.625 1265.61 613.29 11.719 1281.97 621.22 11.813 1296.70 628.36 11.906 1309.76 634.69 12.000 1321.11 640.19 12.094 1330.74 644.85 12.188 1345.66 652.08 12.281 1359.58 658.83 12.375 1372.50 665.09 12.469 1384.38 670.85 12.563 1395.23 676.11 12.656 1405.03 680.85 12.750 1413.76 685.08 12.844 1421.41 688.79 12.938 1427.98 691.98 13.031 1433.46 694.63 13.219 1446.31 700.86 13.313 1452.14			
11.156 1150.23 557.38 11.250 1173.79 568.80 11.344 1195.97 579.55 11.438 1216.73 589.61 11.531 1236.01 598.95 11.625 1265.61 613.29 11.719 1281.97 621.22 11.813 1296.70 628.36 11.906 1309.76 634.69 12.000 1321.11 640.19 12.094 1330.74 644.85 12.188 1345.66 652.08 12.281 1359.58 658.83 12.375 1372.50 665.09 12.469 1384.38 670.85 12.563 1395.23 676.11 12.656 1405.03 680.85 12.750 1413.76 685.08 12.844 1421.41 688.79 12.938 1427.98 691.98 13.031 1433.46 694.63 13.125 1439.17 697.40 13.219 1446.31 700.86 13.406 1456.64			
11.250 1173.79 568.80 11.344 1195.97 579.55 11.438 1216.73 589.61 11.531 1236.01 598.95 11.625 1265.61 613.29 11.719 1281.97 621.22 11.813 1296.70 628.36 11.906 1309.76 634.69 12.000 1321.11 640.19 12.094 1330.74 644.85 12.188 1345.66 652.08 12.281 1359.58 658.83 12.375 1372.50 665.09 12.469 1384.38 670.85 12.563 1395.23 676.11 12.656 1405.03 680.85 12.750 1413.76 685.08 12.844 1421.41 688.79 12.938 1427.98 691.98 13.031 1433.46 694.63 13.219 1446.31 700.86 13.313 1452.14 703.68 13.406 1456.64 705.86 13.500 1459.80			
11.344 1195.97 579.55 11.438 1216.73 589.61 11.531 1236.01 598.95 11.625 1265.61 613.29 11.719 1281.97 621.22 11.813 1296.70 628.36 11.906 1309.76 634.69 12.000 1321.11 640.19 12.094 1330.74 644.85 12.188 1345.66 652.08 12.281 1359.58 658.83 12.375 1372.50 665.09 12.469 1384.38 670.85 12.563 1395.23 676.11 12.656 1405.03 680.85 12.750 1413.76 685.08 12.844 1421.41 688.79 12.938 1427.98 691.98 13.031 1433.46 694.63 13.219 1446.31 700.86 13.313 1452.14 703.68 13.406 1456.64 705.86 13.500 1459.80 707.39			
11.438 1216.73 589.61 11.531 1236.01 598.95 11.625 1265.61 613.29 11.719 1281.97 621.22 11.813 1296.70 628.36 11.906 1309.76 634.69 12.000 1321.11 640.19 12.094 1330.74 644.85 12.188 1345.66 652.08 12.281 1359.58 658.83 12.375 1372.50 665.09 12.469 1384.38 670.85 12.563 1395.23 676.11 12.656 1405.03 680.85 12.750 1413.76 685.08 12.844 1421.41 688.79 12.938 1427.98 691.98 13.031 1433.46 694.63 13.125 1439.17 697.40 13.219 1446.31 700.86 13.406 1456.64 705.86 13.500 1459.80 707.39			
11.531 1236.01 598.95 11.625 1265.61 613.29 11.719 1281.97 621.22 11.813 1296.70 628.36 11.906 1309.76 634.69 12.000 1321.11 640.19 12.094 1330.74 644.85 12.188 1345.66 652.08 12.281 1359.58 658.83 12.375 1372.50 665.09 12.469 1384.38 670.85 12.563 1395.23 676.11 12.656 1405.03 680.85 12.750 1413.76 685.08 12.844 1421.41 688.79 12.938 1427.98 691.98 13.031 1433.46 694.63 13.125 1439.17 697.40 13.219 1446.31 700.86 13.313 1452.14 703.68 13.406 1456.64 705.86 13.500 1459.80 707.39	_		
11.625 1265.61 613.29 11.719 1281.97 621.22 11.813 1296.70 628.36 11.906 1309.76 634.69 12.000 1321.11 640.19 12.094 1330.74 644.85 12.188 1345.66 652.08 12.281 1359.58 658.83 12.375 1372.50 665.09 12.469 1384.38 670.85 12.563 1395.23 676.11 12.656 1405.03 680.85 12.750 1413.76 685.08 12.844 1421.41 688.79 12.938 1427.98 691.98 13.031 1433.46 694.63 13.125 1439.17 697.40 13.219 1446.31 700.86 13.406 1456.64 705.86 13.500 1459.80 707.39			
11.719 1281.97 621.22 11.813 1296.70 628.36 11.906 1309.76 634.69 12.000 1321.11 640.19 12.094 1330.74 644.85 12.188 1345.66 652.08 12.281 1359.58 658.83 12.375 1372.50 665.09 12.469 1384.38 670.85 12.563 1395.23 676.11 12.656 1405.03 680.85 12.750 1413.76 685.08 12.844 1421.41 688.79 12.938 1427.98 691.98 13.031 1433.46 694.63 13.125 1439.17 697.40 13.219 1446.31 700.86 13.313 1452.14 703.68 13.406 1456.64 705.86 13.500 1459.80 707.39			
11.813 1296.70 628.36 11.906 1309.76 634.69 12.000 1321.11 640.19 12.094 1330.74 644.85 12.188 1345.66 652.08 12.281 1359.58 658.83 12.375 1372.50 665.09 12.469 1384.38 670.85 12.563 1395.23 676.11 12.656 1405.03 680.85 12.750 1413.76 685.08 12.844 1421.41 688.79 12.938 1427.98 691.98 13.031 1433.46 694.63 13.125 1439.17 697.40 13.219 1446.31 700.86 13.313 1452.14 703.68 13.406 1456.64 705.86 13.500 1459.80 707.39			
11.906 1309.76 634.69 12.000 1321.11 640.19 12.094 1330.74 644.85 12.188 1345.66 652.08 12.281 1359.58 658.83 12.375 1372.50 665.09 12.469 1384.38 670.85 12.563 1395.23 676.11 12.656 1405.03 680.85 12.750 1413.76 685.08 12.844 1421.41 688.79 12.938 1427.98 691.98 13.031 1433.46 694.63 13.125 1439.17 697.40 13.219 1446.31 700.86 13.313 1452.14 703.68 13.406 1456.64 705.86 13.500 1459.80 707.39	_		-
12.000 1321.11 640.19 12.094 1330.74 644.85 12.188 1345.66 652.08 12.281 1359.58 658.83 12.375 1372.50 665.09 12.469 1384.38 670.85 12.563 1395.23 676.11 12.656 1405.03 680.85 12.750 1413.76 685.08 12.844 1421.41 688.79 12.938 1427.98 691.98 13.031 1433.46 694.63 13.125 1439.17 697.40 13.219 1446.31 700.86 13.313 1452.14 703.68 13.406 1456.64 705.86 13.500 1459.80 707.39			
12.094 1330.74 644.85 12.188 1345.66 652.08 12.281 1359.58 658.83 12.375 1372.50 665.09 12.469 1384.38 670.85 12.563 1395.23 676.11 12.656 1405.03 680.85 12.750 1413.76 685.08 12.844 1421.41 688.79 12.938 1427.98 691.98 13.031 1433.46 694.63 13.125 1439.17 697.40 13.219 1446.31 700.86 13.313 1452.14 703.68 13.406 1456.64 705.86 13.500 1459.80 707.39			
12.1881345.66652.0812.2811359.58658.8312.3751372.50665.0912.4691384.38670.8512.5631395.23676.1112.6561405.03680.8512.7501413.76685.0812.8441421.41688.7912.9381427.98691.9813.0311433.46694.6313.1251439.17697.4013.2191446.31700.8613.3131452.14703.6813.4061456.64705.8613.5001459.80707.39			
12.2811359.58658.8312.3751372.50665.0912.4691384.38670.8512.5631395.23676.1112.6561405.03680.8512.7501413.76685.0812.8441421.41688.7912.9381427.98691.9813.0311433.46694.6313.1251439.17697.4013.2191446.31700.8613.3131452.14703.6813.4061456.64705.8613.5001459.80707.39			
12.375 1372.50 665.09 12.469 1384.38 670.85 12.563 1395.23 676.11 12.656 1405.03 680.85 12.750 1413.76 685.08 12.844 1421.41 688.79 12.938 1427.98 691.98 13.031 1433.46 694.63 13.125 1439.17 697.40 13.219 1446.31 700.86 13.313 1452.14 703.68 13.406 1456.64 705.86 13.500 1459.80 707.39			
12.469 1384.38 670.85 12.563 1395.23 676.11 12.656 1405.03 680.85 12.750 1413.76 685.08 12.844 1421.41 688.79 12.938 1427.98 691.98 13.031 1433.46 694.63 13.125 1439.17 697.40 13.219 1446.31 700.86 13.313 1452.14 703.68 13.406 1456.64 705.86 13.500 1459.80 707.39			
12.563 1395.23 676.11 12.656 1405.03 680.85 12.750 1413.76 685.08 12.844 1421.41 688.79 12.938 1427.98 691.98 13.031 1433.46 694.63 13.125 1439.17 697.40 13.219 1446.31 700.86 13.313 1452.14 703.68 13.406 1456.64 705.86 13.500 1459.80 707.39			
12.656 1405.03 680.85 12.750 1413.76 685.08 12.844 1421.41 688.79 12.938 1427.98 691.98 13.031 1433.46 694.63 13.125 1439.17 697.40 13.219 1446.31 700.86 13.313 1452.14 703.68 13.406 1456.64 705.86 13.500 1459.80 707.39			
12.750 1413.76 685.08 12.844 1421.41 688.79 12.938 1427.98 691.98 13.031 1433.46 694.63 13.125 1439.17 697.40 13.219 1446.31 700.86 13.313 1452.14 703.68 13.406 1456.64 705.86 13.500 1459.80 707.39			
12.844 1421.41 688.79 12.938 1427.98 691.98 13.031 1433.46 694.63 13.125 1439.17 697.40 13.219 1446.31 700.86 13.313 1452.14 703.68 13.406 1456.64 705.86 13.500 1459.80 707.39			
12.938 1427.98 691.98 13.031 1433.46 694.63 13.125 1439.17 697.40 13.219 1446.31 700.86 13.313 1452.14 703.68 13.406 1456.64 705.86 13.500 1459.80 707.39			
13.031 1433.46 694.63 13.125 1439.17 697.40 13.219 1446.31 700.86 13.313 1452.14 703.68 13.406 1456.64 705.86 13.500 1459.80 707.39			
13.125 1439.17 697.40 13.219 1446.31 700.86 13.313 1452.14 703.68 13.406 1456.64 705.86 13.500 1459.80 707.39			
13.219 1446.31 700.86 13.313 1452.14 703.68 13.406 1456.64 705.86 13.500 1459.80 707.39			
13.313 1452.14 703.68 13.406 1456.64 705.86 13.500 1459.80 707.39			
13.4061456.64705.8613.5001459.80707.39			
13.500 1459.80 707.39			
13.594 1461.61 708.27			
	13.594	1461.61	708.27

	(cal/cm2	
<u>Hour</u>	per day)	(W/m2)
13.688	1462.07	708.49
13.781	1461.17	708.06
13.875	1458.92	706.97
13.969	1455.32	705.23
14.063	1436.71	696.21
14.156	1429.13	692.53
14.250	1419.74	687.98
14.344	1409.26	682.91
14.438	1397.72	677.31
14.531	1385.13	671.21
14.625	1384.55	670.93
14.719	1369.76	663.76
14.813	1353.96	656.11
14.906	1337.16	647.97
15.000	1319.39	639.35
15.094	1300.65	630.27
15.188	1283.33	621.88
15.281	1253.02	607.19
15.375	1233.61	597.79
15.469	1213.11	587.85
15.563	1191.55	577.40
15.656	1168.95	566.46
15.750	1145.36	555.02
15.844	1120.81	543.13
15.938	1095.34	530.79
16.031	1068.99	518.02
16.125	1041.81	504.84
16.219	1013.94	491.34
16.313	985.44	477.53
16.406	956.36	463.44
16.500	926.74	449.08
16.594	896.60	434.48
16.688	865.98	419.64
16.781	834.94	404.60
16.875	803.51	389.37
16.969	771.74	373.97
17.063	739.68	358.43
17.156	707.44	342.81
17.250	675.03	327.11
17.344	642.46	311.33
17.438	609.81	295.50
17.531	577.11	279.66
17.625	544.43	263.82
17.719	511.84	248.03
17.813	479.41	232.31
17.906	447.20	216.70
18.000	415.29	201.24
18.094	383.76	185.96
18.188	352.69	170.91
18.281	322.18	156.12

	(cal/cm2	
<u>Hour</u>	per day)	(W/m2)
18.375	292.31	141.65
18.469	263.20	127.54
18.563	234.94	113.85
18.656	207.64	100.62
18.750	181.44	87.92
18.844	156.46	75.82
18.938	132.84	64.37
19.031	110.72	53.65
19.125	90.26	43.74
19.219	71.61	34.70
19.313	54.94	26.62
19.406	40.38	19.57
19.500	28.09	13.61
19.594	18.15	8.79
19.688	10.58	5.13
19.781	5.32	2.58
19.875	2.11	1.02
19.969	0.54	0.26
20.063	0.01	0.00
20.156	0	0
20.250	0	0
20.344	0	0
20.438	0	0
20.531	0	0
20.625	0	0
20.719	0	0
20.813	0	0
20.906	0	0
21.000	0	0
21.094	0	0
21.188	0	0
21.281	0	0
21.375	0	0
21.469	0	0
21.563	0	0
21.656	0	0
21.750	0	0
21.844	0	0
21.938	0	0
22.031	0	0
22.125	0	0
22.219	0	0
22.313	0	0
22.406	0	0
22.500	0	0
22.594	0	0
22.688	0	0
22.781	0	0
22.875	0	0
22.969	0	0

	(cal/cm2		
<u>Hour</u>	per day)	(W/m2)	
23.063	0	0	
23.156	0	0	
23.250	0	0	
23.344	0	0	
23.438	0	0	
23.531	0	0	
23.625	0	0	
23.719	0	0	
23.813	0	0	
23.906	0	0	
24.000	0	0	
	-	209.1	= average

Calculation of long wave radiation:

					Emissivity	Emissivity	Long wave	
	Air	Dew point	Cloud	Vapor	without	with	radiation	Long wave
	temp.	temp.	cover	pressure	clouds	clouds	(cal/cm2	radiation
<u>Hour</u>	(°C)	<u>(°C)</u>	(decimal)	(mm Hg)	(unitless)	(unitless)	per day)	(W/m2)
12:00 AM	27.44	23.44	0.00	21.71	0.888	0.888	822.38	398.51
1:00 AM	27.02	23.32	0.00	21.55	0.887	0.887	817.11	395.96
2:00 AM	27.32	23.32	0.00	21.55	0.887	0.887	820.27	397.49
3:00 AM	26.34	23.32	0.00	21.55	0.887	0.887	810.00	392.51
4:00 AM	25.88	23.42	0.00	21.68	0.888	0.888	805.90	390.53
5:00 AM	26.00	23.52	0.15	21.81	0.889	0.892	810.93	392.97
6:00 AM	27.46	24.10	0.09	22.59	0.893	0.894	828.34	401.40
7:00 AM	29.88	24.22	0.00	22.75	0.893	0.893	854.13	413.90
8:00 AM	32.24	24.10	0.00	22.59	0.891	0.891	879.17	426.03
9:00 AM	33.78	23.66	0.00	22.00	0.887	0.887	893.02	432.74
10:00 AM	34.78	23.32	0.00	21.55	0.884	0.884	901.65	436.92
11:00 AM	35.48	23.32	0.00	21.55	0.883	0.883	909.58	440.77
12:00 PM	35.80	22.32	0.20	20.29	0.876	0.882	911.51	441.70
1:00 PM	36.66	22.24	0.20	20.19	0.875	0.881	920.70	446.15
2:00 PM	36.78	21.68	0.09	19.51	0.870	0.871	912.57	442.22
3:00 PM	35.90	21.90	0.11	19.77	0.872	0.874	905.12	438.61
4:00 PM	35.24	22.80	0.00	20.89	0.879	0.879	902.79	437.48
5:00 PM	34.00	22.78	0.03	20.86	0.880	0.880	888.81	430.70
6:00 PM	32.44	23.34	0.00	21.58	0.885	0.885	875.66	424.33
7:00 PM	30.88	23.56	0.00	21.87	0.887	0.887	860.17	416.82
8:00 PM	30.34	23.12	0.00	21.29	0.884	0.884	851.06	412.41
9:00 PM	29.44	23.34	0.00	21.58	0.886	0.886	842.96	408.48
10:00 PM	29.00	23.56	0.00	21.87	0.888	0.888	839.83	406.97
11:00 PM	28.44	23.22	0.00	21.42	0.885	0.885	831.41	402.89
							Average =	417.9

Daily average total atmos. radiation (W/m2) = Daily avg short wave radiation + Daily avg long wave radiation = 209.1 W/m2 + 417.9 W/m2

= 627.0 W/m2 for Simulation Period 1

Solar (short wave) radiation calculated by QUAL2K model (from "Diel Output" tab)

ALZK MOGCI		atput tabj
	(cal/cm2	(),,,,,
<u>Hour</u>	per day)	(W/m2)
0.000	0	0
0.094	0	0
0.188	0	0
0.281	0	0
0.375	0	0
0.469	0	0
0.563	0	0
0.656	0	0
0.750	0	0
0.844	0	0
0.938	0	0
1.031	0	0
1.125	0	0
1.219	0	0
1.313	0	0
1.406	0	0
1.500	0	0
1.594	0	0
1.688	0	0
1.781	0	0
1.875	0	0
1.969	0	0
2.063	0	0
2.156	0	0
2.250	0	0
2.344	0	0
2.438	0	0
2.531	0	0
2.625	0	0
2.719	0	0
2.813	0	0
2.906	0	0
3.000	0	0
3.094	0	0
3.188	0	0
3.281	0	0
3.375	0	0
3.469	0	0
3.563	0	0
3.656	0	0
3.750	0	0
3.844	0	0
3.938	0	0
4.031	0	0
4.125	0	0
4.219	0	0
	ŭ	Ŭ

	(cal/cm2	
<u>Hour</u>	per day)	(W/m2)
4.313	0	0
4.406	0	0
4.500	0	0
4.594	0	0
4.688	0	0
4.781	0	0
4.875	0	0
4.969	0	0
5.063	0	0
5.156	0	0
5.250	0	0
5.344	0	0
5.438	0	0
5.531	0	0
5.625	0	0
5.719	0	0
5.813	0	0
5.906	0	0
6.000	0	0
6.094	0	0
6.188	0	0
6.281	0	0
6.375	0	0
6.469	0	0
6.563	0	0
6.656	0	0
6.750	0	0
6.844	0	0
6.938	0	0
7.031	0.82	0.40
7.031	1.86	
7.123	5.23	0.90 2.53
	3.23 10.74	
7.313		5.20
7.406	18.54	8.98
7.500	28.58	13.85
7.594	40.71	19.73
7.688	54.69	26.50
7.781	70.22	34.03
7.875	87.00	42.16
7.969	104.72	50.75
8.063	123.03	59.62
8.156	144.94	70.24
8.250	169.91	82.34
8.344	196.42	95.18
8.438	224.34	108.71
8.531	253.54	122.86
8.625	283.88	137.56
8.719	315.24	152.76
8.813	347.49	168.39
8.906	380.49	184.38

	(cal/cm2	
<u>Hour</u>	per day)	(W/m2)
9.000	414.12	200.68
9.094	448.25	217.21
9.188	481.02	233.09
9.281	514.05	249.10
9.375	547.29	265.21
9.469	580.64	281.37
9.563	614.05	297.56
9.656	647.45	313.74
9.750	680.77	329.89
9.844	713.94	345.96
9.938	746.92	361.94
10.031	779.64	377.80
10.125	811.32	393.15
10.219	841.05	407.56
10.313	870.19	421.68
10.406	898.71	435.50
10.500	926.55	448.99
10.594	953.68	462.14
10.688	980.05	474.92
10.781	1005.63	487.31
10.781	1003.03	499.31
10.873	1050.59	510.89
11.063	1077.27	522.03
11.156	1103.42	534.70
11.250	1130.77	547.95
11.344	1157.25	560.78
11.438	1182.83	573.18
11.531	1207.45	585.11
11.625	1231.09	596.57
11.719	1253.68	607.51
11.813	1275.21	617.95
11.906	1295.63	627.84
12.000	1314.90	637.18
12.094	1320.46	639.87
12.188	1346.81	652.64
12.281	1359.47	658.78
12.375	1370.96	664.34
12.469	1381.28	669.35
12.563	1390.39	673.76
12.656	1398.31	677.60
12.750	1405.00	680.84
12.844	1410.48	683.50
12.938	1414.72	685.55
13.031	1417.73	687.01
13.125	1418.70	687.48
13.219	1416.61	686.47
13.313	1412.97	684.70
13.406	1407.79	682.19
13.500	1401.09	678.94
13.594	1392.88	674.97

	(cal/cm2	
<u>Hour</u>	per day)	(W/m2)
13.688	1383.18	670.27
13.781	1372.01	664.85
13.875	1359.40	658.74
13.969	1345.38	651.95
14.063	1329.98	644.49
14.156	1330.14	644.56
14.250	1336.30	647.55
14.344	1339.80	649.24
14.438	1340.65	649.66
14.531	1338.87	648.79
14.625	1334.49	646.67
14.719	1327.53	643.30
14.813	1318.05	638.71
14.906	1293.84	626.97
15.000	1279.63	620.09
15.094	1263.09	612.07
15.188	1241.48	601.60
15.281	1217.80	590.13
15.375	1203.29	583.09
15.469	1175.43	569.59
15.563	1145.76	555.22
15.656	1114.39	540.01
15.750	1081.45	524.05
15.844	1047.04	507.38
15.938	1011.30	490.06
16.031	974.36	472.16
16.125	943.32	457.12
16.219	924.83	448.16
16.313	904.76	438.43
16.406	883.18	427.97
16.500	860.16	416.82
16.594	835.79	405.01
16.688	810.15	392.59
16.781	783.32	379.58
16.875	755.39	366.05
16.969	726.46	352.03
17.063	696.62	337.57
17.156	665.22	322.35
17.250	628.84	304.73
17.344	596.93	289.26
17.438	564.88	273.73
17.531	532.76	258.17
17.625	500.65	242.61
17.719	468.61	227.08
17.813	436.73	211.63
17.906	405.09	196.30
18.000	373.79	181.13
18.094	342.91	166.17
18.188	312.47	151.42
18.281	282.70	136.99

	(cal/cm2	
<u>Hour</u>	per day)	(W/m2)
18.375	253.71	122.94
18.469	225.59	109.32
18.563	198.48	96.18
18.656	172.51	83.60
18.750	147.81	71.63
18.844	124.52	60.34
18.938	102.81	49.82
19.031	82.83	40.14
19.125	64.76	31.38
19.219	48.75	23.62
19.313	34.96	16.94
19.406	23.52	11.40
19.500	14.51	7.03
19.594	7.90	3.83
19.688	3.58	1.73
19.781	1.18	0.57
19.875	0.18	0.09
19.969	0	0
20.063	0	0
20.156	0	0
20.250	0	0
20.344	0	0
20.438	0	0
20.531	0	0
20.625	0	0
20.719	0	0
20.813	0	0
20.906	0	0
21.000	0	0
21.094	0	0
21.188	0	0
21.281	0	0
21.375	0	0
21.469	0	0
21.563	0	0
21.656	0	0
21.750	0	0
21.844	0	0
21.938	0	0
22.031	0	0
22.125	0	0
22.219	0	0
22.313	0	0
22.406	0	0
22.500	0	0
22.594	0	0
22.688	0	0
22.781	0	0
22.875	0	0
22.969	0	0
	Ŭ	3

	(cal/cm2		
<u>Hour</u>	per day)	(W/m2)	
23.063	0	0	
23.156	0	0	
23.250	0	0	
23.344	0	0	
23.438	0	0	
23.531	0	0	
23.625	0	0	
23.719	0	0	
23.813	0	0	
23.906	0	0	
24.000	0	0	
	•	199.0	= average

Calculation of long wave radiation:

					Emissivity	Emissivity	Long wave	
	Air	Dew point	Cloud	Vapor	without	with	radiation	Long wave
	temp.	temp.	cover	pressure	clouds	clouds	(cal/cm2	radiation
<u>Hour</u>	(°C)	<u>(°C)</u>	(decimal)	(mm Hg)	(unitless)	(unitless)	per day)	(W/m2)
12:00 AM	27.08	23.20	0.25	21.40	0.886	0.895	825.58	400.06
1:00 AM	26.55	23.33	0.25	21.57	0.887	0.897	820.89	397.79
2:00 AM	26.00	23.33	0.28	21.57	0.887	0.899	817.35	396.07
3:00 AM	25.55	23.48	0.14	21.76	0.889	0.892	805.60	390.38
4:00 AM	25.28	23.48	0.03	21.76	0.889	0.889	800.23	387.78
5:00 AM	25.15	23.48	0.03	21.76	0.889	0.889	798.88	387.12
6:00 AM	26.68	23.63	0.19	21.96	0.889	0.895	820.62	397.66
7:00 AM	28.45	23.45	0.09	21.72	0.887	0.889	834.41	404.34
8:00 AM	30.00	23.30	0.44	21.53	0.885	0.914	876.38	424.68
9:00 AM	30.95	22.93	0.22	21.05	0.882	0.889	863.25	418.32
10:00 AM	33.18	22.90	0.14	21.01	0.881	0.884	883.49	428.12
11:00 AM	34.43	22.35	0.22	20.32	0.876	0.884	897.46	434.89
12:00 PM	35.43	21.80	0.09	19.65	0.872	0.873	898.46	435.38
1:00 PM	36.53	21.40	0.17	19.18	0.868	0.873	910.89	441.40
2:00 PM	36.38	21.40	0.33	19.18	0.868	0.884	921.19	446.39
3:00 PM	35.40	21.53	0.03	19.33	0.870	0.870	894.81	433.61
4:00 PM	35.68	21.25	0.33	19.00	0.868	0.883	911.98	441.93
5:00 PM	34.60	21.95	0.11	19.83	0.873	0.875	890.80	431.66
6:00 PM	32.63	21.83	0.03	19.69	0.873	0.873	866.49	419.88
7:00 PM	31.13	21.95	0.03	19.83	0.875	0.875	851.09	412.43
8:00 PM	30.13	21.95	0.00	19.83	0.875	0.875	840.22	407.16
9:00 PM	29.58	21.95	0.03	19.83	0.875	0.875	834.49	404.38
10:00 PM	28.75	22.35	0.00	20.32	0.879	0.879	828.44	401.45
11:00 PM	27.63	22.65	0.03	20.70	0.881	0.882	818.91	396.83
							Average =	414.2

Daily average total atmos. radiation (W/m2) = Daily avg short wave radiation + Daily avg long wave radiation = 199.0 W/m2 + 414.2 W/m2

= 613.2 W/m2 for Simulation Period 2

CALCULATION OF DAILY AVERAGE ATMOSPHERIC HEAT LOAD FOR SIMULATION PERIOD 3

Solar (short wave) radiation calculated by QUAL2K model (from "Diel Output" tab)

ALZK Moder i		<u>atput tabj</u>
	(cal/cm2	
<u>Hour</u>	per day)	<u>(W/m2)</u>
0.000	0	0
0.094	0	0
0.188	0	0
0.281	0	0
0.375	0	0
0.469	0	0
0.563	0	0
0.656	0	0
0.750	0	0
0.844	0	0
0.938	0	0
1.031	0	0
1.125	0	0
1.219	0	0
1.313	0	0
1.406	0	0
1.500	0	0
1.594	0	0
1.688	0	0
1.781	0	0
1.875	0	0
1.969	0	0
2.063	0	0
2.156	0	0
2.250	0	0
2.344	0	0
2.438	0	0
2.531	0	0
2.625	0	0
2.023	0	0
2.719		
	0	0
2.906 3.000	0 0	0 0
3.094	0	0
3.188	0	0
3.281	0	0
3.375	0	0
3.469	0	0
3.563	0	0
3.656	0	0
3.750	0	0
3.844	0	0
3.938	0	0
4.031	0	0
4.125	0	0
4.219	0	0

	(cal/cm2	
<u>Hour</u>	per day)	(W/m2)
4.313	0	0
4.406	0	0
4.500	0	0
4.594	0	0
4.688	0	0
4.781	0	0
4.875	0	0
4.969	0	0
5.063	0	0
5.156	0	0
5.250	0	0
5.344	0	0
5.438	0	0
5.531	0	0
5.625	0	0
5.719	0	0
5.813	0	0
5.906	0	0
6.000	0	0
6.094	0	0
6.188	0	0
6.281	0	0
6.375	0	0
6.469	0	0
6.563	0	0
6.656	0	0
6.750	0	0
6.844	0	0
	0	0
6.938	0	0
7.031 7.125	0	0
7.125	_	
	0	0
7.313	0.20	0.10
7.406	1.31	0.63
7.500	3.94	1.91
7.594	8.66	4.20
7.688	15.80	7.66
7.781	25.46	12.34
7.875	37.62	18.23
7.969	52.15	25.27
8.063	68.90	33.39
8.156	87.68	42.49
8.250	108.31	52.49
8.344	130.58	63.28
8.438	154.34	74.79
8.531	179.40	86.93
8.625	205.62	99.64
8.719	232.83	112.83
8.813	260.91	126.43
8.906	289.73	140.40

	(cal/cm2	
<u>Hour</u>	per day)	(W/m2)
9.000	319.17	154.66
9.094	349.12	169.18
9.188	379.47	183.88
9.281	410.13	198.74
9.375	441.00	213.70
9.469	472.00	228.72
9.563	503.05	243.77
9.656	534.07	258.80
9.750	564.99	273.78
9.844	595.74	288.69
9.938	626.27	303.48
10.031	656.50	318.13
10.125	686.44	332.64
10.123	716.09	347.01
10.219	745.32	361.17
		375.10
10.406	774.07	
10.500	802.30	388.78
10.594	829.98	402.19
10.688	857.05	415.31
10.781	883.47	428.11
10.875	909.22	440.59
10.969	934.25	452.72
11.063	958.54	464.49
11.156	982.04	475.88
11.250	1004.73	486.88
11.344	1026.58	497.46
11.438	1047.56	507.63
11.531	1067.65	517.37
11.625	1086.81	526.65
11.719	1105.03	535.48
11.813	1122.29	543.84
11.906	1138.56	551.73
12.000	1153.82	559.12
12.094	1168.05	566.02
12.188	1181.48	572.53
12.281	1193.84	578.51
12.375	1205.10	583.97
12.469	1215.26	588.89
12.563	1224.29	593.27
12.656	1232.20	597.10
12.750	1238.96	600.38
12.844	1244.57	603.10
12.938	1249.03	605.26
13.031	1252.32	606.85
13.125	1254.44	607.88
13.219	1255.42	608.36
13.313	1255.25	608.27
13.406	1253.93	607.63
13.500	1251.47	606.44
13.594	1247.86	604.69

	(cal/cm2	
<u>Hour</u>	per day)	(W/m2)
13.688	1243.12	602.40
13.781	1237.25	599.55
13.875	1230.25	596.16
13.969	1222.13	592.22
14.063	1212.91	587.76
14.156	1202.53	582.73
14.250	1190.79	577.04
14.344	1177.70	570.69
14.438	1163.29	563.71
14.531	1147.59	556.10
14.625	1130.62	547.88
14.719	1112.41	539.06
14.813	1103.02	534.51
14.906	1082.24	524.44
15.000	1060.33	513.82
15.094	1037.34	502.68
15.188	1017.95	493.28
15.281	997.49	483.37
15.375	976.00	472.95
15.469	953.50	462.05
15.563	922.09	446.83
15.656	898.01	435.16
15.750	873.05	423.07
15.844	847.27	410.57
15.938	820.71	397.70
16.031	793.41	384.47
16.125	764.88	370.65
16.219	734.29	355.82
16.313	734.23	343.01
16.406	674.95	343.01
16.500	641.32	310.77
16.594	607.10	294.19
16.688	572.44	277.39
16.781	537.50	260.46
16.781	502.42	243.46
16.969	467.38	245.46
17.063	432.53	209.60
17.063	432.53	194.58
	401.55 372.54	
17.250 17.344	343.76	180.53 166.58
17.438	315.31	152.79
17.531	287.28	139.21
17.625	259.76	125.88
17.719	232.87	112.84
17.813	206.73	100.18
17.906	181.45	87.93
18.000	157.18	76.17
18.094	134.06	64.96
18.188	112.24	54.39
18.281	91.90	44.53

	(cal/cm2	
<u>Hour</u>	per day)	(W/m2)
18.375	73.21	35.48
18.469	56.35	27.31
18.563	41.50	20.11
18.656	28.85	13.98
18.750	18.52	8.97
18.844	10.61	5.14
18.938	5.08	2.46
19.031	1.75	0.85
19.125	0.19	0.09
19.219	0	0
19.313	0	0
19.406	0	0
19.500	0	0
19.594	0	0
19.688	0	0
19.781	0	0
19.875	0	0
19.969	0	0
20.063	0	0
20.156	0	0
20.250	0	0
20.344	0	0
20.438	0	0
20.531	0	0
20.625	0	0
20.719	0	0
20.813	0	0
20.906	0	0
21.000	0	0
21.094	0	0
21.188	0	0
21.281	0	0
21.375	0	0
21.469	0	0
21.563	0	0
21.656	0	0
21.750	0	0
21.844	0	0
21.938	0	0
22.031	0	0
22.125	0	0
22.219	0	0
22.313	0	0
22.406	0	0
22.500	0	0
22.594	0	0
22.688	0	0
22.781	0	0
22.875	0	0
22.969	0	0

	(cal/cm2	
<u>Hour</u>	per day)	(W/m2)
23.063	0	0
23.156	0	0
23.250	0	0
23.344	0	0
23.438	0	0
23.531	0	0
23.625	0	0
23.719	0	0
23.813	0	0
23.906	0	0
24.000	0	0
	_	162.3 = average

Calculation of long wave radiation:

					Emissivity	Emissivity	Long wave	
	Air	Dew point	Cloud	Vapor	without	with	radiation	Long wave
	temp.	temp.	cover	pressure	clouds	clouds	(cal/cm2	radiation
<u>Hour</u>	<u>(°C)</u>	<u>(°C)</u>	(decimal)	(mm Hg)	(unitless)	(unitless)	per day)	(W/m2)
12:00 AM	23.13	18.70	0.00	16.23	0.853	0.853	746.18	361.59
1:00 AM	21.87	18.70	0.00	16.23	0.854	0.854	733.95	355.66
2:00 AM	21.47	18.87	0.00	16.40	0.855	0.855	731.21	354.33
3:00 AM	21.50	18.90	0.00	16.43	0.855	0.855	731.74	354.59
4:00 AM	19.80	18.70	0.00	16.23	0.855	0.855	714.32	346.15
5:00 AM	20.17	19.07	0.00	16.60	0.857	0.857	720.12	348.96
6:00 AM	21.30	19.27	0.00	16.81	0.858	0.858	732.22	354.82
7:00 AM	24.07	19.63	0.00	17.20	0.860	0.860	761.59	369.05
8:00 AM	26.67	20.20	0.00	17.81	0.863	0.863	791.57	383.58
9:00 AM	28.87	20.00	0.00	17.59	0.861	0.861	812.77	393.85
10:00 AM	30.57	20.00	0.04	17.59	0.860	0.860	830.80	402.59
11:00 AM	32.03	18.70	0.04	16.23	0.850	0.850	836.66	405.43
12:00 PM	33.73	17.43	0.04	14.99	0.839	0.840	845.12	409.53
1:00 PM	33.70	16.67	0.00	14.28	0.834	0.834	838.67	406.41
2:00 PM	34.07	15.93	0.00	13.62	0.828	0.828	836.94	405.57
3:00 PM	33.53	15.90	0.15	13.59	0.828	0.831	834.10	404.19
4:00 PM	33.33	16.13	0.04	13.80	0.830	0.830	831.02	402.70
5:00 PM	31.50	16.87	0.33	14.46	0.836	0.852	832.63	403.48
6:00 PM	27.60	17.37	0.33	14.92	0.841	0.857	795.86	385.66
7:00 PM	26.83	16.47	0.33	14.09	0.835	0.850	781.66	378.78
8:00 PM	26.50	16.30	0.15	13.95	0.834	0.837	765.49	370.94
9:00 PM	25.37	16.87	0.00	14.46	0.838	0.838	755.54	366.12
10:00 PM	25.00	16.67	0.00	14.28	0.837	0.837	750.61	363.73
11:00 PM	24.43	17.97	0.15	15.50	0.847	0.850	756.64	366.66
							Average =	378.9

Daily average total atmos. radiation (W/m2) = Daily avg short wave radiation + Daily avg long wave radiation = 162.3 W/m2 + 378.9 W/m2

= 541.3 W/m2 for Simulation Period 3

CALCULATIONS FOR MAXIMUM ATMOSPHERIC RADIATION TO MEET TEMPERATURE CRITERIA

	Daily avg			
	total	ily average		
	atmospheric	predicted temp. (°C)		
Simulation	radiation	Sulphur	Red	
<u>Period</u>	(W/m2)	<u>River</u>	<u>River</u>	
1	627.0	34.23	33.16	
2	613.2	32.97	31.82	
3	541.3	29.05	29.16	

Calculation for Red River (criterion = 32°C)

Criterion of 32°C falls between Red River predicted temperatures for Simulation Periods 1 and 2; therefore, we need to interpolate between the atmospheric radiation values for these two periods:

Interpolated atmospheric radiaton value =

 $= 615.0 \text{ W/m}^2$

Calculation for Sulphur River (criterion = 30°C)

Criterion of 30°C falls between Sulphur River predicted temperatures for Simulation Periods 2 and 3; therefore, we need to interpolate between the atmospheric radiation values for these two periods:

Interpolated atmospheric radiaton value =

= 558.7 W/m2

<u>Calculation for Sulphur River (alternative target = 32°C)</u>

Target of 32°C falls between Sulphur River predicted temperatures for Simulation Periods 2 and 3; therefore, we need to interpolate between the atmospheric radiation values for these two periods:

Interpolated atmospheric radiaton value

= 595.4 W/m2

4 TEMPERATURE MODEL

As in Figure 14, the heat balance takes into account heat transfers from adjacent elements, loads, withdrawals, the atmosphere, and the sediments. A heat balance can be written for element *i* as

$$\frac{dT_{i}}{dt} = \frac{Q_{i-1}}{V_{i}} T_{i-1} - \frac{Q_{i}}{V_{i}} T_{i} - \frac{Q_{out,i}}{V_{i}} T_{i} + \frac{E_{i-1}'}{V_{i}} (T_{i-1} - T_{i}) + \frac{E_{i}'}{V_{i}} (T_{i+1} - T_{i}) + \frac{W_{h,i}}{\rho_{w} C_{pw} V_{i}} \left(\frac{m^{3}}{10^{6} \text{ cm}^{3}}\right) + \frac{J_{a,i}}{\rho_{w} C_{pw} H_{i}} \left(\frac{m}{100 \text{ cm}}\right) + \frac{J_{s,i}}{\rho_{w} C_{pw} H_{i}} \left(\frac{m}{100 \text{ cm}}\right)$$
(26)

where T_i = temperature in element i [°C], t = time [d], E'_i = the bulk dispersion coefficient between elements i and i + 1 [m³/d], $W_{h,i}$ = the net heat load from point and non-point sources into element i [cal/d], ρ_w = the density of water [g/cm³], C_{pw} = the specific heat of water [cal/(g °C)], $J_{a,i}$ = the air-water heat flux [cal/(cm² d)], and $J_{s,i}$ = the sediment-water heat flux [cal/(cm² d)].

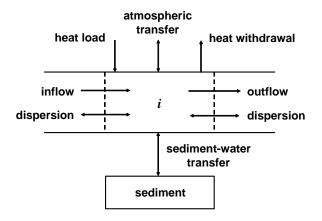


Figure 14 Heat balance for an element.

The bulk dispersion coefficient is computed as

$$E_{i}^{'} = \frac{E_{i} A_{c,i}}{\left(\Delta x_{i} + \Delta x_{i+1}\right)/2}$$
 (27)

Note that two types of boundary condition are used at the river's downstream terminus: (1) a zero dispersion condition (natural boundary condition) and (2) a prescribed downstream boundary condition (Dirichlet boundary condition). The choice between these options is made on the **Downstream Worksheet**.

The net heat load from sources is computed as (recall Eq. 2)

$$W_{h,i} = \rho C_p \left[\sum_{j=1}^{psi} Q_{ps,i,j} T_{psi,j} + \sum_{j=1}^{npsi} Q_{nps,i,j} T_{npsi,j} \right]$$
(28)

OUAL2K 19 December 16, 2008

where $T_{ps,i,j}$ is the temperature of the *j*th point source for element i [${}^{\circ}$ C], and $T_{nps,i,j}$ is the temperature of the *j*th non-point source temperature for element i [${}^{\circ}$ C].

4.1 Surface Heat Flux

As depicted in Figure 15, surface heat exchange is modeled as a combination of five processes:

$$J_h = I(0) + J_{an} - J_{br} - J_c - J_e$$
 (29)

where I(0) = net solar shortwave radiation at the water surface, J_{an} = net atmospheric longwave radiation, J_{br} = longwave back radiation from the water, J_c = conduction, and J_e = evaporation. All fluxes are expressed as cal/cm²/d.

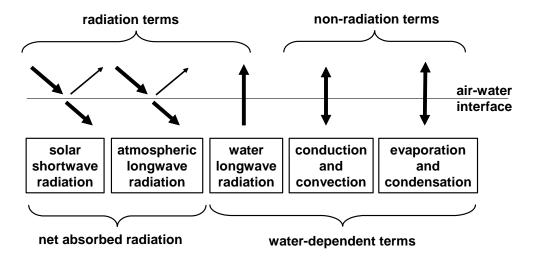


Figure 15 The components of surface heat exchange.

4.1.1 Solar Radiation

The model computes the amount of solar radiation entering the water at a particular latitude (L_{at}) and longitude (L_{lm}) on the earth's surface. This quantity is a function of the radiation at the top of the earth's atmosphere which is attenuated by atmospheric transmission, cloud cover, reflection, and shade,

$$I(0) = I_0 \qquad a_t \qquad a_c \qquad (1-R_s) \qquad (1-S_f)$$
 extraterrestrial atmospheric cloud reflection shading radiation attenuation (30)

where I(0) = solar radiation at the water surface [cal/cm²/d], $I_0 = \text{extraterrestrial}$ radiation (i.e., at the top of the earth's atmosphere) [cal/cm²/d], $a_t = \text{atmospheric}$ attenuation, $a_c = \text{cloud}$ attenuation, $R_s = \text{albedo}$ (fraction reflected), and $S_f = \text{effective}$ shade (fraction blocked by vegetation and topography).

Extraterrestrial radiation. The extraterrestrial radiation is computed as (TVA 1972)

QUAL2K 20 December 16, 2008

$$I_0 = \frac{W_0}{r^2} \sin \alpha \tag{31}$$

where W_0 = the solar constant [1367 W/m² or 2823 cal/cm²/d], r = normalized radius of the earth's orbit (i.e., the ratio of actual earth-sun distance to mean earth-sun distance), and α = the sun's altitude [radians], which can be computed as

$$\sin \alpha = \sin \delta \sin L_{at} + \cos \delta \cos L_{at} \cos(\tau)$$
(32)

where δ = solar declination [radians], L_{at} = local latitude [radians], and τ = the local hour angle of the sun [radians].

The local hour angle in radians is given by

$$\tau = \left(\frac{trueSolarTime}{4} - 180\right) \frac{\pi}{180}$$
 (33)

where:

$$trueSolarTime = localTime + eqtime - 4 \times L_{lm} - 60 \times timezone$$
(34)

where trueSolarTime is the solar time determined from the actual position of the sun in the sky [minutes], localTime is the local time in minutes (local standard time), L_{lm} is the local longitude (positive decimal degrees for the western hemisphere), and timezone is the local time zone in hours relative to Greenwich Mean Time (e.g. -8 hours for Pacific Standard Time; the local time zone is selected on the **QUAL2K Worksheet**). The value of eqtime represents the difference between true solar time and mean solar time in minutes of time.

QUAL2K calculates the solar declination, hour angle, solar altitude, and normalized radius (distance between the earth and sun), as well as the times of sunrise and sunset using the Meeus (1999) algorithms as implemented by NOAA's Surface Radiation Research Branch (www.srrb.noaa.gov/highlights/sunrise/azel.html). The NOAA method for solar position that is used in QUAL2K also includes a correction for the effect of atmospheric refraction. The complete calculation method that is used to determine the solar position, sunrise, and sunset is presented in Appendix B.

The photoperiod f [hours] is computed as

$$f = t_{ss} - t_{sr} \tag{35}$$

where t_{ss} = time of sunset [hours] and t_{sr} = time of sunrise [hours].

Atmospheric attenuation. Various methods have been published to estimate the fraction of the atmospheric attenuation from a clear sky (a_t) . Two alternative methods are available in QUAL2K to estimate a_t (Note that the solar radiation model is selected on the **Light and Heat Worksheet** of QUAL2K):

1) Bras (default)

OUAL2K 21 December 16, 2008

The Bras (1990) method computes a_t as:

$$a_t = e^{-n_{fac}a_1m} ag{36}$$

where n_{fac} is an atmospheric turbidity factor that varies from approximately 2 for clear skies to 4 or 5 for smoggy urban areas. The molecular scattering coefficient (a_1) is calculated as

$$a_1 = 0.128 - 0.054 \log_{10} m \tag{37}$$

where m is the optical air mass, calculated as

$$m = \frac{1}{\sin \alpha + 0.15(\alpha_d + 3.885)^{-1.253}}$$
 (38)

where α_d is the sun's altitude in degrees from the horizon = $\alpha \times (180^{\circ}/\pi)$.

2) Ryan and Stolzenbach

The Ryan and Stolzenbach (1972) model computes a_t from ground surface elevation and solar altitude as:

$$a_t = a_{tc}^{m} \left(\frac{288 - 0.0065 elev}{288}\right)^{5.256}$$
 (39)

where a_{tc} is the atmospheric transmission coefficient (0.70-0.91, typically approximately 0.8), and *elev* is the ground surface elevation in meters.

Direct measurements of solar radiation are available at some locations. For example, NOAA's Integrated Surface Irradiance Study (ISIS) has data from various stations across the United States (http://www.atdd.noaa.gov/isis.htm). The selection of either the Bras or Ryan-Stolzenbach solar radiation model and the appropriate atmospheric turbidity factor or atmospheric transmission coefficient for a particular application should ideally be guided by a comparison of predicted solar radiation with measured values at a reference location.

Cloud Attenuation. Attenuation of solar radiation due to cloud cover is computed with

$$a_c = 1 - 0.65C_L^2 \tag{40}$$

where C_L = fraction of the sky covered with clouds.

Reflectivity. Reflectivity is calculated as

$$R_{s} = A\alpha_{d}^{B}$$
 (41)

where A and B are coefficients related to cloud cover (Table 3).

Table 3 Coefficients used to calculate reflectivity based on cloud cover.

Cloudiness	Cle	Clear		Scattered E		Broken		Overcast	
C_L	()	0.1-0.5		0.5-0.9		1.0		
Coefficients	Α	В	Α	В	Α	В	Α	В	
	1.18	-0.77	2.20	-0.97	0.95	-0.75	0.35	-0.45	

Shade. Shade is an input variable for the QUAL2K model. Shade is defined as the fraction of potential solar radiation that is blocked by topography and vegetation. An Excel/VBA program named 'Shade.xls' is available from the Washington Department of Ecology to estimate shade from topography and riparian vegetation (Ecology 2003). Input values of integrated hourly estimates of shade for each reach are entered on the **Shade Worksheet** of QUAL2K.

4.1.2 Atmospheric Long-wave Radiation

The downward flux of longwave radiation from the atmosphere is one of the largest terms in the surface heat balance. This flux can be calculated using the Stefan-Boltzmann law

$$J_{an} = \sigma (T_{air} + 273)^4 \quad \varepsilon_{sky} \quad (1 - R_L)$$

where σ = the Stefan-Boltzmann constant = 11.7x10⁻⁸ cal/(cm² d K⁴), T_{air} = air temperature [°C], ε_{sky} = effective emissivity of the atmosphere [dimensionless], and R_L = longwave reflection coefficient [dimensionless]. Emissivity is the ratio of the longwave radiation from an object compared with the radiation from a perfect emitter at the same temperature. The reflection coefficient is generally small and is assumed to equal 0.03.

The atmospheric longwave radiation model is selected on the **Light and Heat Worksheet** of QUAL2K. Three alternative methods are available for use in QUAL2K to represent the effective emissivity (ε_{sky}):

1) Brunt (default)

Brunt's (1932) equation is an empirical model that has been commonly used in water-quality models (Thomann and Mueller 1987),

$$\varepsilon_{clear} = A_a + A_b \sqrt{e_{air}}$$

where A_a and A_b are empirical coefficients. Values of A_a have been reported to range from about 0.5 to 0.7 and values of A_b have been reported to range from about 0.031 to 0.076 mmHg^{-0.5} for a wide range of atmospheric conditions. QUAL2K uses a default mid-range value of $A_a = 0.6$ together with a value of $A_b = 0.031$ mmHg^{-0.5} if the Brunt method is selected on the **Light and Heat Worksheet**.

2) Brutsaert

The Brutsaert equation is physically-based instead of empirically derived and has been shown to yield satisfactory results over a wide range of atmospheric conditions of air temperature and humidity at intermediate latitudes for conditions above freezing (Brutsaert, 1982).

$$\varepsilon_{clear} = 1.24 \left(\frac{1.333224 e_{air}}{T_a} \right)^{1/7}$$

where e_{air} is the air vapor pressure [mm Hg], and T_a is the air temperature in °K. The factor of 1.333224 converts the vapor pressure from mm Hg to millibars. The air vapor pressure [in mm Hg] is computed as (Raudkivi 1979):

$$e_{air} = 4.596e^{\frac{17.27T_d}{237.3+T_d}} \tag{43}$$

where T_d = the dew-point temperature [${}^{\circ}$ C].

3) Koberg

Koberg (1964) reported that the A_a in Brunt's formula depends on both air temperature and the ratio of the incident solar radiation to the clear-sky radiation (R_{sc}). As in Figure 16, he presented a series of curves indicating that A_a increases with T_{air} and decreases with R_{sc} with A_b held constant at 0.0263 millibars^{-0.5} (about 0.031 mmHg^{-0.5}).

The following polynomial is used in Q2K to provide a continuous approximation of Koberg's curves.

$$A_a = a_k T_{air}^2 + b_k T_{air} + c_k$$

where

$$\begin{aligned} a_k &= -0.00076437 R_{sc}^3 + 0.00121134 R_{sc}^2 - 0.00073087 R_{sc} + 0.0001106 \\ b_k &= 0.12796842 R_{sc}^3 - 0.2204455 R_{sc}^2 + 0.13397992 R_{sc} - 0.02586655 \\ c_k &= -3.25272249 R_{sc}^3 + 5.65909609 R_{sc}^2 - 3.43402413 R_{sc} + 1.43052757 \end{aligned}$$

The fit of this polynomial to points sampled from Koberg's curves are depicted in Figure 16. Note that an upper limit of 0.735 is prescribed for A_a .

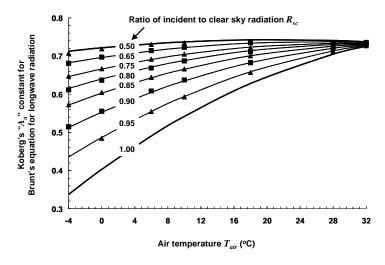


Figure 16 The points are sampled from Koberg's family of curves for determining the value of the A_a constant in Brunt's equation for atmospheric longwave radiation (Koberg, 1964). The lines are the functional representation used in Q2K.

For cloudy conditions the atmospheric emissivity may increase as a result of increased water vapor content. High cirrus clouds may have a negligible effect on atmospheric emissivity, but lower stratus and cumulus clouds may have a significant effect. The Koberg method accounts for the effect of clouds on the emissivity of longwave radiation in the determination of the A_a coefficient. The Brunt and Brutsaert methods determine emissivity of a clear sky and do not account for the effect of clouds. Therefore, if the Brunt or Brutsaert methods are selected, then the effective atmospheric emissivity for cloudy skies (ε_{sky}) is estimated from the clear sky emissivity by using a nonlinear function of the fractional cloud cover (C_L) of the form (TVA, 1972):

$$\varepsilon_{skv} = \varepsilon_{clear} (1 + 0.17C_L^2) \tag{44}$$

The selection of the longwave model for a particular application should ideally be guided by a comparison of predicted results with measured values at a reference location. However, direct measurements are rarely collected. The Brutsaert method is recommended to represent a wide range of atmospheric conditions.

4.1.3 Water Long-wave Radiation

The back radiation from the water surface is represented by the Stefan-Boltzmann law,

$$J_{br} = \varepsilon \sigma (T + 273)^4 \tag{45}$$

where $\varepsilon = \text{emissivity of water} (= 0.97)$ and $T = \text{the water temperature } [^{\circ}\text{C}].$

4.1.4 Conduction and Convection

Conduction is the transfer of heat from molecule to molecule when matter of different temperatures are brought into contact. Convection is heat transfer that occurs due to mass movement of fluids. Both can occur at the air-water interface and can be described by,

$$J_c = c_1 f(U_w) (T_s - T_{air})$$
 (46)

where c_1 = Bowen's coefficient (= 0.47 mmHg/ $^{\circ}$ C). The term, $f(U_w)$, defines the dependence of the transfer on wind velocity over the water surface where U_w is the wind speed measured a fixed distance above the water surface.

Many relationships exist to define the wind dependence. Bras (1990), Edinger et al. (1974), and Shanahan (1984) provide reviews of various methods. Some researchers have proposed that conduction/convection and evaporation are negligible in the absence of wind (e.g. Marciano and Harbeck, 1952), which is consistent with the assumption that only molecular processes contribute to the transfer of mass and heat without wind (Edinger et al. 1974). Others have shown that significant conduction/convection and evaporation can occur in the absence of wind (e.g. Brady Graves and Geyer 1969, Harbeck 1962, Ryan and Harleman 1971, Helfrich et al. 1982, and

QUAL2K 25 December 16, 2008

Adams et al. 1987). This latter opinion has gained favor (Edinger et al. 1974), especially for waterbodies that exhibit water temperatures that are greater than the air temperature.

Brady, Graves, and Geyer (1969) pointed out that if the water surface temperature is warmer than the air temperature, then "the air adjacent to the water surface would tend to become both warmer and more moist than that above it, thereby (due to both of these factors) becoming less dense. The resulting vertical convective air currents ... might be expected to achieve much higher rates of heat and mass transfer from the water surface [even in the absence of wind] than would be possible by molecular diffusion alone" (Edinger et al. 1974). Water temperatures in natural waterbodies are frequently greater than the air temperature, especially at night.

Edinger et al. (1974) recommend that the relationship that was proposed by Brady, Graves and Geyer (1969) based on data from cooling ponds, could be representative of most environmental conditions. Shanahan (1984) recommends that the Lake Hefner equation (Marciano and Harbeck, 1952) is appropriate for natural waters in which the water temperature is less than the air temperature. Shanahan also recommends that the Ryan and Harleman (1971) equation as recalibrated by Helfrich et al. (1982) is best suited for waterbodies that experience water temperatures that are greater than the air temperature. Adams et al. (1987) revisited the Ryan and Harleman and Helfrich et al. models and proposed another recalibration using additional data for waterbodies that exhibit water temperatures that are greater than the air temperature.

Three options are available on the **Light and Heat Worksheet** in QUAL2K to calculate $f(U_w)$:

1) Brady, Graves, and Geyer (default)

$$f(U_w) = 19.0 + 0.95U_w^2$$

where U_w = wind speed at a height of 7 m [m/s].

2) Adams 1

Adams et al. (1987) updated the work of Ryan and Harleman (1971) and Helfrich et al. (1982) to derive an empirical model of the wind speed function for heated waters that accounts for the enhancement of convection currents when the virtual temperature difference between the water and air ($\Delta\theta_v$ in degrees F) is greater than zero. Two wind functions reported by Adams et al., also known as the East Mesa method, are implemented in QUAL2K (wind speed in these equations is at a height of 2m).

This formulation uses an empirical function to estimate the effect of convection currents caused by virtual temperature differences between water and air, and the Harbeck (1962) equation is used to represent the contribution to conduction/convection and evaporation that is not due to convection currents caused by high virtual water temperature.

$$f(U_w) = 0.271\sqrt{(22.4\Delta\theta_v^{1/3})^2 + (24.2A_{acres,i}^{-0.05}U_{w,mph})^2}$$

where $U_{w,mph}$ is wind speed in mph and $A_{acres,i}$ is surface area of element i in acres. The constant 0.271 converts the original units of BTU ft⁻² day⁻¹ mmHg⁻¹ to cal cm⁻² day⁻¹ mmHg⁻¹.

OUAL2K 26 December 16, 2008

3) Adams 2

This formulation uses an empirical function of virtual temperature differences with the Marciano and Harbeck (1952) equation for the contribution to conduction/convection and evaporation that is not due to the high virtual water temperature

$$f(U_w) = 0.271\sqrt{(22.4\Delta\theta_v^{1/3})^2 + (17U_{w,mph})^2}$$

Virtual temperature is defined as the temperature of dry air that has the same density as air under the in situ conditions of humidity. The virtual temperature difference between the water and air ($\Delta\theta_v$ in °F) accounts for the buoyancy of the moist air above a heated water surface. The virtual temperature difference is estimated from water temperature (T_{wf} in °F), air temperature ($T_{air,f}$ in °F), vapor pressure of water and air (e_s and e_{air} in mmHg), and the atmospheric pressure (p_{atm} is estimated as standard atmospheric pressure of 760 mmHg in QUAL2K):

$$\Delta\theta_{v} = \left(\frac{T_{w,f} + 460}{1 + 0.378e_{s} / p_{atm}} - 460\right) - \left(\frac{T_{air,f} + 460}{1 + 0.378e_{air} / p_{atm}} - 460\right)$$
(47)

The height of wind speed measurements is also an important consideration for estimating conduction/convection and evaporation. QUAL2K internally adjusts the wind speed to the correct height for the wind function that is selected on the **Light and Heat Worksheet**. The input values for wind speed on the **Wind Speed Worksheet** in QUAL2K are assumed to be representative of conditions at a height of 7 meters above the water surface. To convert wind speed measurements $(U_{w,z} \text{ in m/s})$ taken at any height $(z_w \text{ in meters})$ to the equivalent conditions at a height of z = 7 m for input to the **Wind Speed Worksheet** of QUAL2K, the exponential wind law equation may be used (TVA, 1972):

$$U_w = U_{wz} \left(\frac{z}{z_w}\right)^{0.15} \tag{48}$$

For example, if wind speed data were collected from a height of 2 m, then the wind speed at 7 m for input to the **Wind Speed Worksheet** of QUAL2K would be estimated by multiplying the measured wind speed by a factor of 1.2.

4.1.5 Evaporation and Condensation

The heat loss due to evaporation can be represented by Dalton's law,

$$J_{e} = f(U_{w})(e_{s} - e_{air})$$
 (49)

where e_s = the saturation vapor pressure at the water surface [mmHg], and e_{air} = the air vapor pressure [mmHg]. The saturation vapor pressure is computed as

$$e_{air} = 4.596e^{\frac{17.27T}{237.3+T}}$$
 (50)

OUAL2K 27 December 16, 2008

4.2 Sediment-Water Heat Transfer

A heat balance for bottom sediment underlying a water element i can be written as

$$\frac{dT_{s,i}}{dt} = -\frac{J_{s,i}}{\rho_s C_{ps} H_{sed,i}}$$
(51)

where $T_{s,i}$ = the temperature of the bottom sediment below element i [°C], $J_{s,i}$ = the sedimentwater heat flux [cal/(cm² d)], ρ_s = the density of the sediments [g/cm³], C_{ps} = the specific heat of the sediments [cal/(g °C)], and $H_{sed,i}$ = the effective thickness of the sediment layer [cm].

The flux from the sediments to the water can be computed as

$$J_{s,i} = \rho_s C_{ps} \frac{\alpha_s}{H_{sed,i}/2} (T_{si} - T_i) \times \frac{86,400 \,\mathrm{s}}{\mathrm{d}}$$
 (52)

where α_s = the sediment thermal diffusivity [cm²/s].

The thermal properties of some natural sediments along with its components are summarized in Table 4. Note that soft, gelatinous sediments found in the deposition zones of lakes are very porous and approach the values for water. Some very slow, impounded rivers may approach such a state. However, rivers tend to have coarser sediments with significant fractions of sands, gravels and stones. Upland streams can have bottoms that are dominated by boulders and rock substrates.

QUAL2K 28 December 16, 2008

Table 4 Thermal properties for natural sediments and the materials that comprise natural sediments.

Table 4. Thermal properties of various materials

Type of material	thermal	conductivity	thermal c	liffusivity	ρ	C_p	hoCp	reference
	w/m/°C	cal/s/cm/°C	m²/s	cm ² /s	g/cm3	cal/(g °C)	cal/(cm^3 °C)	
Sediment samples					_			
Mud Flat	1.82	0.0044	4.80E-07	0.0048			0.906	(1)
Sand	2.50	0.0060	7.90E-07	0.0079			0.757	"
Mud Sand	1.80	0.0043	5.10E-07	0.0051			0.844	"
Mud	1.70	0.0041	4.50E-07	0.0045			0.903	II .
Wet Sand	1.67	0.0040	7.00E-07	0.0070			0.570	(2)
Sand 23% saturation with water	1.82	0.0044	1.26E-06	0.0126			0.345	(3)
Wet Peat	0.36	0.0009	1.20E-07	0.0012			0.717	(2)
Rock	1.76	0.0042	1.18E-06	0.0118			0.357	(4)
Loam 75% saturation with water	1.78	0.0043	6.00E-07	0.0060			0.709	(3)
Lake, gelatinous sediments	0.46	0.0011	2.00E-07	0.0020			0.550	(5)
Concrete canal	1.55	0.0037	8.00E-07	0.0080	2.200	0.210	0.460	"
Average of sediment samples:	1.57	0.0037	6.45E-07	0.0064			0.647	
A.C. and Harman and Market and Ma								
Miscellaneous measurements:	0.50	0.004.4						(5)
Lake, shoreline	0.59	0.0014	2.055.07	0.0000				(5)
Lake soft sediments			3.25E-07	0.0033				
Lake, with sand			4.00E-07	0.0040				
River, sand bed			7.70E-07	0.0077				
Component materials:								
Water	0.59	0.0014	1.40E-07	0.0014	1.000	0.999	1.000	(6)
Clay	1.30	0.0031	9.80E-07	0.0098	1.490	0.210	0.310	"
Soil, dry	1.09	0.0026	3.70E-07	0.0037	1.500	0.465	0.700	II .
Sand	0.59	0.0014	4.70E-07	0.0047	1.520	0.190	0.290	"
Soil, wet	1.80	0.0043	4.50E-07	0.0045	1.810	0.525	0.950	"
Granite	2.89	0.0069	1.27E-06	0.0127	2.700	0.202	0.540	"
Average of composite materials:	1.37	0.0033	6.13E-07	0.0061	1.670	0.432	0.632	

⁽¹⁾ Andrews and Rodvey (1980)

Inspection of the component properties of Table 4 suggests that the presence of solid material in stream sediments leads to a higher coefficient of thermal diffusivity than that for water or porous lake sediments. In Q2K, we suggest a default value of 0.005 cm²/s for this quantity.

In addition, specific heat tends to decrease with density. Thus, the product of these two quantities tends to be more constant than the multiplicands. Nevertheless, it appears that the presence of solid material in stream sediments leads to a lower product than that for water or gelatinous lake sediments. In Q2K, we suggest default values of $\rho_s = 1.6 \text{ g/cm}^3$ and $C_{ps} = 0.4 \text{ cal/(g }^{\circ}\text{C})$. This corresponds to a product of 0.64 cal/(cm³ $^{\circ}\text{C}$) for this quantity. Finally, as derived in Appendix C, the sediment thickness is set by default to 10 cm in order to capture the effect of the sediments on the diel heat budget for the water.

⁽²⁾ Geiger (1965)

⁽³⁾ Nakshabandi and Kohnke (1965)

⁽⁴⁾ Chow (1964) and Carslaw and Jaeger (1959)

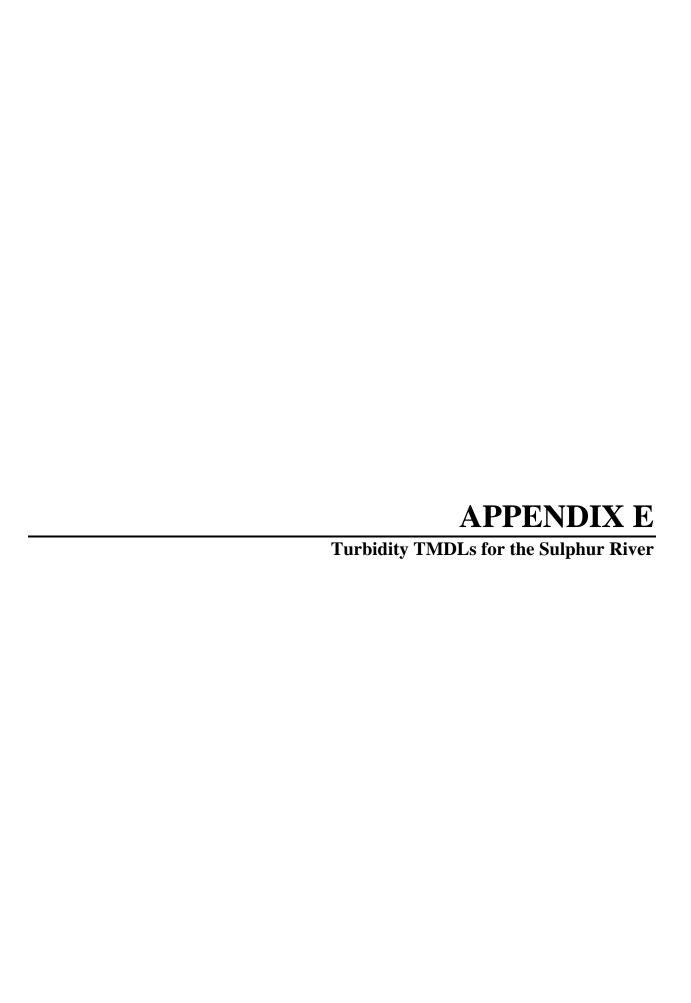
⁽⁵⁾ Hutchinson 1957, Jobson 1977, and Likens and Johnson 1969

⁽⁶⁾ Cengel, Grigull, Mills, Bejan, Kreith and Bohn

REFERENCES

- Adams, E.E., D. J. Cosler, and K.R. Helfrich. 1987. "Analysis of evaporation data from heated ponds", cs-5171, research project 2385-1, Electric Power Research Institute, Palo Alto, California 94304. April.
- Andrews and Rodvey, 1980. Heat exchange between water and tidal flats. D.G.M 24(2). (in German).
- APHA, 1995. Standard methods for the examination of water and wastewater, 19th Edn. American Public Health Association, American Water Works Association and Water Environment Federation: Washington, D.C.
- Asaeda, T., and T. Van Bon, Modelling the effects of macrophytes on algal blooming in eutrophic shallow lakes. Ecol. Model., 104: 261-287, 1997.
- Baker, K.S. and Frouin, R. 1987. Relation between photosynthetically available radiation and total insolation at the ocean surface under clear skies. Limnol. Oceanogr. 1370-1377.
- Baly, E.C.C. 1935. The Kinetics of Photosynthesis. *Proc. Royal Soc. London Ser. B*, 117:218-239.
- Banks, R. B. 1975. "Some Features of Wind Action on Shallow Lakes." *J. Environ Engr. Div. ASCE*. 101(EE5): 813-827.
- Banks, R. B. and Herrera, F. F. 1977. "Effect of Wind and Rain on Surface Reaeration." *J. Environ Engr. Div. ASCE.* 103(EE3): 489-504.
- Barnwell, T.O., Brown, L.C., and Mareck, W. 1989). Application of Expert Systems Technology in Water Quality Modeling. *Water Sci. Tech.* 21(8-9):1045-1056.
- Bejan, A. 1993. Heat Transfer. Wiley, New York, NY.
- Bowie, G.L., Mills, W.B., Porcella, D.B., Campbell, C.L., Pagenkopf, J.R., Rupp, G.L., Johnson, K.M., Chan, P.W.H., Gherini, S.A. and Chamberlin, C.E. 1985. Rates, Constants, and Kinetic Formulations in Surface Water Quality Modeling. U.S. Envir. Prot. Agency, ORD, Athens, GA, ERL, EPA/600/3-85/040.
- Brady, D.K., Graves, W.L., and Geyer, J.C. 1969. Surface Heat Exchange at Power Plant Cooling Lakes, Cooling Water Discharge Project Report, No. 5, Edison Electric Inst. Pub. No. 69-901, New York, NY.
- Bras, R.L. 1990. Hydrology. Addison-Wesley, Reading, MA.
- Brown, L.C., and Barnwell, T.O. 1987. The Enhanced Stream Water Quality Models QUAL2E and QUAL2E-UNCAS, EPA/600/3-87-007, U.S. Environmental Protection Agency, Athens, GA, 189 pp.
- Brunt, D. 1932. Notes on radiation in the atmosphere: I. Quart J Royal Meteorol Soc 58:389-420. Brutsaert, W. 1982. Evaporation into the atmosphere: theory, history, and applications. D.Reidel Publishing Co., Hingham MA, 299 p.
- Butts, T. A. and Evans, R. L. 1983. Effects of Channel Dams on Dissolved Oxygen Concentrations in Northeastern Illinois Streams, Circular 132, State of Illinois, Dept. of Reg. and Educ., Illinois Water Survey, Urbana, IL.
- Carslaw, H.S. and Jaeger, J.C. 1959. Conduction of Heat in Solids, Oxford Press, Oxford, UK, 510 pp.
- Cengel, Y.A. 1998 Heat Transfer: A Practical Approach. New York, McGraw-Hill.
- Chapra and Canale 2006. Numerical Methods for Engineers, 5th Ed. New York, McGraw-Hill.
- Chapra, S.C. 1997. Surface water quality modeling. New York, McGraw-Hill.
- Chapra, S.C. 2007. Applied Numerical Methods with MATLAB for Engineering and Science, 2nd Ed., WCB/McGraw-Hill, New York, N.Y.
- Chow, V.T., Maidment, D.R., and Mays, L.W. 1988. *Applied Hydrology*. New York, McGraw-Hill, 592 pp.

QUAL2K 79 December 16, 2008


- Churchill, M.A., Elmore, H.L., and Buckingham, R.A. 1962. The prediction of stream reaeration rates. *J. Sanit. Engrg. Div.*, ASCE, 88{4},1-46.
- Coffaro, G. and A. Sfriso, Simulation model of Ulva rigida growth in shallow water of the Lagoon of Venice. Ecol. Model., 102: 55-66, 1997.
- Covar, A. P. 1976. "Selecting the Proper Reaeration Coefficient for Use in Water Quality Models." Presented at the U.S. EPA Conference on Environmental Simulation and Modeling, April 19-22, 1976, Cincinnati, OH.
- Di Toro, D. M. and J. F. Fitzpatrick. 1993. Chesapeake Bay sediment flux model. Tech. Report EL-93-2, U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Mississippi, 316 pp.
- Di Toro, D.M, Paquin, P.R., Subburamu, K. and Gruber, D.A. 1991. Sediment Oxygen Demand Model: Methane and Ammonia Oxidation. J. Environ. Eng., 116(5):945-986.
- Di Toro, D.M. 1978. Optics of Turbid Estuarine Waters: Approximations and Applications. Water Res. 12:1059-1068.
- Di Toro, D.M. 2001. Sediment Flux Modeling. Wiley-Interscience, New York, NY.
- Droop, M.R. 1974. The nutrient status of algal cells in continuous culture. J.Mar.Biol.Assoc. UK 54:825-855.
- Ecology. 2003. Shade.xls a tool for estimating shade from riparian vegetation. Washington State Department of Ecology. http://www.ecy.wa.gov/programs/eap/models/
- Edinger, J.E., Brady, D.K., and Geyer, J.C. 1974. Heat Exchange and Transport in the Environment. Report No. 14, EPRI Pub. No. EA-74-049-00-3, Electric Power Research Institute, Palo Alto, CA.
- Finlayson-Pitts, B.J. and Pitts, J.N., Jr. 2000. Chemistry of the upper and lower atmosphere: theory, experiments, and applications. Academic Press.
- Finnemore, E.J. and Franzini, J.B. 2002. Fluid Mechanics with Engineering Applications, 10th Ed. New York, McGraw, Hill.
- Geiger, R. 1965. The climate near the ground. Harvard University Press. Cambridge, MA.
- Gordon, N.D, T.A. McMahon, and B.L. Finlayson. 1992. Stream Hydrology, An Introduction for Ecologists. Published by John Wiley and Sons.
- Grigull, U. and Sandner, H. 1984. Heat Conduction. Springer-Verlag, New York, NY.
- Hamilton, D.P., and S.G. Schladow, Prediction of water quality in lakes and reservoirs. 1. Model description. Ecol. Model., 96: 91-110, 1997.
- Harbeck, G. E., 1962, A practical field technique for measuring reservoir evaporation utilizing mass-transfer theory. US Geological Survey Professional Paper 272-E, 101-5.
- Harned, H.S., and Hamer, W.J. 1933. "The Ionization Constant of Water." *J. Am., Chem. Soc.* 51:2194.
- Helfrich, K.R., E.E. Adams, A.L. Godbey, and D.R.F. Harleman. 1982. Evaluation of models for predicting evaporative water loss in cooling impoundments. Report CS-2325, Research project 1260-17. Electric Power Research Institute, Pala Alto, CA. March 1982.
- Hellweger, F/L., K.L. Farley, U. Lall, and D.M. DiToro. 2003. Greedy algae reduce arsenate. Limnol.Oceanogr. 48(6), 2003, 2275-2288.
- Holland, H.D. 1978. The Chemistry of the Atmosphere and Oceans. Wiley-Interscience, NY, NY. Hutchinson, G.E. 1957. A Treatise on Limnology, Vol. 1, Physics and Chemistry. Wiley, New York, NY.
- Jobson, H.E. 1977. Bed Conduction Computation for Thermal Models. J. Hydraul. Div. ASCE. 103(10):1213-1217.
- Koberg, G.E. 1964. Methods to compute long-wave radiation from the atmosphere and reflected solar radiation from a water surface. US Geological Survey Professional Paper 272-F.
- Kreith, F. and Bohn, M.S. 1986. *Principles of Heat Transfer*, 4th Ed. Harper and Row, New York, NY.

- Laws, E. A. and Chalup, M. S. 1990. A Microalgal Growth Model. *Limnol. Oceanogr.* 35(3):597-608.
- LI-COR, 2003. Radiation Measurement Instruments, LI-COR, Lincoln, NE, 30 pp.
- Likens, G. E., and Johnson, N. M. (1969). "Measurements and analysis of the annual heat budget for sediments of two Wisconsin lakes." *Limnol. Oceanogr.*, 14(1):115-135.
- Mackay, D. and Yeun, A.T.K. 1983. Mass Transfer Coefficient Correlations for Volatilization of Organic Solutes from Water. *Environ. Sci. Technol.* 17:211-233.
- Marciano, J.K. and G.E. Harbeck. 1952. Mass transfer studies in water loss investigation: Lake Hefner studies. Geological Circular 229. U.S. Geological Survey, Washington DC.
- McIntyre, C. D. 1973. Periphyton dynamics in laboratory streams: A simulation model and its implications. *Ecol. Monogr.* 43:399-420.
- Meeus, J. 1999. Astronomical algorithms. Second edition. Willmann-Bell, Inc. Richmond, VA.
- Melching, C.S. and Flores, H.E. 1999. Reaeration Equations from U.S. Geological Survey Database. *J. Environ. Engin.*, 125(5):407-414.
- Mills, A.F. 1992. Heat Transfer. Irwin, Homewood, IL.
- Moog, D.B., and Iirka, G.H. 1998. Analysis of reaeration equations using mean multiplicative error. *J. Environ. Engrg.*, ASCE, 124(2), 104-110.
- Nakshabandi, G.A. and H. Kohnke. 1965. Thermal conductivity and diffusivity of soils as related to moisture tension and other physical properties. Agr. Met. Vol 2.
- O'Connor, D.J., and Dobbins, W.E. 1958. Mechanism of reaeration in natural streams. *Trans. ASCE*, 123, 641-684.
- Owens, M., Edwards, R.W., and Gibbs, J.W. 1964. Some reaeration studies in streams. *Int. J. Air and Water Pollution*, 8, 469-486.
- Plummer, L.N. and Busenberg, E. 1982. The Solubilities of Calcite, Aragonite and Vaterite in CO2-H2O Solutions Between 0 and 90 °C, and an Evaluation of the Aqueous Model for the System CaCO₃–CO₂–H₂O. *Geochim. Cosmochim.* 46:1011-1040.
- Raudkivi, A. I. 1979. Hydrology. Pergamon, Oxford, England.
- Redfield, A.C., Ketchum, B.H. and Richards, F.A. 1963. The Influence of Organisms on the Composition of Seawater, in *The Sea*, M.N. Hill, ed. Vol. 2, pp. 27-46, Wiley-Interscience, NY.
- Riley, G.A. 1956. Oceanography of Long Island Sound 1952-1954. II. Physical Oceanography, Bull. Bingham Oceanog. Collection 15, pp. 15-16.
- Rosgen, D. 1996. Applied river morphology. Wildland Hydrology publishers. Pagosa Springs,
- Rutherford, J.C., Scarsbrook, M.R. and Broekhuizen, N. 2000. Grazer Control of Stream Algae: Modeling Temperature and Flood Effects. *J. Environ. Eng.* 126(4):331-339.
- Ryan, P.J. and D.R.F. Harleman. 1971. Prediction of the annual cycle of temperature changes in a stratified lake or reservoir. Mathematical model and user's manual. Ralph M. Parsons Laboratory Report No. 137. Massachusetts Institute of Technology. Cambridge, MA.
- Ryan, P.J. and K.D. Stolzenbach.1972. Engineering aspects of heat disposal from power generation, (D.R.F. Harleman, ed.). R.M. Parson Laboratory for Water Resources and Hydrodynamics, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Schwarzenbach, R.P., Gschwend, P.M., and Imboden, D.M. 1993. Environmental Organic Chemistry. Wiley-Interscience, 681 pp.
- Shanahan, P. 1984. Water temperature modeling: a practical guide. In: Proceedings of stormwater and water quality model users group meeting, April 12-13, 1984. USEPA, EPA-600/9-85-003. (users.rcn.com/shanahan.ma.ultranet/TempModeling.pdf).
- Smith, E.L. 1936. Photosynthesis in Relation to Light and Carbon Dioxide. Proc. Natl. Acad. Sci. 22:504-511.

QUAL2K 81 December 16, 2008

- Steele, J.H. 1962. Environmental Control of Photosynthesis in the Sea. Limnol. Oceanogr. 7:137-150.
- Stumm, W. and Morgan, J.J. 1996. Aquatic Chemistry, 3rd Ed., New York, Wiley-Interscience, 1022 pp.
- Szeicz, G. 1974. Solar radiation for plant growth. J. Appl. Ecol. 11:617-636.
- Thackston, E. L., and Dawson, J.W. III. 2001. Recalibration of a Reaeration Equation. *J. Environ. Engrg.*, 127(4):317-320.
- Thackston, E. L., and Krenkel, P. A. 1969. Reaeration-prediction in natural streams. *J. Sanit. Engrg. Div.*, ASCE, 95(1), 65-94.
- Tsivoglou, E. C., and Neal, L.A. 1976. Tracer Measurement of Reaeration. III. Predicting the Reaeration Capacity of Inland Streams. Journal of the Water Pollution Control Federation, 48(12):2669-2689.
- Thomann, R.V. and Mueller, J.A. 1987. Principles of Surface Water Quality Modeling and Control. New York, Harper-Collins.
- TVA, 1972. Heat and mass transfer between a water surface and the atmosphere. Water Resources Research, Laboratory Report No. 14. Engineering Laboratory, Division of Water Control Planning, Tennessee Valley Authority, Norris TN.
- Wanninkhof, R., Ledwell, I. R., and Crusius, I. 1991. "Gas Transfer Velocities on Lakes Measured with Sulfur Hexafluoride." In Symposium Volume of the Second International Conference on Gas Transfer at Water Surfaces, S.C. Wilhelms and I.S. Gulliver, eds., Minneapolis, MN.
- Wood, K.G. 1974. Carbon Dioxide Diffusivity Across the Air-Water Interface. *Archiv für Hydrobiol*. 73(1):57-69.

QUAL2K 82 December 16, 2008

TABLE E.1 ALLOWABLE LOADS OF TSS FOR SULPHUR RIVER REACH 11140302-008

Turbidity: base flow criterion = 21 NTU; storm flow criterion = 32 NTU

Allowable release from International Paper Texarkana Mill (included as a portion of the upstream flow):

Minimum release from Lake Wright Patman for IP to discharge = 50 cfs
Allowable discharge as percentage of Lake Wright Patman release = 100%
Maximum allowable release at any time = 646.3 MGD = 1000 cfs

	Calculated ambient flow					Ambient flow +	
	at downstream end of			Upstream	Point	Int'l Paper	TSS
	reach 11140302-008			flow from	source flow	discharge +	assimilative
Percent	(Lake WP releases +		Target	Int'l Paper	entering	point sources	capacity, or
exceedance	inflow d/s of dam)	Flow	TSS	discharge	this reach	in this reach	TMDL
for flow	<u>(cfs)</u>	Category	(mg/L)	<u>(cfs)</u>	<u>(cfs)</u>	<u>(cfs)</u>	(tons/day)
99.9	10.9	Base	24	0	0	11	0.7
99	11.8	Base	24	0	0	12	8.0
98	14.0	Base	24	0	0	14	0.9
96	26.8	Base	24	0	0	27	1.7
94	52.1	Base	24	52	0	104	6.7
92	55.5	Base	24	56	0	111	7.2
90	87.1	Base	24	87	0	174	11.3
88	105.8	Base	24	106	0	212	13.7
86	108.2	Base	24	108	0	216	14.0
84	109.4	Base	24	109	0	219	14.2
82	110.2	Base	24	110	0	220	14.3
80	111.2	Base	24	111	0	222	14.4
78	113.0	Base	24	113	0	226	14.6
76	114.5	Base	24	114	0	229	14.8
74	116.1	Base	24	116	0	232	15.0
72	120.6	Base	24	121	0	241	15.6
70	131.4	Base	24	131	0	263	17.0
68	151.7	Base	24	152	0	303	19.6
66	210.7	Base	24	211	0	421	27.3
64	225.2	Base	24	225	0	450	29.2
62	229.1	Base	24	229	0	458	29.7
60	242.5	Base	24	242	0	485	31.4
59.9	244.0	Storm	34	244	0	488	44.8
58	323.8	Storm	34	324	0	648	59.4
56	499.0	Storm	34	499	0	998	91.5
54	537.2	Storm	34	537	0	1,074	98.5
52	554.6	Storm	34	555	0	1,109	101.7
50	650.2	Storm	34	650	0	1,300	119.2
48	878.1	Storm	34	878	0	1,756	161.0
46	1,062.8	Storm	34	1,000	0	2,063	189.2
44	1,141.7	Storm	34	1,000	0	2,142	196.4
42	1,414.9	Storm	34	1,000	0	2,415	221.4
40	1,767.1	Storm	34	1,000	0	2,767	253.7
38	2,128.6	Storm	34	1,000	0	3,129	286.9
36	2,590.7	Storm	34	1,000	0	3,591	329.2
34	2,997.2	Storm	34	1,000	0	3,997	366.5
32	3,635.9	Storm	34	1,000	0	4,636	425.1
30	4,022.9	Storm	34	1,000	0	5,023	460.6
28	4,637.4	Storm	34	1,000	0	5,637	516.9
26	6,131.6	Storm	34	1,000	Ö	7,132	653.9
24	6,842.3	Storm	34	1,000	Ö	7,842	719.1
22	7,645.6	Storm	34	1,000	0	8,646	792.8

	Calculated ambient flow					Ambient flow +	
	at downstream end of			Upstream	Point	Int'l Paper	TSS
	reach 11140302-008			flow from	source flow	discharge +	assimilative
Percent	(Lake WP releases +		Target	Int'l Paper	entering	point sources	capacity, or
exceedance	inflow d/s of dam)	Flow	TSS	discharge	this reach	in this reach	TMDL
for flow	<u>(cfs)</u>	Category	(mg/L)	<u>(cfs)</u>	<u>(cfs)</u>	<u>(cfs)</u>	(tons/day)
20	9,104.9	Storm	34	1,000	0	10,105	926.6
18	9,543.5	Storm	34	1,000	0	10,544	966.8
16	9,726.1	Storm	34	1,000	0	10,726	983.5
14	9,836.4	Storm	34	1,000	0	10,836	993.6
12	9,948.9	Storm	34	1,000	0	10,949	1,004.0
10	10,019.0	Storm	34	1,000	0	11,019	1,010.4
9	10,052.2	Storm	34	1,000	0	11,052	1,013.4
8	10,087.2	Storm	34	1,000	0	11,087	1,016.6
7	10,125.8	Storm	34	1,000	0	11,126	1,020.2
6	10,178.9	Storm	34	1,000	0	11,179	1,025.0
5	10,235.6	Storm	34	1,000	0	11,236	1,030.2
4	10,305.0	Storm	34	1,000	0	11,305	1,036.6
3	10,437.3	Storm	34	1,000	0	11,437	1,048.7
2	10,633.2	Storm	34	1,000	0	11,633	1,066.7
1	10,968.2	Storm	34	1,000	0	11,968	1,097.4
0.5	11,344.5	Storm	34	1,000	0	12,345	1,131.9
0.1	11,983.9	Storm	34	1,000	0	12,984	1,190.6
0.01	13,607.2	Storm	34	1,000	0	14,607	1,339.4

 ${\sf FILE: R:\PROJECTS\backslash 3013-380\backslash TECH\backslash ADEQ_WQ_DATA\backslash RED\ RIVER\backslash RED0005\ SULPHUR\ RIVER\ REVISED\ TMDL\ METHOD.XLSX}$

<u>Turbidity:</u> base flow criterion = 21 NTU; storm flow criterion = 32 NTU

Flow entering this reach from non-storm point sources to be included in WLA =

0 MGD

	Calculated ambient flow at downstream end of			Upstream	Point	Ambient flow + Int'l Paper	TSS
	reach 11140302-006			flow from	source flow	discharge +	assimilative
Percent	(Lake WP releases +		Target	Int'l Paper	entering	point sources	capacity, or
exceedance	inflow d/s of dam)	Flow	TSS	discharge	this reach	in this reach	TMDL
for flow	(cfs)	Category	(mg/L)	(cfs)	<u>(cfs)</u>	<u>(cfs)</u>	(tons/day)
99.9	11.5	Base	24	0	0	12	0.7
99	13.1	Base	24	0	0	13	0.8
98	17.3	Base	24	0	0	17	1.1
96	37.3	Base	24	0	0	37	2.4
94	53.2	Base	24	52	0	105	6.8
92	57.8	Base	24	56	0	113	7.3
90	88.1	Base	24	87	0	175	11.3
88	107.2	Base	24	106	0	213	13.8
86	109.3	Base	24	108	0	218	14.1
84	110.2	Base	24	109	0	220	14.2
82	111.2	Base	24	110	0	221	14.3
80	112.4	Base	24	111	0	224	14.5
78	114.3	Base	24	113	0	227	14.7
76	115.7	Base	24	114	0	230	14.9
74	120.0	Base	24	116	0	236	15.3
72	130.4	Base	24	121	0	251	16.2
70	150.1	Base	24	131	0	281	18.2
68	179.4	Base	24	152	0	331	21.4
66	222.4	Base	24	211	0	433	28.0
64	227.9	Base	24	225	0	453	29.3
62	237.1	Base	24	229	0	466	30.2
60	277.0	Base	24	242	0	519	33.6
59.9	279.9	Storm	34	244	0	524	48.0
58	383.5	Storm	34	324	0	707	64.9
56	514.9	Storm	34	499	0	1,014	93.0
54	547.3	Storm	34	537	0	1,084	99.4
52	593.4	Storm	34	555	0	1,148	105.3
50	725.0	Storm	34	650	0	1,375	126.1
48	932.0	Storm	34	878	0	1,810	166.0
46	1,086.3	Storm	34	1,000	0	2,086	191.3
44	1,169.6	Storm	34	1,000	0	2,170	198.9
42	1,466.4	Storm	34	1,000	0	2,466	226.2
40	1,819.4	Storm	34	1,000	0	2,819	258.5
38	2,227.9	Storm	34	1,000	0	3,228	296.0
36	2,626.7	Storm	34	1,000	0	3,627	332.5
34	3,045.6	Storm	34	1,000	0	4,046	371.0
32	3,688.0	Storm	34	1,000	0	4,688	429.9
30	4,105.9	Storm	34	1,000	0	5,106	468.2
28	4,785.8	Storm	34	1,000	0	5,786	530.5
26	6,230.2	Storm	34	1,000	Ö	7,230	663.0
24	6,926.9	Storm	34	1,000	Ö	7,927	726.9
22	7,836.6	Storm	34	1,000	0	8,837	810.3

	Calculated ambient flow					Ambient flow +	
	at downstream end of			Upstream	Point	Int'l Paper	TSS
	reach 11140302-006			flow from	source flow	discharge +	assimilative
Percent	(Lake WP releases +		Target	Int'l Paper	entering	point sources	capacity, or
exceedance	inflow d/s of dam)	Flow	TSS	discharge	this reach	in this reach	TMDL
for flow	<u>(cfs)</u>	Category	(mg/L)	<u>(cfs)</u>	<u>(cfs)</u>	<u>(cfs)</u>	(tons/day)
20	9,177.3	Storm	34	1,000	0	10,177	933.2
18	9,619.4	Storm	34	1,000	0	10,619	973.7
16	9,794.6	Storm	34	1,000	0	10,795	989.8
14	9,928.4	Storm	34	1,000	0	10,928	1,002.1
12	10,037.8	Storm	34	1,000	0	11,038	1,012.1
10	10,118.9	Storm	34	1,000	0	11,119	1,019.5
9	10,172.7	Storm	34	1,000	0	11,173	1,024.5
8	10,218.5	Storm	34	1,000	0	11,218	1,028.7
7	10,276.4	Storm	34	1,000	0	11,276	1,034.0
6	10,349.5	Storm	34	1,000	0	11,350	1,040.7
5	10,450.3	Storm	34	1,000	0	11,450	1,049.9
4	10,581.3	Storm	34	1,000	0	11,581	1,061.9
3	10,731.5	Storm	34	1,000	0	11,731	1,075.7
2	10,998.3	Storm	34	1,000	0	11,998	1,100.2
1	11,486.0	Storm	34	1,000	0	12,486	1,144.9
0.5	11,962.6	Storm	34	1,000	0	12,963	1,188.6
0.1	13,650.8	Storm	34	1,000	0	14,651	1,343.4
0.01	16,674.9	Storm	34	1,000	0	17,675	1,620.7

 ${\sf FILE: R:\PROJECTS\backslash 3013-380\backslash TECH\backslash ADEQ_WQ_DATA\backslash RED\ RIVER\backslash RED0005\ SULPHUR\ RIVER\ REVISED\ TMDL\ METHOD.XLSX}$

<u>Turbidity:</u> base flow criterion = 21 NTU; storm flow criterion = 32 NTU

Flow entering this reach from non-storm point sources to be included in WLA =

0 MGD

	Calculated ambient flow					Ambient flow +	
	at downstream end of			Upstream	Point	Int'l Paper	TSS
	reach 11140302-004			flow from	source flow	discharge +	assimilative
Percent	(Lake WP releases +		Target	Int'l Paper	entering	point sources	capacity, or
exceedance	inflow d/s of dam)	Flow	TSS	discharge	this reach	in this reach	TMDL
	•						
for flow	<u>(cfs)</u> 11.6	Category	(mg/L)	(cfs)	(cfs)	<u>(cfs)</u> 12	(tons/day)
99.9		Base	24	0	0		0.8
99	13.5	Base	24	0	0	14	0.9
98	18.4	Base	24	0	0	18	1.2
96	40.7	Base	24	0	0	41	2.6
94	53.6	Base	24	52	0	106	6.8
92	60.4	Base	24	56	0	116	7.5
90	88.2	Base	24	87	0	175	11.3
88	107.9	Base	24	106	0	214	13.8
86	109.6	Base	24	108	0	218	14.1
84	110.4	Base	24	109	0	220	14.2
82	111.3	Base	24	110	0	222	14.3
80	112.7	Base	24	111	0	224	14.5
78	114.5	Base	24	113	0	228	14.7
76	116.1	Base	24	114	0	231	14.9
74	121.6	Base	24	116	0	238	15.4
72	135.1	Base	24	121	0	256	16.5
70	155.9	Base	24	131	0	287	18.6
68	186.8	Base	24	152	0	339	21.9
66	223.3	Base	24	211	0	434	28.1
64	228.9	Base	24	225	0	454	29.4
62	240.8	Base	24	229	0	470	30.4
60	289.5	Base	24	242	0	532	34.4
59.9	296.9	Storm	34	244	0	541	49.6
58	403.9	Storm	34	324	0	728	66.7
56	520.5	Storm	34	499	0	1,020	93.5
54	551.1	Storm	34	537	0	1,088	99.8
52	609.5	Storm	34	555	0	1,164	106.7
50	736.6	Storm	34	650	0	1,387	127.2
48	953.3	Storm	34	878	0	1,831	167.9
46	1,090.1	Storm	34	1,000	0	2,090	191.7
44	1,178.7	Storm	34	1,000	0	2,179	199.8
42	1,487.0	Storm	34	1,000	0	2,487	228.0
40	1,849.8	Storm	34	1,000	0	2,850	261.3
38	2,256.6	Storm	34	1,000	0	3,257	298.6
36	2,651.9	Storm	34	1,000	0	3,652	334.9
34	3,078.9	Storm	34	1,000	0	4,079	374.0
32	3,706.6	Storm	34	1,000	0	4,707	431.6
30	4,125.1	Storm	34	1,000	0	5,125	469.9
28	4,869.9	Storm	34	1,000	0	5,870	538.2
26	6,258.8	Storm	34	1,000	0	7,259	665.6
24	6,937.8	Storm	34	1,000	0	7,938	727.8
22	7,903.8	Storm	34	1,000	0	8,904	816.4

	Calculated ambient flow					Ambient flow +	
	at downstream end of			Upstream	Point	Int'l Paper	TSS
	reach 11140302-004			flow from	source flow	discharge +	assimilative
Percent	(Lake WP releases +		Target	Int'l Paper	entering	point sources	capacity, or
exceedance	inflow d/s of dam)	Flow	TSS	discharge	this reach	in this reach	TMDL
for flow	<u>(cfs)</u>	Category	(mg/L)	<u>(cfs)</u>	<u>(cfs)</u>	<u>(cfs)</u>	(tons/day)
20	9,194.0	Storm	34	1,000	0	10,194	934.7
18	9,637.9	Storm	34	1,000	0	10,638	975.4
16	9,812.4	Storm	34	1,000	0	10,812	991.4
14	9,952.4	Storm	34	1,000	0	10,952	1,004.3
12	10,062.2	Storm	34	1,000	0	11,062	1,014.3
10	10,156.2	Storm	34	1,000	0	11,156	1,023.0
9	10,207.0	Storm	34	1,000	0	11,207	1,027.6
8	10,266.7	Storm	34	1,000	0	11,267	1,033.1
7	10,322.2	Storm	34	1,000	0	11,322	1,038.2
6	10,407.6	Storm	34	1,000	0	11,408	1,046.0
5	10,520.0	Storm	34	1,000	0	11,520	1,056.3
4	10,654.0	Storm	34	1,000	0	11,654	1,068.6
3	10,841.9	Storm	34	1,000	0	11,842	1,085.8
2	11,122.6	Storm	34	1,000	0	12,123	1,111.6
1	11,688.4	Storm	34	1,000	0	12,688	1,163.5
0.5	12,302.2	Storm	34	1,000	0	13,302	1,219.7
0.1	14,220.1	Storm	34	1,000	0	15,220	1,395.6
0.01	17,697.4	Storm	34	1,000	0	18,697	1,714.4

 ${\sf FILE: R:\PROJECTS\backslash 3013-380\backslash TECH\backslash ADEQ_WQ_DATA\backslash RED\ RIVER\backslash RED0005\ SULPHUR\ RIVER\ REVISED\ TMDL\ METHOD.XLSX}$

TABLE E.4 ALLOWABLE LOADS OF TSS FOR SULPHUR RIVER REACH 11140302-002

Turbidity: base flow criterion = 21 NTU; storm flow criterion = 32 NTU

0 MGD

Flow entering this reach from non-storm point sources to be included in WLA =

Non-ambient flow from Days Crk w'shed (sum of avg eff flows for non-storm pt sources) = 14.5 MGD = 22.4 cfs

						Ambient flow +	
	Calculated ambient flow				5	Int'l Paper	T 00
	at downstream end of			Upstream	Point	discharge +	TSS
	reach 11140302-002		- .	flow from	source flow	point sources	assimilative
Percent	(Lake WP releases +		Target	Int'l Paper	entering	this reach +	capacity, or
exceedance	inflow d/s of dam)	Flow	TSS	discharge	this reach	Days Crk PS	TMDL
for flow	<u>(cfs)</u>	<u>Category</u>	(mg/L)	<u>(cfs)</u>	<u>(cfs)</u>	<u>(cfs)</u>	(tons/day)
99.9	12.5	Base	24	0	0	35	2.3
99	16.8	Base	24	0	0	39	2.5
98	25.5	Base	24	0	0	48	3.1
96	52.4	Base	24	0	0	75	4.8
94	56.2	Base	24	52	0	131	8.5
92	87.6	Base	24	56	0	166	10.7
90	93.9	Base	24	87	0	203	13.2
88	110.0	Base	24	106	0	238	15.4
86	110.9	Base	24	108	0	241	15.6
84	112.1	Base	24	109	0	244	15.8
82	113.5	Base	24	110	0	246	15.9
80	115.2	Base	24	111	0	249	16.1
78	117.3	Base	24	113	0	253	16.4
76	123.0	Base	24	114	0	260	16.8
74	138.4	Base	24	116	0	277	17.9
72	164.1	Base	24	121	0	307	19.9
70	202.9	Base	24	131	0	357	23.1
68	225.7	Base	24	152	0	400	25.9
66	231.8	Base	24	211	0	465	30.1
64	252.6	Base	24	225	0	500	32.4
62	290.2	Base	24	229	0	542	35.1
60	367.4	Base	24	242	0	632	40.9
59.9	375.4	Storm	34	244	0	642	58.9
58	502.6	Storm	34	324	0	849	77.8
56	552.3	Storm	34	499	0	1,074	98.5
54	615.5	Storm	34	537	0	1,175	107.8
52	745.4	Storm	34	555	0	1,322	121.3
50	911.1	Storm	34	650	0	1,584	145.2
48	1,069.1	Storm	34	878	0	1,970	180.6
46	1,168.6	Storm	34	1,000	0	2,191	200.9
44	1,340.8	Storm	34	1,000	0	2,363	216.7
42	1,629.5	Storm	34	1,000	0	2,652	243.2
40	2,017.3	Storm	34	1,000	0	3,040	278.7
38	2,489.1	Storm	34	1,000	0	3,511	322.0
36	2,811.4	Storm	34	1,000	0	3,834	351.5
34	3,421.3	Storm	34	1,000	0	4,444	407.5
32	3,947.6	Storm	34	1,000	0	4,970	455.7
30	4,350.5	Storm	34	1,000	0	5,373	492.7
28	5,273.2	Storm	34	1,000	0	6,296	577.3
26	6,496.4	Storm	34	1,000	0	7,519	689.4
24	7,158.0	Storm	34	1,000	0	8,180	750.1
22	8,519.2	Storm	34	1,000	0	9,542	874.9

						Ambient flow +	
	Calculated ambient flow					Int'l Paper	
	at downstream end of			Upstream	Point	discharge +	TSS
	reach 11140302-002			flow from	source flow	point sources	assimilative
Percent	(Lake WP releases +		Target	Int'l Paper	entering	this reach +	capacity, or
exceedance	inflow d/s of dam)	Flow	TSS	discharge	this reach	Days Crk PS	TMDL
for flow	(cfs)	Category	(mg/L)	<u>(cfs)</u>	<u>(cfs)</u>	<u>(cfs)</u>	(tons/day)
20	9,425.9	Storm	34	1,000	0	10,448	958.1
18	9,766.4	Storm	34	1,000	0	10,789	989.3
16	9,974.6	Storm	34	1,000	0	10,997	1,008.4
14	10,134.7	Storm	34	1,000	0	11,157	1,023.0
12	10,279.8	Storm	34	1,000	0	11,302	1,036.3
10	10,444.7	Storm	34	1,000	0	11,467	1,051.5
9	10,544.6	Storm	34	1,000	0	11,567	1,060.6
8	10,677.1	Storm	34	1,000	0	11,700	1,072.8
7	10,805.3	Storm	34	1,000	0	11,828	1,084.5
6	10,955.1	Storm	34	1,000	0	11,978	1,098.3
5	11,181.5	Storm	34	1,000	0	12,204	1,119.0
4	11,385.4	Storm	34	1,000	0	12,408	1,137.7
3	11,682.8	Storm	34	1,000	0	12,705	1,165.0
2	12,305.1	Storm	34	1,000	0	13,327	1,222.1
1	13,567.4	Storm	34	1,000	0	14,590	1,337.8
0.5	14,975.9	Storm	34	1,000	0	15,998	1,466.9
0.1	19,072.3	Storm	34	1,000	0	20,095	1,842.6
0.01	26,413.5	Storm	34	1,000	0	27,436	2,515.7

 ${\sf FILE: R:\PROJECTS\backslash 3013-380\backslash TECH\backslash ADEQ_WQ_DATA\backslash RED\ RIVER\backslash RED0005\ SULPHUR\ RIVER\ REVISED\ TMDL\ METHOD.XLSX}$

<u>Turbidity:</u> base flow criterion = 21 NTU; storm flow criterion = 32 NTU

Flow entering this reach from non-storm point sources to be included in WLA =

0 MGD

	Calculated ambient flow					Ambient flow + Int'l Paper	
	at downstream end of			Upstream	Point	discharge +	TSS
	reach 11140302-001			flow from	source flow	point sources	assimilative
Percent	(Lake WP releases +		Target	Int'l Paper	entering	this reach +	capacity, or
exceedance	inflow d/s of dam)	Flow	TSS	discharge	this reach	Days Crk PS	TMDL
for flow	<u>(cfs)</u>	Category	(mg/L)	<u>(cfs)</u>	<u>(cfs)</u>	<u>(cfs)</u>	(tons/day)
99.9	12.6	Base	24	0	0	35	2.3
99	16.9	Base	24	0	0	39	2.5
98	25.6	Base	24	0	0	48	3.1
96	52.4	Base	24	0	0	75	4.8
94	56.3	Base	24	52	0	131	8.5
92	87.8	Base	24	56	0	166	10.7
90	94.1	Base	24	87	0	204	13.2
88	110.1	Base	24	106	0	238	15.4
86	110.9	Base	24	108	0	241	15.6
84	112.1	Base	24	109	0	244	15.8
82	113.6	Base	24	110	0	246	15.9
80	115.2	Base	24	111	0	249	16.1
78	117.4	Base	24	113	0	253	16.4
76	123.2	Base	24	114	0	260	16.8
74	138.9	Base	24	116	0	277	18.0
72	164.8	Base	24	121	0	308	19.9
70	204.9	Base	24	131	0	359	23.2
68	225.9	Base	24	152	0	400	25.9
66	232.0	Base	24	211	0	465	30.1
64	253.6	Base	24	225	0	501	32.4
62	291.4	Base	24	229	0	543	35.1
60	369.9	Base	24	242	0	635	41.1
59.9	379.2	Storm	34	244	0	646	59.2
58	504.2	Storm	34	324	0	850	78.0
56	554.1	Storm	34	499	0	1,076	98.6
54	618.2	Storm	34	537	0	1,178	108.0
52	752.0	Storm	34	555	0	1,329	121.9
50	916.9	Storm	34	650	0	1,589	145.7
48	1,071.1	Storm	34	878	0	1,972	180.8
46	1,171.3	Storm	34	1,000	0	2,194	201.2
44	1,348.9	Storm	34	1,000	0	2,371	217.4
42	1,630.6	Storm	34	1,000	0	2,653	243.3
40	2,022.9	Storm	34	1,000	0	3,045	279.2
38	2,491.9	Storm	34	1,000	0	3,514	322.2
36	2,814.6	Storm	34	1,000	0	3,837	351.8
34	3,424.9	Storm	34	1,000	0	4,447	407.8
32	3,954.1	Storm	34	1,000	0	4,976	456.3
30	4,365.2	Storm	34	1,000	0	5,388	494.0
28	5,306.0	Storm	34	1,000	0	6,328	580.3
26	6,503.2	Storm	34	1,000	0	7,526	690.1
24	7,169.6	Storm	34	1,000	0	8,192	751.2
22	8,553.5	Storm	34	1,000	0	9,576	878.1

						Ambient flow +	
	Calculated ambient flow					Int'l Paper	
	at downstream end of			Upstream	Point	discharge +	TSS
	reach 11140302-001			flow from	source flow	point sources	assimilative
Percent	(Lake WP releases +		Target	Int'l Paper	entering	this reach +	capacity, or
exceedance	inflow d/s of dam)	Flow	TSS	discharge	this reach	Days Crk PS	TMDL
for flow	<u>(cfs)</u>	Category	(mg/L)	<u>(cfs)</u>	<u>(cfs)</u>	<u>(cfs)</u>	(tons/day)
20	9,427.5	Storm	34	1,000	0	10,450	958.2
18	9,766.7	Storm	34	1,000	0	10,789	989.3
16	9,982.4	Storm	34	1,000	0	11,005	1,009.1
14	10,140.1	Storm	34	1,000	0	11,162	1,023.5
12	10,288.0	Storm	34	1,000	0	11,310	1,037.1
10	10,456.2	Storm	34	1,000	0	11,479	1,052.5
9	10,555.7	Storm	34	1,000	0	11,578	1,061.6
8	10,691.1	Storm	34	1,000	0	11,713	1,074.1
7	10,822.3	Storm	34	1,000	0	11,845	1,086.1
6	10,973.8	Storm	34	1,000	0	11,996	1,100.0
5	11,202.2	Storm	34	1,000	0	12,225	1,120.9
4	11,421.5	Storm	34	1,000	0	12,444	1,141.0
3	11,707.8	Storm	34	1,000	0	12,730	1,167.3
2	12,335.0	Storm	34	1,000	0	13,357	1,224.8
1	13,635.6	Storm	34	1,000	0	14,658	1,344.1
0.5	15,103.2	Storm	34	1,000	0	16,126	1,478.6
0.1	19,234.9	Storm	34	1,000	0	20,257	1,857.5
0.01	26,705.6	Storm	34	1,000	0	27,728	2,542.5

 ${\sf FILE: R:\PROJECTS\backslash 3013-380\backslash TECH\backslash ADEQ_WQ_DATA\backslash RED\ RIVER\backslash RED0005\ SULPHUR\ RIVER\ REVISED\ TMDL\ METHOD.XLSX}$

TABLE E.6 EXISTING NPS LOADS OF TSS FOR SULPHUR RIVER REACH 11140302-006

		Flow at downstream			
	TSS from	end of reach			
	RED0005	11140302-006	Hydraulic		
<u>Date</u>	<u>(mg/L)</u>	<u>(cfs)</u>	range		
1/10/2006	51.0	12.81652893	low flows	Average TSS conc. w/in each zone (m	ıg/L)
7/21/1998	49.5	13.58181818	low flows	low flows	51
8/11/1998	57.5	14.7553719	low flows	dry cond.	54
3/5/1996	41.0	17.74545455	low flows	mid-range	43
1/2/1996	21.5	19.38842975	low flows	moist cond.	27
6/10/2003	57.7	22.81652893	low flows	high flows	11
7/27/1999	72.0	24.05619835	low flows	•	
9/22/1998	43.0	36.81818182	low flows		
4/2/1996	60.0	39.57355372	low flows		
10/18/2005	33.8	52.08214876	low flows		
12/13/2005	17.8	52.64297521	low flows		
11/15/2005	51.2	53.12661157	low flows		
8/30/2005	75.0	54.65719008	low flows		
7/26/2005	75.5	54.75107438	low flows		
6/28/2005	72.0	55.86842975	low flows		
9/27/2005	46.2	57.22479339	low flows		
5/17/2005	48.8	63.98016529	low flows		
3/14/2006		77.99173554	low flows		
2/13/1996		79.91900826	low flows		
10/3/2006	46.2	87.14552066	low flows		
10/31/2006		87.37553719	low flows		
12/19/2006		88.20628099	dry cond.		
9/5/2006	48.0	89.30512397	dry cond.		
8/1/2006	66.2	90.42247934	dry cond.		
12/3/2002	18.2	106.1593388	dry cond.		
1/18/2000	52.0	108.0512397	dry cond.		
10/24/2000	49.5	108.2581818	dry cond.		
2/15/2000	42	108.3471074	dry cond.		
12/16/2003	33.0	108.9900826	dry cond.		
9/21/2004	95.6	109.0305124	dry cond.		
9/28/1999	51.5	109.218281	dry cond.		
12/14/1999	48	109.3471074	dry cond.		
11/4/2008	47.0	109.4224793	dry cond.		
10/15/2007	49.2	109.4459504	dry cond.		
10/12/1999	64.0	109.4694215	dry cond.		
9/7/1993	46	110.328595	dry cond.		
10/1/2002		110.328595	dry cond.		
9/26/2000	60.0	110.3520661	dry cond.		
11/16/1999		110.5818182	dry cond.		
10/12/1993		110.6102479	dry cond.		
3/27/2007		111.1239669	dry cond.		
11/18/2003		111.1636364	dry cond.		
9/15/1997		111.2112397	dry cond.		
9/23/2003		111.3001653	dry cond.		
9/11/2007		111.305124	dry cond.		
8/31/1999		111.4459504	dry cond.		
			. ,		

		Flow at downstream	
	TSS from	end of reach	
	RED0005	11140302-006	Hydraulic
<u>Date</u>	<u>(mg/L)</u>	<u>(cfs)</u>	range
9/3/2002	46.3	111.5163636	dry cond.
8/29/2000	55.0	112.1877686	dry cond.
8/17/2004	69.6	112.4694215	dry cond.
11/19/2001	60.0	113.7966942	dry cond.
7/11/2006	55.8	114.5163636	dry cond.
7/13/1993	37	114.8684298	dry cond.
9/18/1995	56.5	114.9289256	dry cond.
7/27/2004	91.5	115.5490909	dry cond.
8/7/1995	62.0	115.5867769	dry cond.
6/13/2006	48.9	115.6571901	dry cond.
8/20/1991	27.5	116.5206612	dry cond.
8/12/2008	75.3	118.2247934	dry cond.
5/6/2003	52.3	119.092562	dry cond.
9/1/2008	56.8	119.6330579	dry cond.
8/12/2003	49.3	120.4495868	
7/15/2003	49.3 64.0	121.9801653	dry cond.
	61.0	121.9601655	dry cond.
5/14/1996			dry cond.
7/1/2002	53.3	123.6842975	dry cond.
5/19/1992	36	123.6958678	dry cond.
5/25/2004	87.9	127.1438017	dry cond.
5/16/2006	51.5	132.1950413	dry cond.
5/18/1999	40.5	141.9305785	dry cond.
7/16/1996	44.0	142.3768595	dry cond.
5/5/1998	68.0	148.7785124	dry cond.
2/3/2009	28.5	152.6561983	dry cond.
4/27/2004	53.5	155.9421488	dry cond.
11/16/2004	80.0	159.0446281	dry cond.
2/12/2008	107	166.738843	dry cond.
8/10/1993	76	167.2793388	dry cond.
1/27/2004	51.8	169.5454545	dry cond.
5/15/2007	15.8	207.0677686	dry cond.
3/30/2004	61.9	216.4975207	dry cond.
12/4/2007	33.0	222.3371901	dry cond.
9/26/1994	53.5	224.1197025	dry cond.
8/21/2001	49.5	224.938843	dry cond.
8/25/1997	59.5	226.9153719	dry cond.
8/6/2002	60.0	227.0327273	dry cond.
11/9/1992	26	227.7057851	dry cond.
7/18/1995	55.0	231.5256198	dry cond.
1/15/2008	40.5	237.3586777	dry cond.
6/27/1994	87.0	238.9190083	dry cond.
12/8/2008	32.0	245.2264463	dry cond.
9/24/1996	55.0	275.6231405	dry cond.
10/16/1995	78.0	341.2112397	mid-range
8/15/1994	67.5	343.3983471	mid-range
4/11/2006	41.2	355.6033058	mid-range
4/26/2005	41.2	389.3487603	mid-range
10/15/1991	36	396.4082645	mid-range
11/14/1995	21.5	404.328595	mid-range
	-		

		Flow at downstream	
	TSS from	end of reach	
	RED0005	11140302-006	Hydraulic
<u>Date</u>	(mg/L)	<u>(cfs)</u>	range
3/26/1991	39	429.7487603	mid-range
11/29/1994	23.0	470.338843	mid-range
2/20/2007	39.8	480.7735537	mid-range
11/28/1995	17.5	501.2112397	mid-range
10/21/2003	37.5	508.8919008	mid-range
11/13/2007	52.2	520.1123967	mid-range
10/2/1990	54	523.3143802	mid-range
2/4/2003	44.8	526.246281	mid-range
9/4/1990	18	534.4459504	mid-range
6/29/1993	40.0	539.8181818	mid-range
7/16/1991	38	544.3471074	mid-range
7/10/1991	64.0	545.2247934	mid-range
7/14/1997	106.5	545.2347107	mid-range
7/15/2008	48.0	547.7980165	
		548.3755372	mid-range
7/14/2009	85.3		mid-range
7/17/2001	68.5	549.2859504	mid-range
6/17/2008	65.0	556.9289256	mid-range
1/6/2009	33.5	560.8909091	mid-range
9/15/1992	28	561.0429752	mid-range
3/29/2005	39.2	567.7669421	mid-range
4/24/2007	48.5	587.3090909	mid-range
6/11/1996	53.0	596.9239669	mid-range
6/4/2002	51.5	616.1884298	mid-range
4/8/2003	46.0	652.6727273	mid-range
10/26/2004	43.7	733.9603306	mid-range
1/31/2006	28.0	739.8396694	mid-range
10/30/1990	28	1023.633058	mid-range
10/21/1997	49.0	1040.694215	mid-range
12/10/1991	15	1070.512397	mid-range
9/30/2008	39.0	1093.581818	mid-range
9/17/1991	43	1097.877686	mid-range
1/28/1997	36.5	1104.818182	mid-range
6/18/1991	43	1158.490909	mid-range
4/21/1992	37	1165.634711	mid-range
4/14/2009	64.0	1177.742149	mid-range
6/2/1998	26.0	1256.454545	mid-range
1/26/1999	9.5	1278.730579	mid-range
10/13/1992	34	1388.854215	mid-range
2/22/2005	31.3	1465.86281	mid-range
9/18/2001	51.5	1679.561983	mid-range
2/24/2004	19.0	1770.173554	mid-range
4/18/1994	32.5	1959.128926	moist cond.
10/24/1994	29.5	2037.81157	moist cond.
12/11/2001	19.5	2168.066116	moist cond.
10/22/1996	48.0	2244.239669	moist cond.
5/21/2002	57.5	2259.446281	moist cond.
2/14/1994	32.5	2307.900826	moist cond.
3/21/2000	31	2442.003306	moist cond.
7/18/1994	56.5	2549.666116	moist cond.
1/10/1994	50.5	∠J 4 3.000110	moist cond.

TSS from RED0005			Flow at downstream	
Date (mg/L) (cfs) range 3/31/2009 45.0 2599.958678 moist cond. 11/27/1990 36 2631.583471 moist cond. 12/18/2000 5.5 2678.165289 moist cond. 4/7/1998 22.5 2695.272727 moist cond. 6/19/1995 48.5 2893.990083 moist cond. 6/16/1997 27.0 3207.363636 moist cond. 8/20/1996 39.0 3227.378512 moist cond. 11/17/1998 28.0 3623.821488 moist cond. 6/12/2007 37.3 3657.796694 moist cond. 12/16/1997 20.0 3658.963636 moist cond. 12/1998 30.0 3697.928926 moist cond. 12/1999 22 3849.72562 moist cond. 12/17/2004 22.2 3976.429752 moist cond. 12/17/2004 22.2 3976.429752 moist cond. 12/1992 14 3986.755372 moist cond. 5/4/1993 28 <td></td> <td>TSS from</td> <td>end of reach</td> <td></td>		TSS from	end of reach	
3/31/2009 45.0 2599.958678 moist cond. 11/27/1990 36 2631.583471 moist cond. 12/18/2000 5.5 2678.165289 moist cond. 4/7/1998 22.5 2695.272727 moist cond. 6/19/1995 48.5 2893.990083 moist cond. 5/17/1993 25 3044.370248 moist cond. 6/16/1997 27.0 3207.363636 moist cond. 8/20/1996 39.0 3227.378512 moist cond. 6/12/2007 37.3 3657.796694 moist cond. 11/17/1998 28.0 3623.821488 moist cond. 12/16/1997 20.0 3658.963636 moist cond. 12/16/1997 20.0 3658.963636 moist cond. 12/16/1992 22 3849.72562 moist cond. 12/8/1992 22 3849.72562 moist cond. 12/8/1992 22 3976.429752 moist cond. 12/17/2004 22.2 3976.429752 moist cond. 7/21/1992 14 3986.755372 moist cond. 5/4/1993 28 4037.717355 moist cond. 6/29/2009 45.5 4095.553719 moist cond. 6/29/2004 33.8 4459.785124 moist cond. 6/29/2004 33.8 4459.785124 moist cond. 10/23/2001 21.8 5426 moist cond. 5/23/1994 27.0 5510.312397 moist cond. 5/23/1994 27.0 5510.312397 moist cond. 11/25/2002 27.5 6303.980165 moist cond. 11/25/2002 27.5 6303.980165 moist cond. 11/25/2003 17.8 6610.404959 moist cond. 11/25/2004 19.5 6308.578512 moist cond. 11/25/2005 102 6656.968595 moist cond. 11/25/1992 24 7602.51405 moist cond. 11/25/2005 102 6656.968595 moist cond. 11/21/2008 60.0 8553.446281 moist cond. 11/21/2008 60.0 8553.446281 moist cond. 11/19/1993 6 9328.502149 moist cond. 11/19/1994 14.5 9083.504132 moist cond. 11/19/1996 14.5 9083.504132 moist cond. 11/19/1997 15.0 9973.758678 moist cond. 11/19/1999 14.5 9923.590083 moist cond. 21/19/2002 4.5 9822.555372 moist cond. 21/19/2003 6.5 9822.555372 moist cond. 21/19/2004 6.5 9822.555372 moist con		RED0005	11140302-006	Hydraulic
3/31/2009 45.0 2599.958678 moist cond. 11/27/1990 36 2631.583471 moist cond. 12/18/2000 5.5 2678.165289 moist cond. 4/7/1998 22.5 2695.272727 moist cond. 6/19/1995 48.5 2893.990083 moist cond. 5/17/1993 25 3044.370248 moist cond. 6/16/1997 27.0 3207.363636 moist cond. 8/20/1996 39.0 3227.378512 moist cond. 8/20/1996 39.0 3227.378512 moist cond. 6/12/2007 37.3 3657.796694 moist cond. 11/17/1998 30.0 3658.963636 moist cond. 12/16/1997 20.0 3658.963636 moist cond. 12/16/1997 20.0 3658.963636 moist cond. 12/16/1992 22 3849.72562 moist cond. 12/8/1992 22 3876.429752 moist cond. 12/7/2004 22.2 3976.429752 moist cond. 12/17/2004 22.2 3976.429752 moist cond. 5/4/1993 28 4037.717355 moist cond. 6/29/2009 45.5 4095.553719 moist cond. 6/29/2004 33.8 4459.785124 moist cond. 6/29/2004 33.8 4459.785124 moist cond. 10/23/2001 21.8 5426 moist cond. 5/23/1994 27.0 5510.312397 moist cond. 5/23/1994 27.0 5510.312397 moist cond. 11/25/2002 27.5 6303.980165 moist cond. 11/25/2002 27.5 6303.980165 moist cond. 11/25/2002 17.8 6610.404959 moist cond. 11/25/2003 17.8 6610.404959 moist cond. 11/25/2005 102 6656.968595 moist cond. 11/25/1992 24 7602.51405 moist cond. 11/25/2005 102 6656.968595 moist cond. 11/21/2008 60.0 8553.446281 moist cond. 11/21/2008 60.0 8553.446281 moist cond. 11/19/1993 6 9328.502149 moist cond. 11/19/1994 14.5 9083.504132 moist cond. 11/19/1996 14.5 9083.504132 moist cond. 11/19/1999 6 9.0 9631.01157 moist cond. 11/19/1991 72 9728.806612 moist cond. 11/19/1990 14.5 9822.555372 moist cond. 11/19/1990 15.9 9823.590083 moist cond. 2/19/2002 4.5 9822.555372 moist	<u>Date</u>	(mg/L)	<u>(cfs)</u>	range
12/18/2000 5.5 2678.165289 moist cond. 4/7/1998 22.5 2695.272727 moist cond. 6/19/1995 48.5 2893.990083 moist cond. 5/17/1993 25 3044.370248 moist cond. 8/20/1996 39.0 3227.378512 moist cond. 8/20/1996 39.0 3227.378512 moist cond. 11/17/1998 28.0 3623.821488 moist cond. 6/12/2007 37.3 3657.796694 moist cond. 12/16/1997 20.0 3658.963636 moist cond. 12/16/1997 22.0 3658.963636 moist cond. 12/18/1992 22 3849.72562 moist cond. 12/8/1992 22 3849.72562 moist cond. 12/17/2004 22.2 3976.429752 moist cond. 7/21/1992 14 3986.755372 moist cond. 5/4/1993 28 4037.717355 moist cond. 6/16/1992 4 4139.252893 moist cond. 6/19/2004 33.8 4459.785124 moist cond. 6/16/1992 4 4139.252893 moist cond. 5/23/1994 27.0 5510.312397 moist cond. 12/23/1994 27.0 5510.312397 moist cond. 11/5/2002 27.5 6303.980165 moist cond. 11/25/1994 19.5 6308.578512 moist cond. 11/25/2005 102 6656.968595 moist cond. 11/25/2005 102 6656.968595 moist cond. 3/23/1999 24.0 7477.53719 moist cond. 11/25/2005 102 6656.968595 moist cond. 3/19/2009 38.5 8137.404959 moist cond. 3/19/1995 44.5 9083.504132 moist cond. 11/19/1999 14.5 9083.504132 moist cond. 11/25/2005 102 6656.968595 moist cond. 11/25/2005 102 6656.968595 moist cond. 3/19/2009 38.5 8137.404959 moist cond. 3/19/2009 38.5 8137.404959 moist cond. 3/19/2009 38.5 8137.404959 moist cond. 11/19/1993 6 9328.502149 moist cond. 11/19/1996 14.5 9083.504132 moist cond. 11/19/1999 14.5 9083.500826 moist cond. 11/19/1999 15.0 9983.500826 moist cond. 21/16/1999 17.5 9923.590083 moist cond. 5/12/1997 15.0 9	3/31/2009	45.0	2599.958678	moist cond.
4/7/1998 22.5 2695.272727 moist cond. 6/19/1995 48.5 2893.990083 moist cond. 5/17/1993 25 3044.370248 moist cond. 6/16/1997 27.0 3207.363636 moist cond. 8/20/1996 39.0 3227.378512 moist cond. 11/17/1998 28.0 3623.821488 moist cond. 6/12/2007 37.3 3657.796694 moist cond. 10/27/1998 30.0 3697.928926 moist cond. 12/8/1992 22 3849.72562 moist cond. 4/18/2000 33 3970.667769 moist cond. 12/7/2004 22.2 3976.429752 moist cond. 7/21/1992 14 3986.755372 moist cond. 7/21/1993 28 4037.717355 moist cond. 8/29/2009 45.5 4095.553719 moist cond. 6/16/1992 4 4139.252893 moist cond. 6/12/2001 21.8 5426 moist cond. 10/23/1993 <td< td=""><td>11/27/1990</td><td>36</td><td>2631.583471</td><td>moist cond.</td></td<>	11/27/1990	36	2631.583471	moist cond.
4/7/1998 22.5 2695.272727 moist cond. 6/19/1995 48.5 2893.990083 moist cond. 5/17/1993 25 3044.370248 moist cond. 6/16/1997 27.0 3207.363636 moist cond. 8/20/1996 39.0 3227.378512 moist cond. 11/17/1998 28.0 3623.821488 moist cond. 6/12/2007 37.3 3657.796694 moist cond. 10/27/1998 30.0 3697.928926 moist cond. 12/8/1992 22 3849.72562 moist cond. 4/18/2000 33 3970.667769 moist cond. 12/7/2004 22.2 3976.429752 moist cond. 7/21/1992 14 3986.755372 moist cond. 7/21/1993 28 4037.717355 moist cond. 8/29/2009 45.5 4095.553719 moist cond. 6/16/1992 4 4139.252893 moist cond. 6/12/2001 21.8 5426 moist cond. 5/23/1994	12/18/2000	5.5	2678.165289	moist cond.
6/19/1995		22.5		
5/17/1993 25 3044.370248 moist cond. 6/16/1997 27.0 3207.363636 moist cond. 8/20/1996 39.0 3227.378512 moist cond. 11/17/1998 28.0 3623.821488 moist cond. 6/12/2007 37.3 3657.796694 moist cond. 12/16/1997 20.0 3658.963636 moist cond. 10/27/1998 30.0 3697.928926 moist cond. 12/8/1992 22 3849.72562 moist cond. 12/7/2004 22.2 3976.429752 moist cond. 7/21/1992 14 3986.755372 moist cond. 5/4/1993 28 4037.717355 moist cond. 6/16/1992 4 4139.252893 moist cond. 6/16/1992 4 4139.252893 moist cond. 6/29/2004 33.8 4459.785124 moist cond. 10/23/2001 21.8 5426 moist cond. 5/23/1994 27.0 5510.312397 moist cond. 2/12/1993 <td< td=""><td></td><td>48.5</td><td></td><td></td></td<>		48.5		
6/16/1997 27.0 3207.363636 moist cond. 8/20/1996 39.0 3227.378512 moist cond. 11/17/1998 28.0 3623.821488 moist cond. 6/12/2007 37.3 3657.796694 moist cond. 12/16/1997 20.0 3658.963636 moist cond. 12/27/1998 30.0 3697.928926 moist cond. 12/8/1992 22 3849.72562 moist cond. 4/18/2000 33 3970.667769 moist cond. 12/7/2004 22.2 3976.429752 moist cond. 12/7/2004 22.2 3976.429752 moist cond. 5/4/1993 28 4037.717355 moist cond. 9/29/2009 45.5 4095.553719 moist cond. 6/16/1992 4 4139.252893 moist cond. 5/23/1994 27.0 5510.312397 moist cond. 5/23/1994 27.0 5510.312397 moist cond. 12/5/2002 27.5 6303.980165 moist cond. 11/5/2002 27.5 6303.980165 moist cond. 11/25/1994 19.5 6308.578512 moist cond. 11/25/2005 10.2 6656.968595 moist cond. 8/4/2009 57.2 7033.145455 moist cond. 8/1/2002 14.5 8127.85124 moist cond. 8/1/2002 14.5 8127.85124 moist cond. 8/1/2002 14.5 8127.85124 moist cond. 8/1/2009 57.2 7033.145455 moist cond. 8/1/2008 60.0 8553.446281 moist cond. 8/1/2008 60.0 8553.446281 moist cond. 8/1/2009 58.8 9766.476033 moist cond. 8/1/2009 58.8 9766.476033 moist cond. 6/15/2009 58.9 9768.47	5/17/1993	25		
8/20/1996 39.0 3227.378512 moist cond. 11/17/1998 28.0 3623.821488 moist cond. 6/12/2007 37.3 3657.796694 moist cond. 12/16/1997 20.0 3658.963636 moist cond. 10/27/1998 30.0 3697.928926 moist cond. 12/8/1992 22 3849.72562 moist cond. 4/18/2000 33 3970.667769 moist cond. 12/7/2004 22.2 3976.429752 moist cond. 7/21/1992 14 3986.755372 moist cond. 5/4/1993 28 4037.717355 moist cond. 6/16/1992 4 4139.252893 moist cond. 6/16/1992 4 4139.252893 moist cond. 6/29/2004 33.8 4459.785124 moist cond. 10/23/2001 21.8 5426 moist cond. 5/23/1994 27.0 5510.312397 moist cond. 2/19/1993 32 6295.434711 moist cond. 11/25/1994				
11/17/1998 28.0 3623.821488 moist cond. 6/12/2007 37.3 3657.796694 moist cond. 12/16/1997 20.0 3658.963636 moist cond. 10/27/1998 30.0 3697.928926 moist cond. 12/8/1992 22 3849.72562 moist cond. 4/18/2000 33 3970.667769 moist cond. 12/7/2004 22.2 3976.429752 moist cond. 7/21/1992 14 3986.755372 moist cond. 5/4/1993 28 4037.717355 moist cond. 9/29/2009 45.5 4095.553719 moist cond. 6/16/1992 4 4139.252893 moist cond. 6/29/2004 33.8 4459.785124 moist cond. 10/23/2001 21.8 5426 moist cond. 5/23/1994 27.0 5510.312397 moist cond. 2/19/1991 42 5697.652893 moist cond. 1/1/5/2002 27.5 6303.980165 moist cond. 1/1/2/2003				
6/12/2007 37.3 3657.796694 moist cond. 12/16/1997 20.0 3658.963636 moist cond. 10/27/1998 30.0 3697.928926 moist cond. 12/8/1992 22 3849.72562 moist cond. 4/18/2000 33 3970.667769 moist cond. 12/7/2004 22.2 3976.429752 moist cond. 7/21/1992 14 3986.755372 moist cond. 5/4/1993 28 4037.717355 moist cond. 9/29/2009 45.5 4095.553719 moist cond. 6/16/1992 4 4139.252893 moist cond. 6/29/2004 33.8 4459.785124 moist cond. 10/23/2001 21.8 5426 moist cond. 5/23/1994 27.0 5510.312397 moist cond. 2/19/1991 42 5697.652893 moist cond. 1/25/2002 27.5 6303.980165 moist cond. 1/1/2/2001 16.5 6497.604959 moist cond. 1/25/1994 <t< td=""><td></td><td></td><td></td><td></td></t<>				
12/16/1997 20.0 3658.963636 moist cond. 10/27/1998 30.0 3697.928926 moist cond. 12/8/1992 22 3849.72562 moist cond. 4/18/2000 33 3970.667769 moist cond. 12/7/2004 22.2 3976.429752 moist cond. 7/21/1992 14 3986.755372 moist cond. 5/4/1993 28 4037.717355 moist cond. 9/29/2009 45.5 4095.553719 moist cond. 6/16/1992 4 4139.252893 moist cond. 6/29/2004 33.8 4459.785124 moist cond. 10/23/2001 21.8 5426 moist cond. 5/23/1994 27.0 5510.312397 moist cond. 2/19/1991 42 5697.652893 moist cond. 11/5/2002 27.5 6303.980165 moist cond. 11/5/2002 27.5 6303.980165 moist cond. 11/14/2000 16.5 6497.604959 moist cond. 11/25/2005 <				
10/27/1998 30.0 3697.928926 moist cond. 12/8/1992 22 3849.72562 moist cond. 4/18/2000 33 3970.667769 moist cond. 12/7/2004 22.2 3976.429752 moist cond. 7/21/1992 14 3986.755372 moist cond. 5/4/1993 28 4037.717355 moist cond. 9/29/2009 45.5 4095.553719 moist cond. 6/16/1992 4 4139.252893 moist cond. 6/29/2004 33.8 4459.785124 moist cond. 10/23/2001 21.8 5426 moist cond. 5/23/1994 27.0 5510.312397 moist cond. 2/19/1991 42 5697.652893 moist cond. 2/15/1993 32 6295.434711 moist cond. 11/5/2002 27.5 6303.980165 moist cond. 11/14/2000 16.5 6497.604959 moist cond. 1/25/2005 102 6656.968595 moist cond. 3/23/1999 24				
12/8/1992 22 3849.72562 moist cond. 4/18/2000 33 3970.667769 moist cond. 12/7/2004 22.2 3976.429752 moist cond. 7/21/1992 14 3986.755372 moist cond. 5/4/1993 28 4037.717355 moist cond. 9/29/2009 45.5 4095.553719 moist cond. 6/16/1992 4 4139.252893 moist cond. 6/29/2004 33.8 4459.785124 moist cond. 10/23/2001 21.8 5426 moist cond. 5/23/1994 27.0 5510.312397 moist cond. 2/19/1991 42 5697.652893 moist cond. 11/5/2002 27.5 6303.980165 moist cond. 11/5/2002 27.5 6303.980165 moist cond. 11/14/2000 16.5 6497.604959 moist cond. 1/7/2003 17.8 6610.404959 moist cond. 3/23/1999 24.0 7477.53719 moist cond. 3/19/2002 14				
4/18/2000 33 3970.667769 moist cond. 12/7/2004 22.2 3976.429752 moist cond. 7/21/1992 14 3986.755372 moist cond. 5/4/1993 28 4037.717355 moist cond. 6/16/1992 4 4139.252893 moist cond. 6/29/2004 33.8 4459.785124 moist cond. 10/23/2001 21.8 5426 moist cond. 5/23/1994 27.0 5510.312397 moist cond. 2/19/1991 42 5697.652893 moist cond. 2/19/1993 32 6295.434711 moist cond. 11/5/2002 27.5 6303.980165 moist cond. 11/5/2002 27.5 6308.578512 moist cond. 11/14/2000 16.5 6497.604959 moist cond. 1/25/2005 102 6656.968595 moist cond. 3/23/1999 24.0 7477.53719 moist cond. 3/19/2002 14.5 8127.85124 moist cond. 3/19/2002 14				
12/7/2004 22.2 3976.429752 moist cond. 7/21/1992 14 3986.755372 moist cond. 5/4/1993 28 4037.717355 moist cond. 9/29/2009 45.5 4095.553719 moist cond. 6/16/1992 4 4139.252893 moist cond. 6/29/2004 33.8 4459.785124 moist cond. 10/23/2001 21.8 5426 moist cond. 5/23/1994 27.0 5510.312397 moist cond. 2/19/1991 42 5697.652893 moist cond. 2/23/1993 32 6295.434711 moist cond. 11/5/2002 27.5 6303.980165 moist cond. 11/5/2002 27.5 6303.980165 moist cond. 11/14/2000 16.5 6497.604959 moist cond. 1/7/2003 17.8 6610.404959 moist cond. 1/25/2005 102 6656.968595 moist cond. 8/4/2009 57.2 7033.145455 moist cond. 3/19/2002				
7/21/1992 14 3986.755372 moist cond. 5/4/1993 28 4037.717355 moist cond. 9/29/2009 45.5 4095.553719 moist cond. 6/16/1992 4 4139.252893 moist cond. 6/29/2004 33.8 4459.785124 moist cond. 10/23/2001 21.8 5426 moist cond. 5/23/1994 27.0 5510.312397 moist cond. 2/19/1991 42 5697.652893 moist cond. 2/23/1993 32 6295.434711 moist cond. 11/5/2002 27.5 6303.980165 moist cond. 11/5/2002 27.5 6303.980165 moist cond. 1/25/1994 19.5 6308.578512 moist cond. 1/1/4/2000 16.5 6497.604959 moist cond. 1/25/2005 102 6656.968595 moist cond. 8/4/2009 57.2 7033.145455 moist cond. 3/23/1999 24.0 7477.53719 moist cond. 2/13/1995				
5/4/1993 28 4037.717355 moist cond. 9/29/2009 45.5 4095.553719 moist cond. 6/16/1992 4 4139.252893 moist cond. 6/29/2004 33.8 4459.785124 moist cond. 10/23/2001 21.8 5426 moist cond. 5/23/1994 27.0 5510.312397 moist cond. 2/19/1991 42 5697.652893 moist cond. 2/23/1993 32 6295.434711 moist cond. 11/5/2002 27.5 6303.980165 moist cond. 1/25/1994 19.5 6308.578512 moist cond. 1/25/1994 19.5 6308.578512 moist cond. 1/7/2003 17.8 6610.404959 moist cond. 1/25/2005 102 6656.968595 moist cond. 8/4/2009 57.2 7033.145455 moist cond. 3/23/1999 24.0 7477.53719 moist cond. 2/25/1992 24 7602.51405 moist cond. 3/19/2002 14.				
9/29/2009				
6/16/1992				
6/29/2004 33.8 4459.785124 moist cond. 10/23/2001 21.8 5426 moist cond. 5/23/1994 27.0 5510.312397 moist cond. 2/19/1991 42 5697.652893 moist cond. 2/23/1993 32 6295.434711 moist cond. 11/5/2002 27.5 6303.980165 moist cond. 1/25/1994 19.5 6308.578512 moist cond. 1/25/1994 19.5 6308.578512 moist cond. 1/7/2003 17.8 6610.404959 moist cond. 1/7/2003 17.8 6610.404959 moist cond. 1/25/2005 102 6656.968595 moist cond. 8/4/2009 57.2 7033.145455 moist cond. 3/23/1999 24.0 7477.53719 moist cond. 2/213/1995 9 8084.117355 moist cond. 3/19/2002 14.5 8127.85124 moist cond. 5/23/2000 38.5 8137.404959 moist cond. 11/19/1996 <				
10/23/2001 21.8 5426 moist cond. 5/23/1994 27.0 5510.312397 moist cond. 2/19/1991 42 5697.652893 moist cond. 2/23/1993 32 6295.434711 moist cond. 11/5/2002 27.5 6303.980165 moist cond. 1/25/1994 19.5 6308.578512 moist cond. 1/1/4/2000 16.5 6497.604959 moist cond. 1/7/2003 17.8 6610.404959 moist cond. 1/25/2005 102 6656.968595 moist cond. 3/23/1999 24.0 7477.53719 moist cond. 3/19/2002 24 7602.51405 moist cond. 2/25/1992 24 7602.51405 moist cond. 3/19/2002 14.5 8127.85124 moist cond. 3/19/2002 14.5 8127.85124 moist cond. 1/1/9/1996 14.5 9083.504132 moist cond. 11/19/1996 14.5 9083.504132 moist cond. 11/9/1993 <t< td=""><td></td><td>33.8</td><td></td><td></td></t<>		33.8		
5/23/1994 27.0 5510.312397 moist cond. 2/19/1991 42 5697.652893 moist cond. 2/23/1993 32 6295.434711 moist cond. 11/5/2002 27.5 6303.980165 moist cond. 1/25/1994 19.5 6308.578512 moist cond. 1/25/1994 19.5 6308.578512 moist cond. 1/25/2000 16.5 6497.604959 moist cond. 1/7/2003 17.8 6610.404959 moist cond. 1/25/2005 102 6656.968595 moist cond. 8/4/2009 57.2 7033.145455 moist cond. 3/23/1999 24.0 7477.53719 moist cond. 2/25/1992 24 7602.51405 moist cond. 2/13/1995 9 8084.117355 moist cond. 3/19/2002 14.5 8127.85124 moist cond. 5/23/2000 38.5 8137.404959 moist cond. 11/19/1996 14.5 9083.504132 moist cond. 11/9/1993				
2/19/1991 42 5697.652893 moist cond. 2/23/1993 32 6295.434711 moist cond. 11/5/2002 27.5 6303.980165 moist cond. 1/25/1994 19.5 6308.578512 moist cond. 1/14/2000 16.5 6497.604959 moist cond. 1/7/2003 17.8 6610.404959 moist cond. 1/25/2005 102 6656.968595 moist cond. 8/4/2009 57.2 7033.145455 moist cond. 3/23/1999 24.0 7477.53719 moist cond. 2/25/1992 24 7602.51405 moist cond. 2/13/1995 9 8084.117355 moist cond. 3/19/2002 14.5 8127.85124 moist cond. 5/23/2000 38.5 8137.404959 moist cond. 3/11/2008 60.0 8553.446281 moist cond. 11/9/1993 6 9328.502149 moist cond. 8/18/1992 16 9583.337851 moist cond. 6/15/2009				
2/23/1993 32 6295.434711 moist cond. 11/5/2002 27.5 6303.980165 moist cond. 1/25/1994 19.5 6308.578512 moist cond. 11/14/2000 16.5 6497.604959 moist cond. 1/7/2003 17.8 6610.404959 moist cond. 1/25/2005 102 6656.968595 moist cond. 8/4/2009 57.2 7033.145455 moist cond. 3/23/1999 24.0 7477.53719 moist cond. 2/25/1992 24 7602.51405 moist cond. 2/13/1995 9 8084.117355 moist cond. 3/19/2002 14.5 8127.85124 moist cond. 5/23/2000 38.5 8137.404959 moist cond. 3/11/2008 60.0 8553.446281 moist cond. 11/9/1993 6 9328.502149 moist cond. 8/18/1992 16 9583.337851 moist cond. 6/15/2009 9.0 9631.01157 moist cond. 11/12/1991 <t< td=""><td></td><td>42</td><td></td><td></td></t<>		42		
11/5/2002 27.5 6303.980165 moist cond. 1/25/1994 19.5 6308.578512 moist cond. 11/14/2000 16.5 6497.604959 moist cond. 1/7/2003 17.8 6610.404959 moist cond. 1/25/2005 102 6656.968595 moist cond. 8/4/2009 57.2 7033.145455 moist cond. 3/23/1999 24.0 7477.53719 moist cond. 2/25/1992 24 7602.51405 moist cond. 2/13/1995 9 8084.117355 moist cond. 3/19/2002 14.5 8127.85124 moist cond. 5/23/2000 38.5 8137.404959 moist cond. 3/11/2008 60.0 8553.446281 moist cond. 11/9/1993 6 9328.502149 moist cond. 8/18/1992 16 9583.337851 moist cond. 6/15/2009 9.0 9631.01157 moist cond. 11/12/1991 72 9728.806612 moist cond. 6/19/2001 <t< td=""><td></td><td></td><td></td><td></td></t<>				
1/25/1994 19.5 6308.578512 moist cond. 11/14/2000 16.5 6497.604959 moist cond. 1/7/2003 17.8 6610.404959 moist cond. 1/25/2005 102 6656.968595 moist cond. 8/4/2009 57.2 7033.145455 moist cond. 3/23/1999 24.0 7477.53719 moist cond. 2/25/1992 24 7602.51405 moist cond. 2/13/1995 9 8084.117355 moist cond. 3/19/2002 14.5 8127.85124 moist cond. 5/23/2000 38.5 8137.404959 moist cond. 3/11/2008 60.0 8553.446281 moist cond. 11/9/1996 14.5 9083.504132 moist cond. 11/9/1993 6 9328.502149 moist cond. 8/18/1992 16 9583.337851 moist cond. 6/15/2009 9.0 9631.01157 moist cond. 11/12/1991 72 9728.806612 moist cond. 6/19/2001 <t< td=""><td></td><td>27.5</td><td></td><td></td></t<>		27.5		
11/14/2000 16.5 6497.604959 moist cond. 1/7/2003 17.8 6610.404959 moist cond. 1/25/2005 102 6656.968595 moist cond. 8/4/2009 57.2 7033.145455 moist cond. 3/23/1999 24.0 7477.53719 moist cond. 2/25/1992 24 7602.51405 moist cond. 2/13/1995 9 8084.117355 moist cond. 3/19/2002 14.5 8127.85124 moist cond. 5/23/2000 38.5 8137.404959 moist cond. 3/11/2008 60.0 8553.446281 moist cond. 11/9/1996 14.5 9083.504132 moist cond. 11/9/1993 6 9328.502149 moist cond. 8/18/1992 16 9583.337851 moist cond. 6/15/2009 9.0 9631.01157 moist cond. 11/12/1991 72 9728.806612 moist cond. 5/26/2009 5.8 9766.476033 moist cond. 6/19/2001 6.8 9803.973554 moist cond. 4/1/2008 6.5 </td <td></td> <td>19.5</td> <td></td> <td></td>		19.5		
1/7/2003 17.8 6610.404959 moist cond. 1/25/2005 102 6656.968595 moist cond. 8/4/2009 57.2 7033.145455 moist cond. 3/23/1999 24.0 7477.53719 moist cond. 2/25/1992 24 7602.51405 moist cond. 2/13/1995 9 8084.117355 moist cond. 3/19/2002 14.5 8127.85124 moist cond. 5/23/2000 38.5 8137.404959 moist cond. 3/11/2008 60.0 8553.446281 moist cond. 11/9/1996 14.5 9083.504132 moist cond. 8/18/1992 16 9583.337851 moist cond. 6/15/2009 9.0 9631.01157 moist cond. 11/12/1991 72 9728.806612 moist cond. 5/26/2009 5.8 9766.476033 moist cond. 6/19/2001 6.8 9803.973554 moist cond. 4/1/2008 6.5 9822.555372 moist cond. 5/6/2008 7		16.5		
8/4/2009 57.2 7033.145455 moist cond. 3/23/1999 24.0 7477.53719 moist cond. 2/25/1992 24 7602.51405 moist cond. 2/13/1995 9 8084.117355 moist cond. 3/19/2002 14.5 8127.85124 moist cond. 5/23/2000 38.5 8137.404959 moist cond. 3/11/2008 60.0 8553.446281 moist cond. 11/9/1996 14.5 9083.504132 moist cond. 11/9/1993 6 9328.502149 moist cond. 8/18/1992 16 9583.337851 moist cond. 6/15/2009 9.0 9631.01157 moist cond. 11/12/1991 72 9728.806612 moist cond. 5/26/2009 5.8 9766.476033 moist cond. 6/19/2001 6.8 9803.973554 moist cond. 4/1/2008 6.5 9822.555372 moist cond. 5/6/2008 7.5 9863.500826 moist cond. 5/16/1999 17.	1/7/2003	17.8	6610.404959	moist cond.
8/4/2009 57.2 7033.145455 moist cond. 3/23/1999 24.0 7477.53719 moist cond. 2/25/1992 24 7602.51405 moist cond. 2/13/1995 9 8084.117355 moist cond. 3/19/2002 14.5 8127.85124 moist cond. 5/23/2000 38.5 8137.404959 moist cond. 3/11/2008 60.0 8553.446281 moist cond. 11/9/1996 14.5 9083.504132 moist cond. 11/9/1993 6 9328.502149 moist cond. 8/18/1992 16 9583.337851 moist cond. 6/15/2009 9.0 9631.01157 moist cond. 11/12/1991 72 9728.806612 moist cond. 5/26/2009 5.8 9766.476033 moist cond. 6/19/2001 6.8 9803.973554 moist cond. 4/1/2008 6.5 9822.555372 moist cond. 2/19/2002 4.5 9863.500826 moist cond. 5/6/2008 7.5	1/25/2005	102	6656.968595	moist cond.
2/25/1992 24 7602.51405 moist cond. 2/13/1995 9 8084.117355 moist cond. 3/19/2002 14.5 8127.85124 moist cond. 5/23/2000 38.5 8137.404959 moist cond. 3/11/2008 60.0 8553.446281 moist cond. 11/19/1996 14.5 9083.504132 moist cond. 11/9/1993 6 9328.502149 moist cond. 8/18/1992 16 9583.337851 moist cond. 6/15/2009 9.0 9631.01157 moist cond. 11/12/1991 72 9728.806612 moist cond. 5/26/2009 5.8 9766.476033 moist cond. 6/19/2001 6.8 9803.973554 moist cond. 4/1/2008 6.5 9822.555372 moist cond. 2/19/2002 4.5 9822.793388 moist cond. 5/6/2008 7.5 9863.500826 moist cond. 5/12/1997 15.0 9973.758678 moist cond.	8/4/2009	57.2	7033.145455	moist cond.
2/13/1995 9 8084.117355 moist cond. 3/19/2002 14.5 8127.85124 moist cond. 5/23/2000 38.5 8137.404959 moist cond. 3/11/2008 60.0 8553.446281 moist cond. 11/19/1996 14.5 9083.504132 moist cond. 11/9/1993 6 9328.502149 moist cond. 8/18/1992 16 9583.337851 moist cond. 6/15/2009 9.0 9631.01157 moist cond. 11/12/1991 72 9728.806612 moist cond. 5/26/2009 5.8 9766.476033 moist cond. 6/19/2001 6.8 9803.973554 moist cond. 4/1/2008 6.5 9822.555372 moist cond. 2/19/2002 4.5 9822.793388 moist cond. 5/6/2008 7.5 9863.500826 moist cond. 5/12/1997 15.0 9973.758678 moist cond.	3/23/1999	24.0	7477.53719	moist cond.
3/19/2002 14.5 8127.85124 moist cond. 5/23/2000 38.5 8137.404959 moist cond. 3/11/2008 60.0 8553.446281 moist cond. 11/19/1996 14.5 9083.504132 moist cond. 11/9/1993 6 9328.502149 moist cond. 8/18/1992 16 9583.337851 moist cond. 6/15/2009 9.0 9631.01157 moist cond. 11/12/1991 72 9728.806612 moist cond. 5/26/2009 5.8 9766.476033 moist cond. 6/19/2001 6.8 9803.973554 moist cond. 4/1/2008 6.5 9822.555372 moist cond. 2/19/2002 4.5 9822.793388 moist cond. 5/6/2008 7.5 9863.500826 moist cond. 5/12/1997 15.0 9973.758678 moist cond.	2/25/1992	24	7602.51405	moist cond.
5/23/2000 38.5 8137.404959 moist cond. 3/11/2008 60.0 8553.446281 moist cond. 11/19/1996 14.5 9083.504132 moist cond. 11/9/1993 6 9328.502149 moist cond. 8/18/1992 16 9583.337851 moist cond. 6/15/2009 9.0 9631.01157 moist cond. 11/12/1991 72 9728.806612 moist cond. 5/26/2009 5.8 9766.476033 moist cond. 6/19/2001 6.8 9803.973554 moist cond. 4/1/2008 6.5 9822.555372 moist cond. 2/19/2002 4.5 9822.793388 moist cond. 5/6/2008 7.5 9863.500826 moist cond. 5/12/1997 15.0 9973.758678 moist cond.	2/13/1995	9	8084.117355	moist cond.
3/11/2008 60.0 8553.446281 moist cond. 11/19/1996 14.5 9083.504132 moist cond. 11/9/1993 6 9328.502149 moist cond. 8/18/1992 16 9583.337851 moist cond. 6/15/2009 9.0 9631.01157 moist cond. 11/12/1991 72 9728.806612 moist cond. 5/26/2009 5.8 9766.476033 moist cond. 6/19/2001 6.8 9803.973554 moist cond. 4/1/2008 6.5 9822.555372 moist cond. 2/19/2002 4.5 9822.793388 moist cond. 5/6/2008 7.5 9863.500826 moist cond. 2/16/1999 17.5 9923.590083 moist cond. 5/12/1997 15.0 9973.758678 moist cond.	3/19/2002	14.5	8127.85124	moist cond.
11/19/1996 14.5 9083.504132 moist cond. 11/9/1993 6 9328.502149 moist cond. 8/18/1992 16 9583.337851 moist cond. 6/15/2009 9.0 9631.01157 moist cond. 11/12/1991 72 9728.806612 moist cond. 5/26/2009 5.8 9766.476033 moist cond. 6/19/2001 6.8 9803.973554 moist cond. 4/1/2008 6.5 9822.555372 moist cond. 2/19/2002 4.5 9822.793388 moist cond. 5/6/2008 7.5 9863.500826 moist cond. 2/16/1999 17.5 9923.590083 moist cond. 5/12/1997 15.0 9973.758678 moist cond.	5/23/2000	38.5	8137.404959	moist cond.
11/9/1993 6 9328.502149 moist cond. 8/18/1992 16 9583.337851 moist cond. 6/15/2009 9.0 9631.01157 moist cond. 11/12/1991 72 9728.806612 moist cond. 5/26/2009 5.8 9766.476033 moist cond. 6/19/2001 6.8 9803.973554 moist cond. 4/1/2008 6.5 9822.555372 moist cond. 2/19/2002 4.5 9822.793388 moist cond. 5/6/2008 7.5 9863.500826 moist cond. 2/16/1999 17.5 9923.590083 moist cond. 5/12/1997 15.0 9973.758678 moist cond.	3/11/2008	60.0	8553.446281	moist cond.
8/18/1992 16 9583.337851 moist cond. 6/15/2009 9.0 9631.01157 moist cond. 11/12/1991 72 9728.806612 moist cond. 5/26/2009 5.8 9766.476033 moist cond. 6/19/2001 6.8 9803.973554 moist cond. 4/1/2008 6.5 9822.555372 moist cond. 2/19/2002 4.5 9822.793388 moist cond. 5/6/2008 7.5 9863.500826 moist cond. 2/16/1999 17.5 9923.590083 moist cond. 5/12/1997 15.0 9973.758678 moist cond.	11/19/1996	14.5	9083.504132	moist cond.
6/15/2009 9.0 9631.01157 moist cond. 11/12/1991 72 9728.806612 moist cond. 5/26/2009 5.8 9766.476033 moist cond. 6/19/2001 6.8 9803.973554 moist cond. 4/1/2008 6.5 9822.555372 moist cond. 2/19/2002 4.5 9822.793388 moist cond. 5/6/2008 7.5 9863.500826 moist cond. 2/16/1999 17.5 9923.590083 moist cond. 5/12/1997 15.0 9973.758678 moist cond.	11/9/1993	6	9328.502149	moist cond.
11/12/1991 72 9728.806612 moist cond. 5/26/2009 5.8 9766.476033 moist cond. 6/19/2001 6.8 9803.973554 moist cond. 4/1/2008 6.5 9822.555372 moist cond. 2/19/2002 4.5 9822.793388 moist cond. 5/6/2008 7.5 9863.500826 moist cond. 2/16/1999 17.5 9923.590083 moist cond. 5/12/1997 15.0 9973.758678 moist cond.	8/18/1992	16	9583.337851	moist cond.
5/26/2009 5.8 9766.476033 moist cond. 6/19/2001 6.8 9803.973554 moist cond. 4/1/2008 6.5 9822.555372 moist cond. 2/19/2002 4.5 9822.793388 moist cond. 5/6/2008 7.5 9863.500826 moist cond. 2/16/1999 17.5 9923.590083 moist cond. 5/12/1997 15.0 9973.758678 moist cond.	6/15/2009	9.0	9631.01157	moist cond.
6/19/2001 6.8 9803.973554 moist cond. 4/1/2008 6.5 9822.555372 moist cond. 2/19/2002 4.5 9822.793388 moist cond. 5/6/2008 7.5 9863.500826 moist cond. 2/16/1999 17.5 9923.590083 moist cond. 5/12/1997 15.0 9973.758678 moist cond.	11/12/1991	72	9728.806612	moist cond.
4/1/2008 6.5 9822.555372 moist cond. 2/19/2002 4.5 9822.793388 moist cond. 5/6/2008 7.5 9863.500826 moist cond. 2/16/1999 17.5 9923.590083 moist cond. 5/12/1997 15.0 9973.758678 moist cond.	5/26/2009	5.8	9766.476033	moist cond.
2/19/2002 4.5 9822.793388 moist cond. 5/6/2008 7.5 9863.500826 moist cond. 2/16/1999 17.5 9923.590083 moist cond. 5/12/1997 15.0 9973.758678 moist cond.	6/19/2001	6.8	9803.973554	moist cond.
5/6/2008 7.5 9863.500826 moist cond. 2/16/1999 17.5 9923.590083 moist cond. 5/12/1997 15.0 9973.758678 moist cond.	4/1/2008	6.5	9822.555372	moist cond.
2/16/1999 17.5 9923.590083 moist cond. 5/12/1997 15.0 9973.758678 moist cond.	2/19/2002		9822.793388	moist cond.
5/12/1997 15.0 9973.758678 moist cond.				
40/04/4000 40 5 0070 04457				
12/21/1993 10.5 99/3.8115/ moist cond.	12/21/1993	10.5	9973.81157	moist cond.

		Flow at downstream	
	TSS from	end of reach	
	RED0005	11140302-006	Hydraulic
<u>Date</u>	<u>(mg/L)</u>	<u>(cfs)</u>	<u>range</u>
5/22/1995	10.5	10016.89917	moist cond.
1/21/1992	22	10045.40331	moist cond.
12/21/1998	11.5	10075.52397	moist cond.
12/17/1996	6.5	10103.47769	moist cond.
1/27/1998	6.0	10125.52066	high flows
4/14/1997	4.5	10161.83471	high flows
11/17/2009	7.5	10204.92397	high flows
12/8/2009	8.0	10205.08264	high flows
4/24/1995	15.5	10244.09917	high flows
3/3/2003	13.5	10269.66942	high flows
1/26/1993	16	10280.19835	high flows
5/21/1991	12	10316.8595	high flows
1/29/2001	16.0	10359.2314	high flows
3/14/1994	12.0	10398.43802	high flows
3/23/1993	26	10401.07438	high flows
3/17/1992	16	10420.13223	high flows
4/16/2002	13.5	10481.41322	high flows
3/3/1998	9.0	10485.07438	high flows
1/2/2002	13.0	10489.30413	high flows
1/26/2010	3.0	10543.59504	high flows
1/22/1991	23	10599.10744	high flows
7/17/2007	0.5	10602.24132	high flows
2/25/1997	18.5	10643.10744	high flows
2/26/2001	6.0	10701.09091	high flows
2/9/2010	3.0	10722.55372	high flows
1/23/2007	12.5	10789.36364	high flows
4/16/2001	7.0	10862.24793	high flows
12/20/1994	9.5	10933.24793	high flows
3/27/2001	2.2	10990.47107	high flows

FILE: R:\PROJECTS\3013-380\TECH\ADEQ_WQ_DATA\RED RIVER\RED0005 SULPHUR RIVER REVISED TMDL METHOD.XLSX

TABLE E.7 COMPONENTS OF TMDL FOR TSS/TURBIDITY FOR SULPHUR RIVER REACH 11140302-008

Calculations for diffuse loads:

Existing diffuse load = (Ambient flow at d/s end of reach for min. flow w/in hydrol. zone) × (Average existing conc.)

Allowable diffuse load = (Ambient flow at d/s end of reach for min. flow w/in hydrol. zone) × MIN (Average existing conc., Criterion)

Calculations for dividing regulated and non-regulated diffuse loads:

Tot. drain. area for regul. stormwater = 7 facilities × 40 ac each = 280 ac

Tot. drain. area for reach 11140302-008 = 3,479 sq. mi. = 2,226,560 ac

Drainage area for regul. stormwater as percent of total drainage area = 0.01%

--> WLA for regulated stormwater = 0.01% of allowable load from diffuse sources --> LA for non-regulated diffuse sources = 99.99% of allowable load from diffuse sources

Calculations for non-storm point sources:

Sum of design flows for non-storm point sources for this reach (cfs) = 0 MGD = 0.00 cfs

Effluent concentration is set manually so that allocated loads (Σ WLA + LA) do not exceed TMDL WLA for non-storm point sources = Sum of design flows × effluent concentration × conversion factor

Load reserved for future growth = TMDL - LA for non-regulated diffuse sources - WLA for regulated stormwater - WLA for non-storm point sources

Ambient (includ. upstream) ambient flow at d/s end of reach from	High flows	Moist cond.	Mid-range	Dry cond.	Low flows
Table E.1 for minimum flow within each hydrologic range (cfs) =	11019	2767	488	174	11

	High flows	Moist cond.	Mid-range	Dry cond.	Low flows
Average existing concentration from Table E.6 (mg/L) =	11	27	43	54	51
Existing load from diffuse sources (tons/day) =	326.89	201.49	56.60	25.37	1.49
Allowable load from diffuse sources (tons/day) =	326.89	201.49	44.76	11.27	0.70
LA for non-regulated diffuse sources (tons/day) =	326.85	201.46	44.75	11.26	0.69
WLA for regulated stormwater (tons/day) =	0.04	0.03	0.01	0.01	0.01
Effluent conc. for non-storm point sources (mg/L) =	0	0	0	0	0
WLA for non-storm point sources (tons/day) =	0	0	0	0	0
Load reserved for future growth (tons/day) =	683.49	52.24	0	0	0
TMDL from Table E.1 (tons/day)	1010.38	253.73	44.76	11.27	0.70
Error check: Sum of WLAs + LA + FG ≤ TMDL?	ok	ok	ok	ok	ok

TABLE E.8 COMPONENTS OF TMDL FOR TSS/TURBIDITY FOR SULPHUR RIVER REACH 11140302-006

Calculations for diffuse loads:

Existing diffuse load = (Ambient flow at d/s end of reach for min. flow w/in hydrol. zone) × (Average existing conc.)

Allowable diffuse load = (Ambient flow at d/s end of reach for min. flow w/in hydrol. zone) × MIN (Average existing conc., Criterion)

Calculations for dividing regulated and non-regulated diffuse loads:

Tot. drain. area for regul. stormwater = 4 facilities × 40 ac each = 160 ac

Tot. drain. area for reach 11140302-006 = 3,542 sq. mi. = 2,266,880 ac

Drainage area for regul. stormwater as percent of total drainage area = 0.01%

--> WLA for regulated stormwater = 0.01% of allowable load from diffuse sources --> LA for non-regulated diffuse sources = 99.99% of allowable load from diffuse sources

Calculations for non-storm point sources:

Sum of design flows for non-storm point sources for this reach (cfs) = 0 MGD = 0.00 cfs

Effluent concentration is set manually so that allocated loads (Σ WLA + LA) do not exceed TMDL WLA for non-storm point sources = Sum of design flows × effluent concentration × conversion factor

Load reserved for future growth = TMDL - LA for non-regulated diffuse sources - WLA for regulated stormwater - WLA for non-storm point sources

Ambient (includ. upstream) ambient flow at d/s end of reach from	High flows	Moist cond.	Mid-range	Dry cond.	Low flows
Table E.2 for minimum flow within each hydrologic range (cfs) =	11119	2819	524	175	12

	High flows	Moist cond.	Mid-range	Dry cond.	Low flows
Average existing concentration from Table E.6 (mg/L) =	11	27	43	54	51
Existing load from diffuse sources (tons/day) =	329.85	205.30	60.76	25.51	1.58
Allowable load from diffuse sources (tons/day) =	329.85	205.30	48.04	11.34	0.75
LA for non-regulated diffuse sources (tons/day) =	329.81	205.27	48.03	11.33	0.74
WLA for regulated stormwater (tons/day) =	0.04	0.03	0.01	0.01	0.01
Effluent conc. for non-storm point sources (mg/L) =	0	0	0	0	0
WLA for non-storm point sources (tons/day) =	0	0	0	0	0
Load reserved for future growth (tons/day) =	689.69	53.23	0	0	0
TMDL from Table E.2 (tons/day)	1019.54	258.53	48.04	11.34	0.75
Error check: Sum of WLAs + LA + FG ≤ TMDL?	ok	ok	ok	ok	ok

TABLE E.9 COMPONENTS OF TMDL FOR TSS/TURBIDITY FOR SULPHUR RIVER REACH 11140302-004

Calculations for diffuse loads:

Existing diffuse load = (Ambient flow at d/s end of reach for min. flow w/in hydrol. zone) × (Average existing conc.)

Allowable diffuse load = (Ambient flow at d/s end of reach for min. flow w/in hydrol. zone) × MIN (Average existing conc., Criterion)

Calculations for dividing regulated and non-regulated diffuse loads:

Tot. drain. area for regul. stormwater = 0 facilities × 40 ac each = 0 ac

Tot. drain. area for reach 11140302-004 = 3,563 sq. mi. = 2,280,320 ac

Drainage area for regul. stormwater as percent of total drainage area = 0.00%

--> WLA for regulated stormwater = 0.00% of allowable load from diffuse sources
--> LA for non-regulated diffuse sources = 100.00% of allowable load from diffuse sources

Calculations for non-storm point sources:

Sum of design flows for non-storm point sources for this reach (cfs) = 0 MGD = 0.00 cfs

Effluent concentration is set manually so that allocated loads (Σ WLA + LA) do not exceed TMDL WLA for non-storm point sources = Sum of design flows × effluent concentration × conversion factor

Load reserved for future growth = TMDL - LA for non-regulated diffuse sources - WLA for regulated stormwater - WLA for non-storm point sources

Ambient (includ. upstream) ambient flow at d/s end of reach from	High flows	Moist cond.	Mid-range	Dry cond.	Low flows
Table E.3 for minimum flow within each hydrologic range (cfs) =	11156	2850	541	175	12

Average existing concentration from Table E.6 (mg/L) = Existing load from diffuse sources (tons/day) = Allowable load from diffuse sources (tons/day) =	High flows	Moist cond.	Mid-range	Dry cond.	Low flows
	11	27	43	54	51
	330.96	207.51	62.73	25.53	1.60
	330.96	207.51	49.60	11.35	0.75
LA for non-regulated diffuse sources (tons/day) = WLA for regulated stormwater (tons/day) =	330.96 0	207.51	49.60 0	11.35 11.35 0	0.75 0
Effluent conc. for non-storm point sources (mg/L) = WLA for non-storm point sources (tons/day) =	0	0	0	0	0
	0	0	0	0	0
Load reserved for future growth (tons/day) = TMDL from Table E.3 (tons/day) Error check: Sum of WLAs + LA + FG ≤ TMDL?	692.00	53.80	0	0	0
	1022.96	261.31	49.60	11.35	0.75
	ok	ok	ok	ok	ok

TABLE E.10 COMPONENTS OF TMDL FOR TSS/TURBIDITY FOR SULPHUR RIVER REACH 11140302-002

Calculations for diffuse loads:

Existing diffuse load = (Ambient flow at d/s end of reach for min. flow w/in hydrol. zone) × (Average existing conc.)

Allowable diffuse load = (Ambient flow at d/s end of reach for min. flow w/in hydrol. zone) × MIN (Average existing conc., Criterion)

Calculations for dividing regulated and non-regulated diffuse loads:

Tot. drain. area for regul. stormwater = 1 facilities × 40 ac each = 40 ac

Tot. drain. area for reach 11140302-002 = 3,742 sq. mi. = 2,394,880 ac

Drainage area for regul. stormwater as percent of total drainage area = 0.002%

--> WLA for regulated stormwater = 0.002% of allowable load from diffuse sources --> LA for non-regulated diffuse sources = 99.998% of allowable load from diffuse sources

Calculations for non-storm point sources:

Sum of design flows for non-storm point sources for this reach (cfs) = 0 MGD = 0.00 cfs

Effluent concentration is set manually so that allocated loads (Σ WLA + LA) do not exceed TMDL WLA for non-storm point sources = Sum of design flows × effluent concentration × conversion factor

Load reserved for future growth = TMDL - LA for non-regulated diffuse sources - WLA for regulated stormwater - WLA for non-storm point sources

Ambient (includ. upstream) ambient flow at d/s end of reach from	High flows	Moist cond.	Mid-range	Dry cond.	Low flows
Table E.4 for minimum flow within each hydrologic range (cfs) =	11467	3040	642	203	35

Average existing concentration from Table E.6 (mg/L) = Existing load from diffuse sources (tons/day) = Allowable load from diffuse sources (tons/day) =	High flows 11 340.18 340.18	Moist cond. 27 221.34 221.34	Mid-range 43 74.43 58.85	Dry cond. 54 29.62 13.17	51 4.80 2.26
LA for non-regulated diffuse sources (tons/day) = WLA for regulated stormwater (tons/day) =	340.17	221.33	58.84	13.16	2.25
	0.01	0.01	0.01	0.01	0.01
Effluent conc. for non-storm point sources (mg/L) = WLA for non-storm point sources (tons/day) =	0	0	0	0	0
	0	0	0	0	0
Load reserved for future growth (tons/day) = TMDL from Table E.4 (tons/day) Error check: Sum of WLAs + LA + FG ≤ TMDL?	711.28	57.38	0	0	0
	1051.46	278.72	58.85	13.17	2.26
	ok	ok	ok	ok	ok

TABLE E.11 COMPONENTS OF TMDL FOR TSS/TURBIDITY FOR SULPHUR RIVER REACH 11140302-001

Calculations for diffuse loads:

Existing diffuse load = (Ambient flow at d/s end of reach for min. flow w/in hydrol. zone) × (Average existing conc.)

Allowable diffuse load = (Ambient flow at d/s end of reach for min. flow w/in hydrol. zone) × MIN (Average existing conc., Criterion)

Calculations for dividing regulated and non-regulated diffuse loads:

Tot. drain. area for regul. stormwater = 0 facilities × 40 ac each = 0 ac

Tot. drain. area for reach 11140302-001 = 3,748 sq. mi. = 2,398,720 ac

Drainage area for regul. stormwater as percent of total drainage area = 0.00%

--> WLA for regulated stormwater = 0.00% of allowable load from diffuse sources
--> LA for non-regulated diffuse sources = 100.00% of allowable load from diffuse sources

Calculations for non-storm point sources:

Sum of design flows for non-storm point sources for this reach (cfs) = 0 MGD = 0.00 cfs

Effluent concentration is set manually so that allocated loads (Σ WLA + LA) do not exceed TMDL WLA for non-storm point sources = Sum of design flows × effluent concentration × conversion factor

Load reserved for future growth = TMDL - LA for non-regulated diffuse sources - WLA for regulated stormwater - WLA for non-storm point sources

Ambient (includ. upstream) ambient flow at d/s end of reach from	High flows	Moist cond.	Mid-range	Dry cond.	Low flows
Table E.5 for minimum flow within each hydrologic range (cfs) =	11479	3045	646	204	35

	High flows	Moist cond.	Mid-range	Dry cond.	Low flows
Average existing concentration from Table E.6 (mg/L) =	11	27	43	54	51
Existing load from diffuse sources (tons/day) =	340.52	221.75	74.87	29.64	4.81
Allowable load from diffuse sources (tons/day) =	340.52	221.75	59.20	13.18	2.26
LA for non-regulated diffuse sources (tons/day) =	340.52	221.75	59.20	13.18	2.26
WLA for regulated stormwater (tons/day) =	0	0	0	0	0
Effluent conc. for non-storm point sources (mg/L) =	0	0	0	0	0
WLA for non-storm point sources (tons/day) =	0	0	0	0	0
Load reserved for future growth (tons/day) =	712.00	57.49	0	0	0
TMDL from Table E.5 (tons/day)	1052.52	279.24	59.20	13.18	2.26
Error check: Sum of WLAs + LA + FG ≤ TMDL?	ok	ok	ok	ok	ok

Figure E.1 Flow Duration Curve for Sulphur River Reach 11140302-001

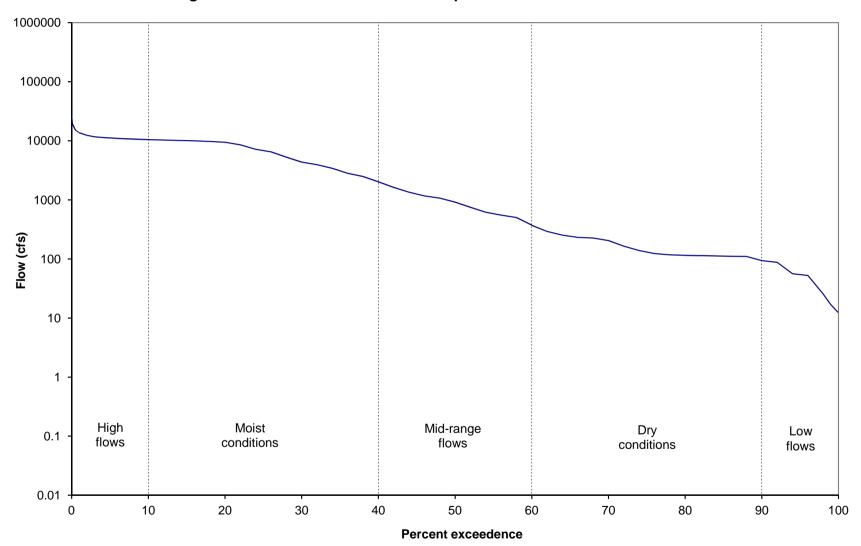


Figure E.2 TSS Load Duration Curve for Sulphur River Reach 11140302-008

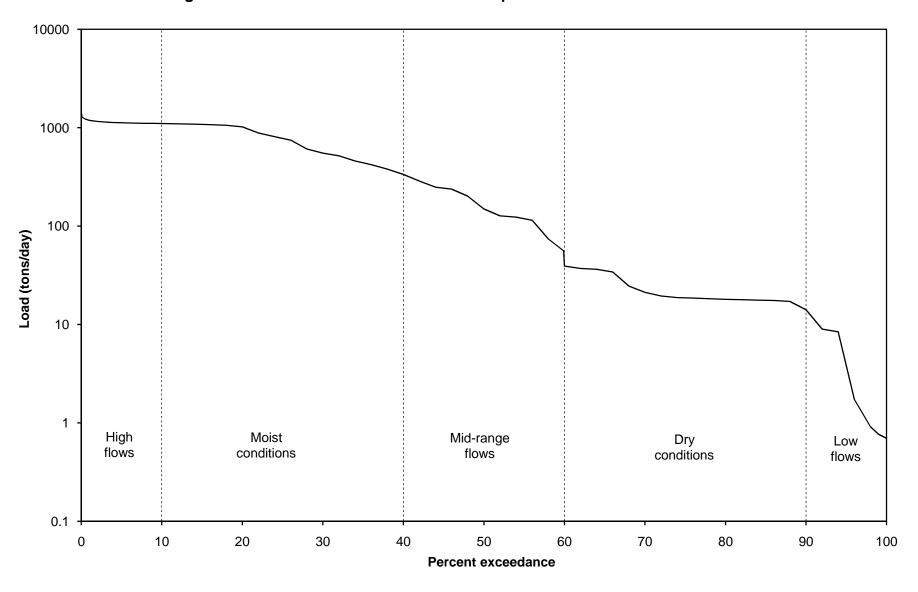


Figure E.3 TSS Load Duration Curve for Sulphur River Reach 11140302-006

Figure E.4 TSS Load Duration Curve for Sulphur River Reach 11140302-004

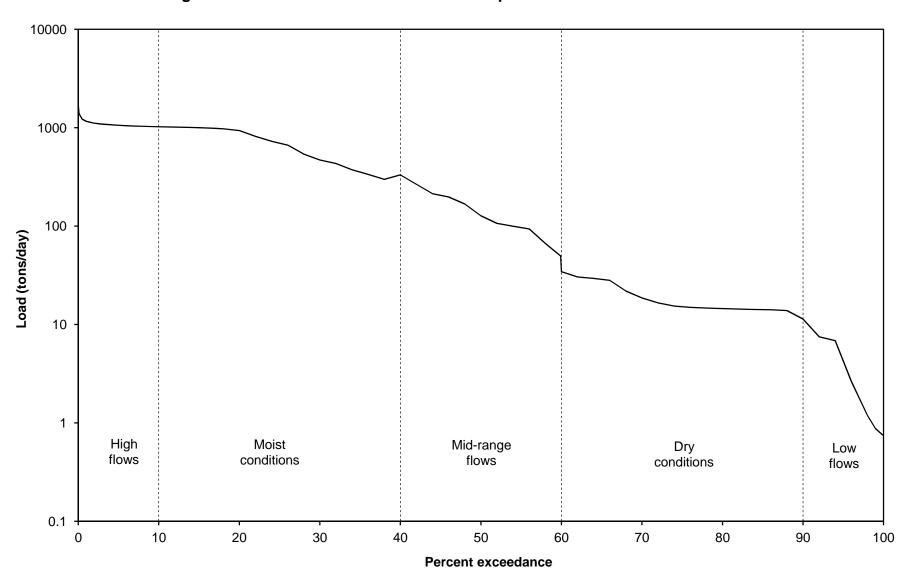


Figure E.5 TSS Load Duration Curve for Sulphur River Reach 11140302-002

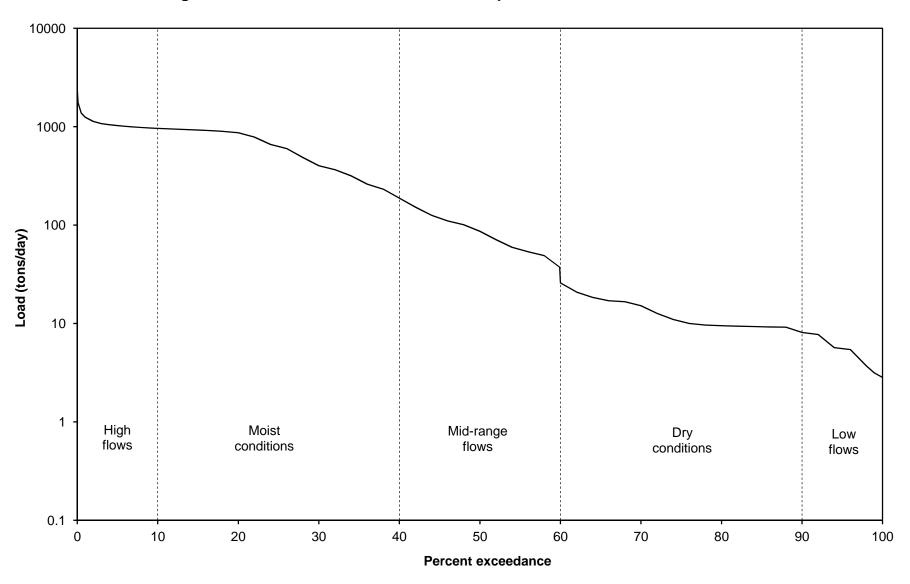
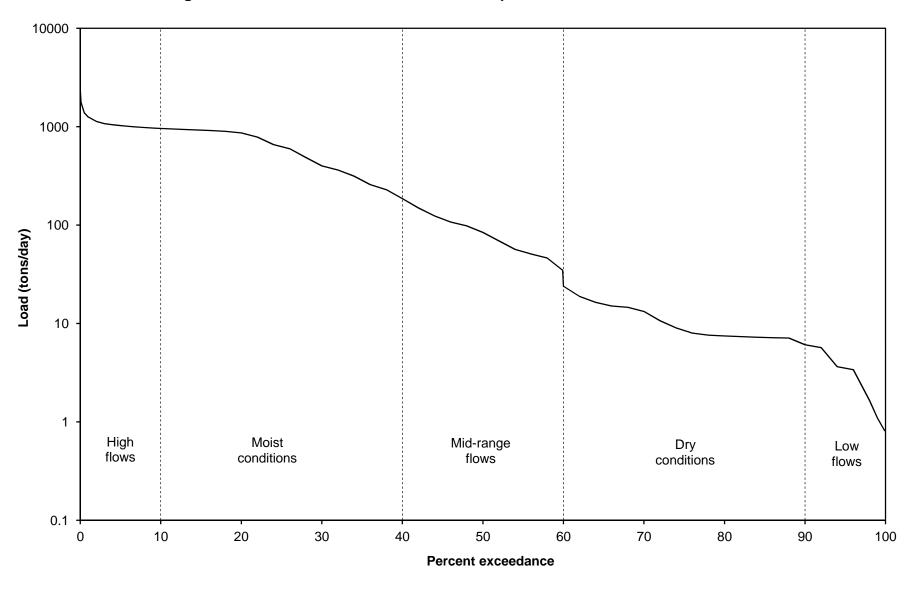



Figure E.6 TSS Load Duration Curve for Sulphur River Reach 11140302-001

TABLE F.1 ALLOWABLE LOAD OF TSS FOR RED RIVER REACH 11140201-003

Drainage area at flow gage (Red River at Spring Bank, AR) = Drainage area at downstream end of reach 11140201-003 =

50,973 square miles 50,984 square miles

No continuous point sources in study area discharge to this reach.

		Flourin Dad Diver	Ambient flow at		Total
Percent		Flow in Red River	of reach		allowable load (i.e., TMDL) for
exceedance	Flow	at flow gage at Spring Bank, AR	11140201-003	Target TSS	TSS
for flow		(cfs)	(cfs)	(mg/L)	(tons/day)
99.9	<u>Category</u> Base	1,192.3	1,192.6	<u>(⊞g/∟)</u> 53	170.5
99.9 99	Base	1,410.0	1,410.3	53 53	201.6
98	Base	1,580.0	1,580.3	53 53	225.9
96 96	Base	2,030.0	2,030.4	53	290.2
94	Base	2,270.0	2,270.5	53	324.5
92	Base	2,472.8	2,473.3	53	353.5
90	Base	2,716.0	2,716.6	53	388.3
88	Base	2,920.0	2,920.6	53	417.5
86	Base	3,120.0	3,120.7	53	446.1
84	Base	3,370.0	3,370.7	53	481.8
82	Base	3,590.0	3,590.8	53	513.2
80	Base	3,800.0	3,800.8	53	543.3
78	Base	4,010.0	4,010.9	53	573.3
76	Base	4,258.4	4,259.3	53	608.8
74	Base	4,441.6	4,442.6	53	635.0
72	Base	4,674.8	4,675.8	53	668.3
70	Base	4,968.0	4,969.1	53	710.3
68	Base	5,200.0	5,201.1	53	743.4
66	Base	5,484.4	5,485.6	53	784.1
64	Base	5,777.6	5,778.8	53	826.0
62	Base	6,080.0	6,081.3	53	869.2
60	Base	6,434.0	6,435.4	53	919.8
59.9	Storm	6,450.0	6,451.4	252	4,384.5
58	Storm	6,800.0	6,801.5	252	4,622.4
56	Storm	7,210.4	7,212.0	252	4,901.4
54	Storm	7,610.0	7,611.6	252	5,173.0
52	Storm	8,140.0	8,141.8	252	5,533.3
50	Storm	8,700.0	8,701.9	252	5,913.9
48	Storm	9,433.2	9,435.2	252	6,412.3
46	Storm	10,200.0	10,202.2	252	6,933.6
44	Storm	11,400.0	11,402.5	252	7,749.3
42	Storm	12,400.0	12,402.7	252	8,429.1
40	Storm	13,400.0	13,402.9	252	9,108.8
38	Storm	14,400.0	14,403.1	252	9,788.6
36	Storm	15,824.0	15,827.4	252	10,756.6
34	Storm	17,300.0	17,303.7	252	11,759.9
32	Storm	18,788.0	18,792.1	252	12,771.4
30	Storm	20,300.0	20,304.4	252	13,799.2
28	Storm	22,100.0	22,104.8	252	15,022.8
26	Storm	24,100.0	24,105.2	252	16,382.3
24	Storm	26,400.0	26,405.7	252	17,945.7
22	Storm	28,548.0	28,554.2	252	19,405.9
20	Storm	31,000.0	31,006.7	252	21,072.6

		Ambient flow at To				
		Flow in Red River	downstream end		allowable load	
Percent		at flow gage at	of reach		(i.e., TMDL) for	
exceedance	Flow	Spring Bank, AR	11140201-003	Target TSS	TSS	
for flow	<u>Category</u>	<u>(cfs)</u>	<u>(cfs)</u>	<u>(mg/L)</u>	(tons/day)	
18	Storm	34,600.0	34,607.5	252	23,519.8	
16	Storm	38,000.0	38,008.2	252	25,831.0	
14	Storm	41,700.0	41,709.0	252	28,346.1	
12	Storm	46,108.0	46,118.0	252	31,342.5	
10	Storm	52,100.0	52,111.2	252	35,415.6	
9	Storm	55,400.0	55,412.0	252	37,658.8	
8	Storm	58,572.0	58,584.6	252	39,815.1	
7	Storm	63,600.0	63,613.7	252	43,232.9	
6	Storm	70,104.0	70,119.1	252	47,654.1	
5	Storm	76,500.0	76,516.5	252	52,001.8	
4	Storm	82,300.0	82,317.8	252	55,944.5	
3	Storm	89,752.0	89,771.4	252	61,010.1	
2	Storm	97,936.0	97,957.1	252	66,573.2	
1	Storm	112,000.0	112,024.2	252	76,133.4	
0.5	Storm	120,420.0	120,446.0	252	81,857.0	
0.1	Storm	131,884.0	131,912.5	252	89,649.8	
0.01	Storm	135,442.0	135,471.2	252	92,068.4	

FILE: R:\PROJECTS\3013-380\TECH\ADEQ_WQ_DATA\RED RIVER\RED0009 RED RIVER REVISED TMDL METHOD.XLSX

TABLE F.2 EXISTING NPS LOAD OF TSS FOR RED RIVER REACH 11140201-003

Table of raw data for concentration and USGS flow:

		Flow in Red River		
	TSS from	at flow gage at		
	RED0009	Spring Bank, AR	Hydraulic	
<u>Date</u>	<u>(mg/L)</u>	<u>(cfs)</u>	<u>range</u>	
1/10/2006	19.5	1150	low flows	Average TSS conc. w/in each zone (m
11/15/2005	31.8	1320	low flows	low flows
10/3/2006	26.0	1440	low flows	dry cond.
12/13/2005	26.2	1450	low flows	mid-range
7/11/2006	27.2	1590	low flows	moist cond.
9/5/2006	23.5	1710	low flows	high flows
11/16/1999	29	2000	low flows	
10/24/2000	32.0	2130	low flows	
11/4/2008	37.0	2350	low flows	
10/12/1999	38.0	2410	low flows	
12/3/2002	21.2	2410	low flows	
8/1/2006	27.8	2410	low flows	
6/28/2005	25.8	2450	low flows	
12/8/2008	26.2	2630	low flows	
10/18/2005	29.5	2710	low flows	
3/14/2006	50.5	2760	low flows	
9/21/2004	52.1	2770	low flows	
7/26/2005	32.8	2830	low flows	
8/30/2005	25.7	2860	low flows	
9/28/1999	26.0	2880	low flows	
10/21/2003	54.5	2880	low flows	
10/1/2002	28.2	3100	low flows	
7/21/1998	44.5	3150	low flows	
9/23/2003	36.0	3380	low flows	
12/16/2003	29.0	3440	low flows	
11/18/2003	41.5	3480	low flows	
5/6/2003	33.5	3580	low flows	
6/13/2006	35.0	3800	low flows	
3/27/2007	37.0	3850	low flows	
11/19/2001	24.5	3920	low flows	
9/26/2000	31.0	3950	low flows	
10/26/2004	73.3	3960	low flows	
1/31/2006	82.8	3960	low flows	
9/27/2005	24.2	4020	low flows	
5/25/2004	29.0	4180	low flows	
8/29/2000	71.5	4300	low flows	
1/18/2000	46.5	4310	low flows	
5/17/2005	3.2	4320	low flows	
8/12/2008	31.8	4560	low flows	
8/31/1999	37.0	4690	low flows	
11/13/2007	30.8	4750	low flows	
8/11/1998	35.0	4780	low flows	
8/21/2001	26.0	4820	low flows	
7/1/2002	61.8	4940	low flows	
12/14/1999	51	5070	low flows	
9/3/2002	42.8	5070	low flows	
5/ 5/ £00£	.2.0	3370	.517 115475	

	TCC (*****	Flow in Red River	
	TSS from	at flow gage at	مال بطعم بالم
Doto	RED0009	Spring Bank, AR	Hydraulic
<u>Date</u> 4/27/2004	(mg/L)	<u>(cfs)</u> 5130	range low flows
10/21/1997	59.0 47.5	5130 5260	low flows
3/30/2004	47.5 39.4	5330	low flows
6/10/2003	39.4 44.5	5480	low flows
4/8/2003	39.2	5820	low flows
10/31/2006	46.5	5840	low flows
1/15/2008	37.0	6040	low flows
2/15/2000	46	6160	low flows
7/15/2008	42.5	6210	low flows
9/1/2008	55.0	6210	low flows
4/26/2005	42.2	6370	dry cond.
9/30/2008	35.5	6380	dry cond.
7/15/2003	55.2	6410	dry cond.
7/14/2009	32.0	6420	dry cond.
4/14/2009	59.3	6570	mid-range
10/15/2007	44.0	6980	mid-range
7/27/1999	39.0	7200	mid-range
8/12/2003	75.6	7260	mid-range
9/18/2001	50.5	7310	mid-range
7/25/2000	37.5	7570	mid-range
2/4/2003	36.0	7720	mid-range
2/12/2008	59.5	7760	mid-range
12/4/2007	37.0	7790	mid-range
7/27/2004	66.0	7900	mid-range
4/11/2006	69.0	7950	mid-range
8/6/2002	31.5	8070	mid-range
7/17/2001	21.0	8630	mid-range
2/3/2009	24.8	8680	mid-range
1/6/2009	32.3	8910	mid-range
8/17/2004 3/21/2000	76.2 124	9370 9770	mid-range
6/4/2002	33.5	10100	mid-range mid-range
10/27/1998	73.0	10200	mid-range
4/24/2007	68.5	10800	mid-range
6/17/2008	44.5	10900	mid-range
12/11/2001	45.8	11300	mid-range
11/5/2002	114	11800	mid-range
1/26/1999	94.0	12200	mid-range
5/5/1998	46.0	13200	mid-range
12/19/2006	38.0	13300	mid-range
6/2/1998	2.5	13700	moist cond.
9/22/1998	44.0	13800	moist cond.
11/17/1998	55.5	13800	moist cond.
11/16/2004	84.6	13800	moist cond.
2/20/2007	53.2	14200	moist cond.
3/31/2009	74.0	14900	moist cond.
1/27/2004	101	15200	moist cond.
2/24/2004	56.5	15700	moist cond.
12/16/1997	39.5	15800	moist cond.
3/29/2005	138	17700	moist cond.

10/23/2001 62.7 26400 moist cond. 12/21/1998 112.5 27300 moist cond. 12/8/2009 35.0 27400 moist cond. 5/16/2006 96.0 28900 moist cond. 5/23/2000 132.5 29000 moist cond. 2/19/2002 37.5 31800 moist cond. 3/23/1999 66.0 32300 moist cond. 9/29/2009 53.0 32500 moist cond. 3/19/2002 48.8 33700 moist cond. 1/29/2001 64.3 33900 moist cond. 1/29/2001 64.3 33900 moist cond. 9/11/2007 107 34300 moist cond. 5/18/1999 149.0 37600 moist cond. 1/26/2010 19.0 38400 moist cond. 1/2/2007 167 40600 moist cond. 4/16/2001 101.0 43100 moist cond. 1/29/2004 59.8 43100 moist cond.			Flow in Red River	
Date (mg/L) (cfs) range 8/4/2009 50.0 18900 moist cond. 2/22/2005 64.3 19100 moist cond. 5/21/2002 56.5 23100 moist cond. 6/19/2001 37.8 24600 moist cond. 4/18/2000 218 25200 moist cond. 12/18/2000 38.5 26200 moist cond. 10/23/2001 62.7 26400 moist cond. 12/21/1998 112.5 27300 moist cond. 12/8/2009 35.0 27400 moist cond. 5/16/2006 96.0 28900 moist cond. 5/23/2000 132.5 29000 moist cond. 3/23/1999 66.0 32300 moist cond. 3/29/2009 53.0 32500 moist cond. 3/19/2002 48.8 33700 moist cond. 4/29/2001 64.3 33900 moist cond. 1/29/2001 64.3 33900 moist cond.		TSS from	at flow gage at	
8/4/2009 50.0 18900 moist cond. 2/22/2005 64.3 19100 moist cond. 2/16/1999 72.5 20600 moist cond. 5/21/2002 56.5 23100 moist cond. 6/19/2001 37.8 24600 moist cond. 4/18/2000 218 25200 moist cond. 12/18/2000 38.5 26200 moist cond. 10/23/2001 62.7 26400 moist cond. 12/8/2009 35.0 27400 moist cond. 12/8/2009 35.0 27400 moist cond. 5/16/2006 96.0 28900 moist cond. 5/19/2002 37.5 31800 moist cond. 3/23/1999 66.0 32300 moist cond. 3/19/2002 48.8 33700 moist cond. 1/29/2001 64.3 33900 moist cond. 1/29/2001 64.3 33900 moist cond. 1/26/2010 19.0 38400 moist cond.		RED0009	Spring Bank, AR	Hydraulic
2/22/2005 64.3 19100 moist cond. 2/16/1999 72.5 20600 moist cond. 5/21/2002 56.5 23100 moist cond. 6/19/2001 37.8 24600 moist cond. 4/18/2000 218 25200 moist cond. 10/23/2001 62.7 26400 moist cond. 12/21/1998 112.5 27300 moist cond. 12/8/2009 35.0 27400 moist cond. 12/8/2009 35.0 27400 moist cond. 5/16/2066 96.0 28900 moist cond. 5/19/2002 37.5 31800 moist cond. 3/23/1999 66.0 32300 moist cond. 3/23/1999 66.0 32300 moist cond. 1/29/2001 64.3 33700 moist cond. 1/29/2001 64.3 33900 moist cond. 1/21/2007 107 34300 moist cond. 1/26/2010 19.0 38400 moist cond.	<u>Date</u>	<u>(mg/L)</u>	<u>(cfs)</u>	<u>range</u>
2/16/1999 72.5 20600 moist cond. 5/21/2002 56.5 23100 moist cond. 6/19/2001 37.8 24600 moist cond. 4/18/2000 218 25200 moist cond. 12/18/2000 38.5 26200 moist cond. 10/23/2001 62.7 26400 moist cond. 12/21/1998 112.5 27300 moist cond. 12/8/2009 35.0 27400 moist cond. 5/16/2006 96.0 28900 moist cond. 5/16/2000 132.5 29000 moist cond. 5/23/2000 132.5 29000 moist cond. 3/23/1999 66.0 32300 moist cond. 3/19/2002 48.8 33700 moist cond. 3/19/2003 53.0 32500 moist cond. 3/19/2001 64.3 33900 moist cond. 1/29/2001 64.3 33900 moist cond. 1/26/2010 19.0 38400 moist cond.	8/4/2009	50.0	18900	moist cond.
5/21/2002 56.5 23100 moist cond. 6/19/2001 37.8 24600 moist cond. 4/18/2000 218 25200 moist cond. 12/18/2001 62.7 26400 moist cond. 10/23/2001 62.7 26400 moist cond. 12/2/1/1998 112.5 27300 moist cond. 12/8/2009 35.0 27400 moist cond. 5/16/2006 96.0 28900 moist cond. 5/23/2000 132.5 29000 moist cond. 2/19/2002 37.5 31800 moist cond. 3/23/1999 66.0 32300 moist cond. 3/19/2002 48.8 33700 moist cond. 1/29/2001 64.3 33900 moist cond. 1/29/2001 64.3 33900 moist cond. 1/29/2001 149.0 37600 moist cond. 1/26/2010 19.0 38400 moist cond. 1/26/2010 19.0 38400 moist cond. <td>2/22/2005</td> <td>64.3</td> <td>19100</td> <td>moist cond.</td>	2/22/2005	64.3	19100	moist cond.
6/19/2001 37.8 24600 moist cond. 4/18/2000 218 25200 moist cond. 12/18/2001 62.7 26400 moist cond. 10/23/2001 62.7 26400 moist cond. 12/21/1998 112.5 27300 moist cond. 5/16/2006 96.0 28900 moist cond. 5/16/2000 132.5 29000 moist cond. 2/19/2002 37.5 31800 moist cond. 3/23/1999 66.0 32300 moist cond. 3/19/2002 48.8 33700 moist cond. 3/19/2001 64.3 33900 moist cond. 1/29/2001 64.3 33900 moist cond. 9/11/2007 107 34300 moist cond. 1/26/2010 19.0 38400 moist cond. 1/2/2007 167 40600 moist cond. 1/7/203 44.8 41700 moist cond. 4/17/2004 59.8 43100 moist cond. <	2/16/1999	72.5	20600	moist cond.
4/18/2000 218 25200 moist cond. 12/18/2001 38.5 26200 moist cond. 10/23/2001 62.7 26400 moist cond. 12/8/2009 35.0 27400 moist cond. 5/16/2006 96.0 28900 moist cond. 5/23/2000 132.5 29000 moist cond. 3/23/1999 66.0 32300 moist cond. 3/23/1999 66.0 32300 moist cond. 3/19/2002 48.8 33700 moist cond. 3/19/2002 48.8 33700 moist cond. 3/19/2001 64.3 33900 moist cond. 3/12/2001 64.3 33900 moist cond. 1/29/2001 64.3 33900 moist cond. 1/26/2010 19.0 38400 moist cond. 1/26/2010 19.0 38400 moist cond. 1/2/2007 167 40600 moist cond. 1/2/2007 167 40600 moist cond. <t< td=""><td>5/21/2002</td><td>56.5</td><td>23100</td><td>moist cond.</td></t<>	5/21/2002	56.5	23100	moist cond.
12/18/2000 38.5 26200 moist cond. 10/23/2001 62.7 26400 moist cond. 12/2/1/1998 112.5 27300 moist cond. 12/8/2009 35.0 27400 moist cond. 5/16/2006 96.0 28900 moist cond. 5/23/2000 132.5 29000 moist cond. 3/23/1999 66.0 32300 moist cond. 3/29/2009 53.0 32500 moist cond. 3/19/2002 48.8 33700 moist cond. 3/19/2001 64.3 33900 moist cond. 3/12/9/2001 64.3 33900 moist cond. 3/12/9/2001 107 34300 moist cond. 5/18/1999 149.0 37600 moist cond. 1/26/2010 19.0 38400 moist cond. 1/7/2003 44.8 41700 moist cond. 4/16/2001 101.0 43100 moist cond. 6/12/2004 59.8 43100 moist cond.	6/19/2001	37.8	24600	moist cond.
10/23/2001 62.7 26400 moist cond. 12/21/1998 112.5 27300 moist cond. 12/8/2009 35.0 27400 moist cond. 5/16/2006 96.0 28900 moist cond. 5/23/2000 132.5 29000 moist cond. 2/19/2002 37.5 31800 moist cond. 3/23/1999 66.0 32300 moist cond. 9/29/2009 53.0 32500 moist cond. 3/19/2002 48.8 33700 moist cond. 1/29/2001 64.3 33900 moist cond. 1/29/2001 64.3 33900 moist cond. 9/11/2007 107 34300 moist cond. 5/18/1999 149.0 37600 moist cond. 1/26/2010 19.0 38400 moist cond. 1/2/2007 167 40600 moist cond. 4/16/2001 101.0 43100 moist cond. 1/29/2004 59.8 43100 moist cond.	4/18/2000	218	25200	moist cond.
12/21/1998 112.5 27300 moist cond. 12/8/2009 35.0 27400 moist cond. 5/16/2006 96.0 28900 moist cond. 5/23/2000 132.5 29000 moist cond. 2/19/2002 37.5 31800 moist cond. 3/23/1999 66.0 32300 moist cond. 9/29/2009 53.0 32500 moist cond. 3/19/2002 48.8 33700 moist cond. 1/29/2001 64.3 33900 moist cond. 1/29/2001 64.3 33900 moist cond. 9/11/2007 107 34300 moist cond. 5/18/1999 149.0 37600 moist cond. 1/26/2010 19.0 38400 moist cond. 6/12/2007 167 40600 moist cond. 1/7/2003 44.8 41700 moist cond. 4/16/2001 101.0 43100 moist cond. 11/14/2000 45.0 43400 moist cond.	12/18/2000	38.5	26200	moist cond.
12/8/2009 35.0 27400 moist cond. 5/16/2006 96.0 28900 moist cond. 5/23/2000 132.5 29000 moist cond. 2/19/2002 37.5 31800 moist cond. 3/23/1999 66.0 32300 moist cond. 9/29/2009 53.0 32500 moist cond. 3/19/2002 48.8 33700 moist cond. 1/29/2001 64.3 33900 moist cond. 9/11/2007 107 34300 moist cond. 5/18/1999 149.0 37600 moist cond. 6/12/2010 19.0 38400 moist cond. 1/72/203 44.8 41700 moist cond. 4/16/2001 101.0 43100 moist cond. 6/29/2004 59.8 43100 moist cond. 1/1/1/2009 45.0 43400 moist cond. 3/3/2003 76.5 46500 moist cond. 5/15/2007 109 52400 high flows <	10/23/2001	62.7	26400	moist cond.
5/16/2006 96.0 28900 moist cond. 5/23/2000 132.5 29000 moist cond. 2/19/2002 37.5 31800 moist cond. 3/23/1999 66.0 32300 moist cond. 9/29/2009 53.0 32500 moist cond. 3/19/2002 48.8 33700 moist cond. 1/29/2001 64.3 33900 moist cond. 9/11/2007 107 34300 moist cond. 5/18/1999 149.0 37600 moist cond. 1/26/2010 19.0 38400 moist cond. 6/12/2007 167 40600 moist cond. 1/7/2003 44.8 41700 moist cond. 4/16/2011 101.0 43100 moist cond. 6/29/2004 59.8 43100 moist cond. 1/1/1/2009 45.0 43400 moist cond. 3/3/2003 76.5 46500 moist cond. 5/15/2007 109 52400 high flows <t< td=""><td>12/21/1998</td><td>112.5</td><td>27300</td><td>moist cond.</td></t<>	12/21/1998	112.5	27300	moist cond.
5/23/2000 132.5 29000 moist cond. 2/19/2002 37.5 31800 moist cond. 3/23/1999 66.0 32300 moist cond. 9/29/2009 53.0 32500 moist cond. 3/19/2002 48.8 33700 moist cond. 1/29/2001 64.3 33900 moist cond. 9/11/2007 107 34300 moist cond. 5/18/1999 149.0 37600 moist cond. 1/26/2010 19.0 38400 moist cond. 6/12/2007 167 40600 moist cond. 1/7/2003 44.8 41700 moist cond. 4/16/2001 101.0 43100 moist cond. 6/29/2004 59.8 43100 moist cond. 11/17/2009 45.0 43400 moist cond. 11/14/2000 156.8 45900 moist cond. 3/3/2003 76.5 46500 moist cond. 5/15/2007 109 52400 high flows	12/8/2009	35.0	27400	moist cond.
2/19/2002 37.5 31800 moist cond. 3/23/1999 66.0 32300 moist cond. 9/29/2009 53.0 32500 moist cond. 3/19/2002 48.8 33700 moist cond. 1/29/2001 64.3 33900 moist cond. 9/11/2007 107 34300 moist cond. 5/18/1999 149.0 37600 moist cond. 1/26/2010 19.0 38400 moist cond. 6/12/2007 167 40600 moist cond. 1/7/2003 44.8 41700 moist cond. 4/16/2001 101.0 43100 moist cond. 6/29/2004 59.8 43100 moist cond. 1/1/2009 45.0 43400 moist cond. 11/14/2000 156.8 45900 moist cond. 3/3/2003 76.5 46500 moist cond. 5/15/2007 109 52400 high flows 1/25/2005 16.8 53000 high flows	5/16/2006	96.0	28900	moist cond.
3/23/1999 66.0 32300 moist cond. 9/29/2009 53.0 32500 moist cond. 3/19/2002 48.8 33700 moist cond. 1/29/2001 64.3 33900 moist cond. 9/11/2007 107 34300 moist cond. 5/18/1999 149.0 37600 moist cond. 1/26/2010 19.0 38400 moist cond. 6/12/2007 167 40600 moist cond. 1/7/2003 44.8 41700 moist cond. 4/16/2001 101.0 43100 moist cond. 6/29/2004 59.8 43100 moist cond. 11/17/2009 45.0 43400 moist cond. 11/14/2000 156.8 45900 moist cond. 3/3/2003 76.5 46500 moist cond. 5/15/2007 109 52400 high flows 1/25/2005 16.8 53000 high flows 6/15/2009 70.3 53700 high flows 1/2/2002 37.8 56900 high flows 1/2/2002 37.8 56900 high flows 1/2/2002 37.8 56900 high flows 1/2/2004 173 58000 high flows 1/2/2004 173 58000 high flows 1/2/2004 173 58000 high flows 1/2/2007 57.8 65200 high flows 1/23/2007 57.8 65200 high flows 1/23/2007 57.8 65200 high flows 3/11/2008 4.0 66400 high flows 3/27/2001 77.8 69200 high flows 4/1/2008 32.0 71200 high flows 1/27/1998 185.5 79700 high flows 1/27/2009 37.0 94300 high flows 1/27/2009 37.0 94300 high flows 1/17/2007 66.6 103000 high flows	5/23/2000	132.5	29000	moist cond.
9/29/2009 53.0 32500 moist cond. 3/19/2002 48.8 33700 moist cond. 1/29/2001 64.3 33900 moist cond. 9/11/2007 107 34300 moist cond. 5/18/1999 149.0 37600 moist cond. 1/26/2010 19.0 38400 moist cond. 6/12/2007 167 40600 moist cond. 1/7/2003 44.8 41700 moist cond. 4/16/2001 101.0 43100 moist cond. 6/29/2004 59.8 43100 moist cond. 11/17/2009 45.0 43400 moist cond. 11/14/2000 156.8 45900 moist cond. 3/3/2003 76.5 46500 moist cond. 5/15/2007 109 52400 high flows 1/25/2005 16.8 53000 high flows 6/15/2009 70.3 53700 high flows 1/2/2002 37.8 56900 high flows	2/19/2002	37.5	31800	moist cond.
3/19/2002 48.8 33700 moist cond. 1/29/2001 64.3 33900 moist cond. 9/11/2007 107 34300 moist cond. 5/18/1999 149.0 37600 moist cond. 1/26/2010 19.0 38400 moist cond. 6/12/2007 167 40600 moist cond. 1/7/2003 44.8 41700 moist cond. 4/16/2001 101.0 43100 moist cond. 6/29/2004 59.8 43100 moist cond. 1/17/2009 45.0 43400 moist cond. 1/1/1/2000 156.8 45900 moist cond. 3/3/2003 76.5 46500 moist cond. 5/15/2007 109 52400 high flows 1/25/2005 16.8 53000 high flows 6/15/2009 70.3 53700 high flows 1/2/2002 37.8 56900 high flows 1/2/2004 173 58000 high flows	3/23/1999	66.0	32300	moist cond.
1/29/2001 64.3 33900 moist cond. 9/11/2007 107 34300 moist cond. 5/18/1999 149.0 37600 moist cond. 1/26/2010 19.0 38400 moist cond. 6/12/2007 167 40600 moist cond. 1/7/2003 44.8 41700 moist cond. 4/16/2001 101.0 43100 moist cond. 6/29/2004 59.8 43100 moist cond. 11/17/2009 45.0 43400 moist cond. 11/14/2000 156.8 45900 moist cond. 3/3/2003 76.5 46500 moist cond. 5/15/2007 109 52400 high flows 1/25/2005 16.8 53000 high flows 6/15/2009 70.3 53700 high flows 1/2/2002 37.8 56900 high flows 1/2/2002 37.8 56900 high flows 1/2/2008 47.5 59100 high flows	9/29/2009	53.0	32500	moist cond.
9/11/2007 107 34300 moist cond. 5/18/1999 149.0 37600 moist cond. 1/26/2010 19.0 38400 moist cond. 6/12/2007 167 40600 moist cond. 1/7/2003 44.8 41700 moist cond. 4/16/2001 101.0 43100 moist cond. 6/29/2004 59.8 43100 moist cond. 11/17/2009 45.0 43400 moist cond. 11/14/2000 156.8 45900 moist cond. 3/3/2003 76.5 46500 moist cond. 5/15/2007 109 52400 high flows 1/25/2005 16.8 53000 high flows 6/15/2009 70.3 53700 high flows 6/15/2009 70.3 53700 high flows 1/2/2002 37.8 56900 high flows 1/2/2002 37.8 56900 high flows 1/2/2004 173 58000 high flows 1/2/2004 173 58000 high flows 1/2/2004 173 58000 high flows 1/2/2008 47.5 59100 high flows 4/7/1998 248.0 59900 high flows 1/23/2007 57.8 65200 high flows 3/27/2001 16.0 62000 high flows 3/27/2001 77.8 69200 high flows 3/27/2001 77.8 69200 high flows 4/1/2008 32.0 71200 high flows 1/27/1998 185.5 79700 high flows 1/27/2009 37.0 94300 high flows 1/27/2009 37.0 94300 high flows 1/27/2009 37.0 94300 high flows	3/19/2002	48.8	33700	moist cond.
5/18/1999 149.0 37600 moist cond. 1/26/2010 19.0 38400 moist cond. 6/12/2007 167 40600 moist cond. 1/7/2003 44.8 41700 moist cond. 4/16/2001 101.0 43100 moist cond. 6/29/2004 59.8 43100 moist cond. 11/17/2009 45.0 43400 moist cond. 11/14/2000 156.8 45900 moist cond. 3/3/2003 76.5 46500 moist cond. 5/15/2007 109 52400 high flows 1/25/2005 16.8 53000 high flows 6/15/2009 70.3 53700 high flows 1/2/2002 37.8 56900 high flows 1/2/2002 37.8 56900 high flows 5/6/2008 47.5 59100 high flows 4/7/1998 248.0 59900 high flows 1/23/2007 57.8 65200 high flows	1/29/2001	64.3	33900	moist cond.
1/26/2010 19.0 38400 moist cond. 6/12/2007 167 40600 moist cond. 1/7/2003 44.8 41700 moist cond. 4/16/2001 101.0 43100 moist cond. 6/29/2004 59.8 43100 moist cond. 11/17/2009 45.0 43400 moist cond. 11/14/2000 156.8 45900 moist cond. 3/3/2003 76.5 46500 moist cond. 5/15/2007 109 52400 high flows 1/25/2005 16.8 53000 high flows 6/15/2009 70.3 53700 high flows 1/2/2002 37.8 56900 high flows 1/2/2002 37.8 56900 high flows 12/7/2004 173 58000 high flows 4/7/1998 248.0 59900 high flows 1/23/2007 57.8 65200 high flows 3/311/2008 4.0 66400 high flows	9/11/2007	107	34300	moist cond.
6/12/2007 167 40600 moist cond. 1/7/2003 44.8 41700 moist cond. 4/16/2001 101.0 43100 moist cond. 6/29/2004 59.8 43100 moist cond. 11/17/2009 45.0 43400 moist cond. 11/14/2000 156.8 45900 moist cond. 3/3/2003 76.5 46500 moist cond. 5/15/2007 109 52400 high flows 1/25/2005 16.8 53000 high flows 6/15/2009 70.3 53700 high flows 3/3/1998 118.0 54600 high flows 1/2/2002 37.8 56900 high flows 1/2/2004 173 58000 high flows 5/6/2008 47.5 59100 high flows 4/7/1998 248.0 59900 high flows 1/23/2007 57.8 65200 high flows 3/11/2008 4.0 66400 high flows 4/1/2008 32.0 71200 high flows 1/27/1998	5/18/1999	149.0	37600	moist cond.
1/7/2003 44.8 41700 moist cond. 4/16/2001 101.0 43100 moist cond. 6/29/2004 59.8 43100 moist cond. 11/17/2009 45.0 43400 moist cond. 11/14/2000 156.8 45900 moist cond. 3/3/2003 76.5 46500 moist cond. 5/15/2007 109 52400 high flows 1/25/2005 16.8 53000 high flows 6/15/2009 70.3 53700 high flows 3/3/1998 118.0 54600 high flows 1/2/2002 37.8 56900 high flows 1/2/2004 173 58000 high flows 5/6/2008 47.5 59100 high flows 4/7/1998 248.0 59900 high flows 1/23/2007 57.8 65200 high flows 3/11/2008 4.0 66400 high flows 3/27/2001 77.8 69200 high flows 4/1/2008 32.0 71200 high flows 1/27/1998	1/26/2010	19.0	38400	moist cond.
4/16/2001 101.0 43100 moist cond. 6/29/2004 59.8 43100 moist cond. 11/17/2009 45.0 43400 moist cond. 11/14/2000 156.8 45900 moist cond. 3/3/2003 76.5 46500 moist cond. 5/15/2007 109 52400 high flows 1/25/2005 16.8 53000 high flows 6/15/2009 70.3 53700 high flows 3/3/1998 118.0 54600 high flows 1/2/2002 37.8 56900 high flows 12/7/2004 173 58000 high flows 5/6/2008 47.5 59100 high flows 4/7/1998 248.0 59900 high flows 1/23/2007 57.8 65200 high flows 3/27/2001 77.8 69200 high flows 4/1/2008 32.0 71200 high flows 1/27/1998 185.5 79700 high flows 1/27/2009 37.0 94300 high flows 7/17/2007 <td>6/12/2007</td> <td>167</td> <td>40600</td> <td>moist cond.</td>	6/12/2007	167	40600	moist cond.
6/29/2004 59.8 43100 moist cond. 11/17/2009 45.0 43400 moist cond. 11/14/2000 156.8 45900 moist cond. 3/3/2003 76.5 46500 moist cond. 5/15/2007 109 52400 high flows 1/25/2005 16.8 53000 high flows 6/15/2009 70.3 53700 high flows 3/3/1998 118.0 54600 high flows 1/2/2002 37.8 56900 high flows 1/2/7/2004 173 58000 high flows 5/6/2008 47.5 59100 high flows 4/7/1998 248.0 59900 high flows 1/23/2007 57.8 65200 high flows 3/311/2008 4.0 66400 high flows 3/27/2001 77.8 69200 high flows 4/1/2008 32.0 71200 high flows 1/27/1998 185.5 79700 high flows <	1/7/2003	44.8	41700	moist cond.
11/17/2009 45.0 43400 moist cond. 11/14/2000 156.8 45900 moist cond. 3/3/2003 76.5 46500 moist cond. 5/15/2007 109 52400 high flows 1/25/2005 16.8 53000 high flows 6/15/2009 70.3 53700 high flows 3/3/1998 118.0 54600 high flows 1/2/2002 37.8 56900 high flows 12/7/2004 173 58000 high flows 5/6/2008 47.5 59100 high flows 4/7/1998 248.0 59900 high flows 1/23/2007 57.8 65200 high flows 3/11/2008 4.0 66400 high flows 3/27/2001 77.8 69200 high flows 4/1/2008 32.0 71200 high flows 1/27/1998 185.5 79700 high flows 10/27/2009 37.0 94300 high flows 7/17/2007 66.6 103000 high flows	4/16/2001	101.0	43100	moist cond.
11/14/2000 156.8 45900 moist cond. 3/3/2003 76.5 46500 moist cond. 5/15/2007 109 52400 high flows 1/25/2005 16.8 53000 high flows 6/15/2009 70.3 53700 high flows 3/3/1998 118.0 54600 high flows 1/2/2002 37.8 56900 high flows 12/7/2004 173 58000 high flows 5/6/2008 47.5 59100 high flows 4/7/1998 248.0 59900 high flows 1/23/2007 57.8 65200 high flows 3/11/2008 4.0 66400 high flows 3/27/2001 77.8 69200 high flows 4/1/2008 32.0 71200 high flows 1/27/1998 185.5 79700 high flows 1/27/2009 37.0 94300 high flows 7/17/2007 66.6 103000 high flows	6/29/2004	59.8	43100	moist cond.
3/3/2003 76.5 46500 moist cond. 5/15/2007 109 52400 high flows 1/25/2005 16.8 53000 high flows 6/15/2009 70.3 53700 high flows 3/3/1998 118.0 54600 high flows 1/2/2002 37.8 56900 high flows 12/7/2004 173 58000 high flows 5/6/2008 47.5 59100 high flows 4/7/1998 248.0 59900 high flows 2/9/2010 16.0 62000 high flows 1/23/2007 57.8 65200 high flows 3/11/2008 4.0 66400 high flows 3/27/2001 77.8 69200 high flows 4/1/2008 32.0 71200 high flows 1/26/2001 61.8 74100 high flows 1/27/1998 185.5 79700 high flows 10/27/2009 37.0 94300 high flows 7/17/	11/17/2009	45.0	43400	moist cond.
5/15/2007 109 52400 high flows 1/25/2005 16.8 53000 high flows 6/15/2009 70.3 53700 high flows 3/3/1998 118.0 54600 high flows 1/2/2002 37.8 56900 high flows 12/7/2004 173 58000 high flows 5/6/2008 47.5 59100 high flows 4/7/1998 248.0 59900 high flows 2/9/2010 16.0 62000 high flows 1/23/2007 57.8 65200 high flows 3/11/2008 4.0 66400 high flows 3/27/2001 77.8 69200 high flows 4/1/2008 32.0 71200 high flows 1/27/1998 185.5 79700 high flows 1/27/2009 37.0 94300 high flows 7/17/2007 66.6 103000 high flows	11/14/2000	156.8	45900	moist cond.
1/25/2005 16.8 53000 high flows 6/15/2009 70.3 53700 high flows 3/3/1998 118.0 54600 high flows 1/2/2002 37.8 56900 high flows 12/7/2004 173 58000 high flows 5/6/2008 47.5 59100 high flows 4/7/1998 248.0 59900 high flows 2/9/2010 16.0 62000 high flows 1/23/2007 57.8 65200 high flows 3/11/2008 4.0 66400 high flows 3/27/2001 77.8 69200 high flows 4/1/2008 32.0 71200 high flows 1/27/1998 185.5 79700 high flows 1/27/2009 37.0 94300 high flows 7/17/2007 66.6 103000 high flows	3/3/2003	76.5	46500	moist cond.
6/15/2009 70.3 53700 high flows 3/3/1998 118.0 54600 high flows 1/2/2002 37.8 56900 high flows 12/7/2004 173 58000 high flows 5/6/2008 47.5 59100 high flows 4/7/1998 248.0 59900 high flows 2/9/2010 16.0 62000 high flows 1/23/2007 57.8 65200 high flows 3/11/2008 4.0 66400 high flows 3/27/2001 77.8 69200 high flows 4/1/2008 32.0 71200 high flows 2/26/2001 61.8 74100 high flows 1/27/1998 185.5 79700 high flows 10/27/2009 37.0 94300 high flows 7/17/2007 66.6 103000 high flows	5/15/2007	109	52400	high flows
3/3/1998 118.0 54600 high flows 1/2/2002 37.8 56900 high flows 12/7/2004 173 58000 high flows 5/6/2008 47.5 59100 high flows 4/7/1998 248.0 59900 high flows 2/9/2010 16.0 62000 high flows 1/23/2007 57.8 65200 high flows 3/11/2008 4.0 66400 high flows 3/27/2001 77.8 69200 high flows 4/1/2008 32.0 71200 high flows 2/26/2001 61.8 74100 high flows 1/27/1998 185.5 79700 high flows 1/27/1998 185.5 79700 high flows 1/27/2009 37.0 94300 high flows 7/17/2007 66.6 103000 high flows	1/25/2005	16.8	53000	high flows
1/2/2002 37.8 56900 high flows 12/7/2004 173 58000 high flows 5/6/2008 47.5 59100 high flows 4/7/1998 248.0 59900 high flows 2/9/2010 16.0 62000 high flows 1/23/2007 57.8 65200 high flows 3/11/2008 4.0 66400 high flows 3/27/2001 77.8 69200 high flows 4/1/2008 32.0 71200 high flows 2/26/2001 61.8 74100 high flows 1/27/1998 185.5 79700 high flows 10/27/2009 37.0 94300 high flows 7/17/2007 66.6 103000 high flows	6/15/2009	70.3	53700	high flows
12/7/2004 173 58000 high flows 5/6/2008 47.5 59100 high flows 4/7/1998 248.0 59900 high flows 2/9/2010 16.0 62000 high flows 1/23/2007 57.8 65200 high flows 3/11/2008 4.0 66400 high flows 3/27/2001 77.8 69200 high flows 4/1/2008 32.0 71200 high flows 2/26/2001 61.8 74100 high flows 1/27/1998 185.5 79700 high flows 10/27/2009 37.0 94300 high flows 7/17/2007 66.6 103000 high flows	3/3/1998	118.0	54600	high flows
5/6/2008 47.5 59100 high flows 4/7/1998 248.0 59900 high flows 2/9/2010 16.0 62000 high flows 1/23/2007 57.8 65200 high flows 3/11/2008 4.0 66400 high flows 3/27/2001 77.8 69200 high flows 4/1/2008 32.0 71200 high flows 2/26/2001 61.8 74100 high flows 1/27/1998 185.5 79700 high flows 10/27/2009 37.0 94300 high flows 7/17/2007 66.6 103000 high flows	1/2/2002	37.8	56900	high flows
4/7/1998 248.0 59900 high flows 2/9/2010 16.0 62000 high flows 1/23/2007 57.8 65200 high flows 3/11/2008 4.0 66400 high flows 3/27/2001 77.8 69200 high flows 4/1/2008 32.0 71200 high flows 2/26/2001 61.8 74100 high flows 1/27/1998 185.5 79700 high flows 10/27/2009 37.0 94300 high flows 7/17/2007 66.6 103000 high flows	12/7/2004	173	58000	high flows
2/9/2010 16.0 62000 high flows 1/23/2007 57.8 65200 high flows 3/11/2008 4.0 66400 high flows 3/27/2001 77.8 69200 high flows 4/1/2008 32.0 71200 high flows 2/26/2001 61.8 74100 high flows 1/27/1998 185.5 79700 high flows 10/27/2009 37.0 94300 high flows 7/17/2007 66.6 103000 high flows	5/6/2008	47.5	59100	high flows
1/23/2007 57.8 65200 high flows 3/11/2008 4.0 66400 high flows 3/27/2001 77.8 69200 high flows 4/1/2008 32.0 71200 high flows 2/26/2001 61.8 74100 high flows 1/27/1998 185.5 79700 high flows 10/27/2009 37.0 94300 high flows 7/17/2007 66.6 103000 high flows	4/7/1998	248.0	59900	high flows
3/11/2008 4.0 66400 high flows 3/27/2001 77.8 69200 high flows 4/1/2008 32.0 71200 high flows 2/26/2001 61.8 74100 high flows 1/27/1998 185.5 79700 high flows 10/27/2009 37.0 94300 high flows 7/17/2007 66.6 103000 high flows	2/9/2010	16.0	62000	high flows
3/27/2001 77.8 69200 high flows 4/1/2008 32.0 71200 high flows 2/26/2001 61.8 74100 high flows 1/27/1998 185.5 79700 high flows 10/27/2009 37.0 94300 high flows 7/17/2007 66.6 103000 high flows	1/23/2007	57.8	65200	high flows
4/1/2008 32.0 71200 high flows 2/26/2001 61.8 74100 high flows 1/27/1998 185.5 79700 high flows 10/27/2009 37.0 94300 high flows 7/17/2007 66.6 103000 high flows	3/11/2008	4.0	66400	high flows
2/26/2001 61.8 74100 high flows 1/27/1998 185.5 79700 high flows 10/27/2009 37.0 94300 high flows 7/17/2007 66.6 103000 high flows	3/27/2001	77.8	69200	high flows
1/27/1998 185.5 79700 high flows 10/27/2009 37.0 94300 high flows 7/17/2007 66.6 103000 high flows	4/1/2008	32.0	71200	high flows
10/27/2009 37.0 94300 high flows 7/17/2007 66.6 103000 high flows	2/26/2001	61.8	74100	high flows
7/17/2007 66.6 103000 high flows	1/27/1998	185.5	79700	high flows
7/17/2007 66.6 103000 high flows	10/27/2009	37.0	94300	-
	7/17/2007		103000	-
5,25,2000 12.0 112000 High Hows	5/26/2009	42.5	112000	high flows
4/16/2002 152.7 115000 high flows	4/16/2002	152.7	115000	high flows

FILE: R:\PROJECTS\3013-380\TECH\ADEQ_WQ_DATA\RED RIVER\RED0009 RED RIVER REVISED TMDL METHOD.XLSX

TABLE F.3 COMPONENTS OF TMDL FOR TURBIDITY FOR RED RIVER REACH 11140201-003

Calculations for diffuse loads:

Existing diffuse load = (Ambient flow at d/s end of reach for min. flow w/in hydrol. zone) × (Average existing conc.)

Allowable diffuse load = (Ambient flow at d/s end of reach for min. flow w/in hydrol. zone) × MIN (Average existing conc., Criterion)

Calculations for dividing regulated and non-regulated diffuse loads:

Tot. drain. area for regul. stormwater = 0 facilities × 40 ac each = 0 ac

Tot. drain. area for reach 11140201-003 = 50,984 sq. mi. = 32,629,760 ac

Drainage area for regul. stormwater as percent of total drainage area = 0.0000%

--> WLA for regulated stormwater = 0.00% of allowable load from diffuse sources
--> LA for non-regulated diffuse sources = 100.00% of allowable load from diffuse sources

Calculations for non-storm point sources:

Sum of design flows for non-storm point sources for this reach (cfs) = 0 MGD = 0.00 cfs

Effluent concentration is set manually so that allocated loads (Σ WLA + LA) do not exceed TMDL WLA for non-storm point sources = Sum of design flows × effluent concentration × conversion factor

Load reserved for future growth = TMDL - LA for non-regulated diffuse sources - WLA for regulated stormwater - WLA for non-storm point sources

Ambient flow at downstream end of reach from Table F.1	High flows	Moist cond.	Mid-range	Dry cond.	Low flows
for minimum flow within each hydrologic range (cfs) =	52111	13403	6451	2717	1410

LOADS OF TSS:

Average existing concentration from Table F.2 (mg/L) = Existing load from diffuse sources (tons/day) = Allowable load from diffuse sources (tons/day) =	High flows	Moist cond.	Mid-range	Dry cond.	Low flows
	82	76	55	41	38
	11524	2747	957	300.4	144.5
	11524	2747	957	300.4	144.5
LA for non-regulated diffuse sources (tons/day) = WLA for regulated stormwater (tons/day) =	11524	2747	957	300.4	144.5
	0	0	0	0	0
Effluent conc. for non-storm point sources (mg/L) = WLA for non-storm point sources (tons/day) =	0	0	0	0	0
	0	0	0	0	0
Load reserved for future growth (tons/day) = TMDL from Table F.1 (tons/day) Error check: Sum of WLAs + LA + FG ≤ TMDL?	23892	6362	3427	87.9	57.1
	35416	9109	4384	388.3	201.6
	ok	ok	ok	ok	ok

FILE: R:\PROJECTS\3013-380\TECH\ADEQ_WQ_DATA\RED RIVER\RED0009 RED RIVER REVISED TMDL METHOD.XLSX

Figure F.1 Flow Duration Curve for Red River Reach 11140201-003

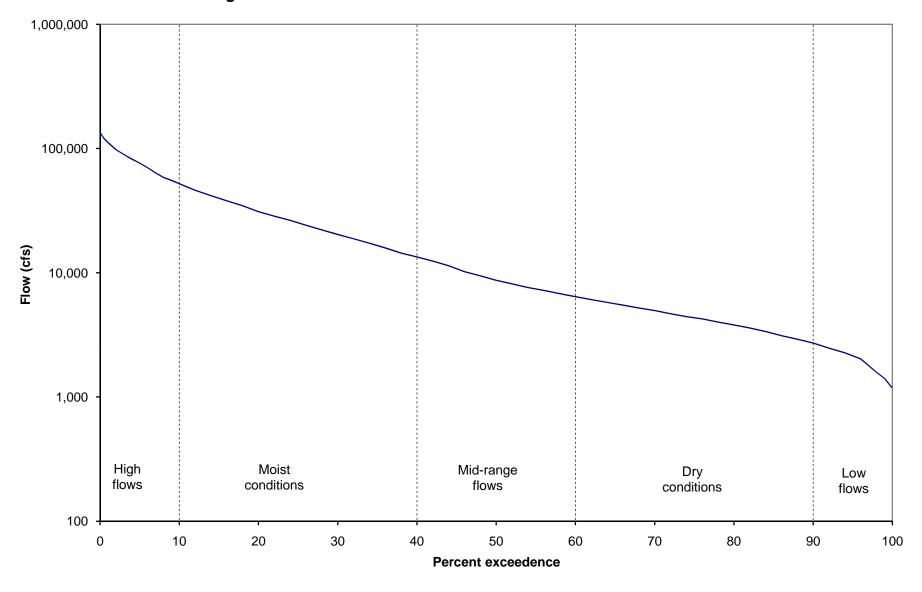
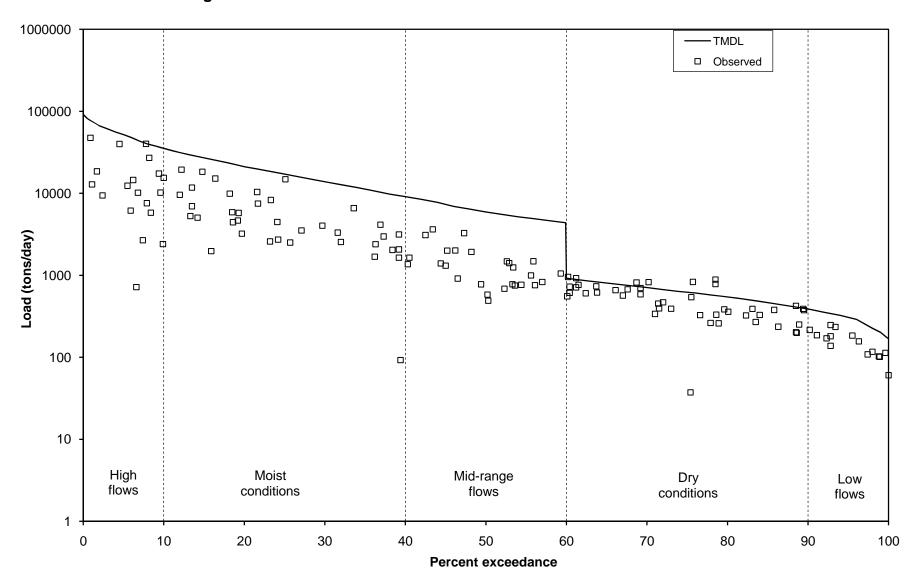



Figure F.2 TSS Load Duration Curve for Red River Reach 11140201-003

